
Countermeasures Against Branch Target Buffer Attacks∗

Giovanni Agosta, Luca Breveglieri

Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza L. Da Vinci 32, 20133 Milano, Italy

{agosta,brevegli}@elet.polimi.it

Gerardo Pelosi

Dipartimento di Ingegneria dell’Informazione e Metodi Matematici,

Università degli Studi di Bergamo,

Viale Marconi 5, 20044 Dalmine (BG), Italy

gerardo.pelosi@unibg.it

Israel Koren

Department of Electrical & Computer Engineering, University of Massachusetts,

Amherst, MA 01003

koren@ecs.umass.edu

Abstract

Branch Prediction Analysis has been recently proposed

as an attack method to extract the key from software im-

plementations of the RSA public key cryptographic algo-

rithm. In this paper, we describe several solutions to protect

against such an attack and analyze their impact on the exe-

cution time of the cryptographic algorithm. We show that

the code transformations required for protection against

branch target buffer attacks can be automated and impose

only a negligible performance penalty.

1 Introduction

Timing attacks against secret-key/public-key cryptosys-

tems attempt to recover complete key information by mea-

suring the running time of certain computations during the

encryption or decryption processes. Timing attacks have

been developed against many common crypto-algorithms

(e.g., RSA, DSA, Diffie-Hellman and RC5) relying on the

key-dependent correlation between the input data and the

execution time [7]. The reasons for the dependence of the

execution time on the key include conditional branches,

cache hits/misses and processor instructions executed in a

∗This work was carried out under partial financial support of the Italian

MiUR (Project PRIN 2006 ID-2006099978) and in part by project FSE

ID-413174.

non-fixed time.

For a timing attack to succeed, it must be possible to

measure the running time of cryptographic operations. Such

measurements can be done not only on a smart card which

is in the attacker’s possession, but also on a software imple-

mentation of a crypto-algorithm running on a remote ma-

chine [1].

Several techniques have been developed to protect cryp-

tographic systems against timing attacks, e.g., by forcing

the execution time to be independent of the key bits.

In [5, 6] Acıiçmez et al. propose a new attack

method that exploits the fact that the Branch Target Buffer

(BTB) [3] keeps a history log of the branching choices per-

formed by a cryptographic primitive. The attacker will run

a spy process on the same multi-threaded processor that is

executing the cryptographic process and will take advan-

tage of the fact that both processes share the use of the

BTB. The basic idea is that the spy process will execute

a sufficiently high number of branches to guarantee that

the BTB entries that keep track of the branches executed

by the cryptographic process will be replaced, thus forc-

ing the cryptographic process to always have mispredicted

branches. Then, when the cryptographic process executes,

it will cause the BTB to be modified when the attacked

branch is taken, and leave the spy process’ branch target

address intact in the BTB when the attacked branch is not

taken. This attack, being based on a log of the branching

choices that is common to all processes, enables an un-

privileged spy process to quickly infer the key used by the

1

cryptographic process, since the attacker can reconstruct the

log by simply measuring the time needed to perform its

own branches. Longer times correspond to mispredicted

branches, i.e., to branches taken in the cryptographic pro-

cess, while shorter times correspond to not taken branches.

Compared to the classical timing attacks, this technique is

immune to countermeasures such as branch balancing and

blinding, since it does not measure computation time in the

attacked process.

2 Countermeasures

Several simple hardware and/or software techniques can

be employed to protect against the attack described in [5,

6]. Obviously, a simple and effective solution would be to

allow sensitive processes to disable the access to the BTB

unit. This, however, requires a modification to current pro-

cessor designs; a modification that is unlikely to be imple-

mented in general-purpose microprocessors in the near fu-

ture. Other solutions have been proposed in a wider frame-

work of control-flow side channel attacks, which can be

effectively employed to face an attack to the BTB. These

solutions rely on eliminating conditional branches and are

described next.

2.1 Branch Elimination

Branch elimination techniques are based on the fact that,

when there are no control operations (branches or a loop

with a variable number of iterations), then obviously no

control flow attack can be mounted [9]. It is quite straight-

forward to see that BTB attacks are a special case of con-

trol flow attack, since they rely on the BTB to convey in-

formation about the actual path in the cryptographic code

followed during its execution. Therefore, the code can be

rewritten to avoid branching, at least when the bodies of the

then and else parts of the branch are small enough. An ex-

ample of such a technique is as follows:

if (a) { b = c ⊕ d; }

becomes:

athen = (a! = 0) × 0xffffffff;

aelse = (a == 0) × 0xffffffff;

x = c ⊕ d;

b = b & aelse + x & athen;

Molnar et al. [9] show how to transform a program in or-

der to obtain a program counter-secure (PC-secure) ver-

sion of it. Basically, the technique ensures that all the

conditional branches are removed, so that every execution

of the program has exactly the same sequence of program

counter values. This technique is extremely effective, as it

not only protects against control flow attacks (and conse-

quently against timing attacks), but also against attacks that

exploit the knowledge of the data accesses. The latter is

true since the data memory addresses accessed by the trans-

formed program are independent of the control flow of the

original program, as it happens, for example, for Coron’s

exponentiation method [2], where a conditional assignment

originally expressed as:

if (a) { b = c ⊕ d; }

becomes

tmp[1] = c ⊕ d;

tmp[0] = b;

b = tmp[a];

where a is a Boolean value. Such a solution, while PC-

secure, is unsecure with respect to attacks that exploit the

knowledge of an accessed memory address, since the at-

tacker can infer the value of a from the address of the da-

tum read in the last instruction. As a variant of the tech-

nique in [9], predicated execution (also called conditional

instruction) [4, 8] can be employed to the same effect. Since

most modern processors have predicated (conditional) in-

structions, these can be used to remove sensitive branches

by converting them into instructions belonging to a single

control flow. For example, the following code fragment:

if (a) { b = c + d; }

could be replaced by:

cmpi r1, r2, 0

add r3, r4, r5

select r2, r3, r1

if (r2 == 0) { r1 = 1 }

else { r1 = 0 }

r3 = r4 + r5

if (r1! = 0) { r2 = r3 }

where the select operation assigns the destination regis-

ter r2 the value of r3, if r1 is not zero. For the other in-

structions, the first operand is always the destination. Mod-

ern instruction sets such as the ARM and IA64 are fully

predicated, so that there would not be a need for an explicit

conditional assignment, and only two instructions would be

required.

Molnar’s solution [9] is attractive, because it does not

affect the performance of processors which exhibit a suffi-

cient degree of instruction-level parallelism (ILP). Actually,

the use of predicated execution may even improve the per-

formance. Sometimes, however, this technique can become

impractical when the bodies of the then and else parts are

very large, or contain function calls, so that inlining is re-

quired to make sure that the function parameters that affect

2

the length of loops are known at compile time – a manda-

tory condition [9] to guarantee PC-security. These lead to a

significant increase in the code size and more importantly,

in execution time. Case studies in [9] report slowdown fac-

tors of up to 5 times as well as a stack size increase of up

to 2 times. Moreover, some loops may be driven by values

known only at runtime (e.g., input values), thus making a

PC-secure version of the program impossible to obtain.

2.2 Branch to Indirect Jump Conversion

A different technique can be employed to ensure that the

side channel attack on the BTB will fail. The BTB attack

is based on the fact that there is a conditional branch in

the code, therefore, an effective way to protect against it is

to remove all the conditional branches from the sensitive

code, and replace them with indirect branches, as shown in

the following example:

bz r1, label

<then part>

jmp end

label:

<else part>

end:

where r1 contains the result of the condition expression (let

us assume it can only be 0 or 1). The branch instruction is

replaced by the following code:

add r2, r3, r1

ld r4, 0(r2)

jmpl r4

r2 = r3 + r1

r4 = Mem(0 + r2)

PC = r4

where the addresses of the then and else code fragments are

stored in the memory locations pointed at by r3 and r3 + 1,

and jmpl is an indirect branch reading the address from

a register. The new code snippet loads the target address

from the correct position and always performs an indirect

branch, regardless of whether the condition is true or false

– there is no fall through between contiguous basic blocks.

The attacker process causes the branch to be always mis-

predicted, so that it will always find its own branches to

be mispredicted as well, and the BTB will no more contain

useful information. The same technique can be applied to

the source code as well, by replacing an if-then-else condi-

tional statement with:

JUMP(cond,lthen,lelse);

lthen :

...

lelse :

...

ljoin :

...

where the JUMP macro is defined by the following code:
__inline__ unsigned int cneg(unsigned int x) {

unsigned int y;

__asm__ ("movl\t$0, %0\n\t"

"cmpl\t$0, %1\n\t"

"movl\t$0xFFFFFFFF, %%ecx\n\t"

"cmovnzl\t%%ecx, %0\n"

: "=d"(y)

: "m" (x)

: "ecx");

return(y);

} /* end cneg */

#define SELECT(x,v1,v2) \

((cneg(x)&v1) | ((˜(cneg(x)))&v2))

#define JUMP(x,lthen,lelse) goto *(void *) \

SELECT(x, (unsigned int)(&<hen), \

(unsigned int)(&&lelse))

This last technique is always applicable and can be im-

plemented by means of a simple compiler pass that replaces

direct branches with appropriate indirect branches, at a min-

imal overhead (one load, one add and a branch that will al-

ways be taken). The technique can be applied at the source

code level as well, using a trivial transformation (imple-

mented by a parser) that leaves all the code unchanged ex-

cept for the generation of the JUMP macro and related tar-

gets according to the conditional statement rules of the lan-

guage grammar.

Moreover, the same technique can be applied to exist-

ing compiled code, as it works directly on the binary code;

when the position of the basic blocks in the memory is al-

ready known. Therefore, the technique is suitable for im-

plementation in link-time or dynamic optimizers.

Indirect branches are available in most architectures, in-

cluding x86, IA64, MIPS and ARM, which makes the tech-

nique widely applicable to commercial platforms. While

this technique does not qualify as PC-secure (each branch

of a conditional is still executed on a different set of pro-

gram counter values), it is capable of countering attacks to

the BTB with negiligble performance impact. Hence, the

technique fits well applications in a real world context.

The attack in [5, 6] was mounted against implementa-

tions of the RSA cryptosystem, using the OpenSSL imple-

mentation as a test case. In the OpenSSL case, it would be

possible to use the predicate execution or the if-elimination

techniques, but different implementations or other cryp-

tosystems might still be vulnerable. Moreover, in closed

source cryptosystems it is impossible to ascertain whether

a suitable design is employed, therefore an implementation

of our proposed indirect branch technique as a dynamic or

link-time optimization can still be used to secure the code.

3 Performance Evaluation

To compare the effectiveness of the discussed counter-

measures, we applied them to an RSA square-and-multiply

algorithm implemented using the OpenSSL library, which

has been subjected to the attack presented in [5, 6]. The test

3

Table 1. Profiling of the proposed methods. The leftmost three columns provide measures relative
to individual branches, the rightmost gives the execution time for the RSA square-and-multiply for

each technique.

Implementation Branch Footprint Data refer- Time [clk]

method penalty penalty ence penalty (1024-bit key)

Original code 1.00 1.0 0 59,698

Coron’s method 1.71 0.8 2 58,756

Predicated conditional 4.79 1.2 4 58,967

Indirect jump (our) 4.83 2.0 3 61,846

case was built using the same simplifications as in [5, 6],

and the measures were collected using the Valgrind profil-

ing tools suite [10]. Table 1 compares the previously dis-

cussed three methods to protect against the simple BTB at-

tack. The first column in the table shows the execution time

penalty (expressed as a slowdown factor) for a single high-

level conditional construct: both the indirect jump conver-

sion and the predicate version of the conditional construct

impose, for different reasons, a relatively high slowdown.

In fact, each conditional executes almost five times slower

than the original. Coron’s method, on the other hand, only

incurs a limited penalty.

The second column in the table shows the increase in

the static footprint of each conditional branch relative to

the original size; that is, the number of machine instruc-

tions used to represent it in the object code. In this case,

Coron’s method allows a more compact representation than

the original code, while the other two methods incur small

penalties. The third column reports the number of addi-

tional data references that are performed by the transformed

code for each conditional branch. Each of the three methods

imposes a different penalty, with the predicated conditional

incurring the highest penalty: it adds four data references

for each conditional branch. This metric is especially rele-

vant since a large number of additional memory references

can negatively impact the data cache miss rate, and there-

fore increase the average delay of a read or write operation

in the memory.

The first three columns in Table 1 measure the impact

of the transformation used to secure a small code section

(a single conditional branch) against simple BTB attacks.

The last column of Table 1, on the other hand, shows the

overall impact of these transformations on the computation

time of the core routine of the RSA encryption algorithm,

thus giving a better estimate of the performance impact. We

can see that the execution time penalties are very small since

the transformations are applied only to a limited portion of

the code where sensitive information is used to compute a

branch outcome.

Finally, Figure 1 shows the memory usage profile of the

RSA square-and-multiply algorithm. Since the stack mem-

ory usage is not significantly affected by the countermea-

sures, the memory usage profiles of the original version and

all three modified versions (with the countermeasures) are

almost identical and thus, we show only the graph for the

indirect jump version. This result again demonstrates the

minimal impact of the various countermeasures on the exe-

cution of the cryptographic algorithm.

The worst case conditions exposed by the first three

columns in Table 1 are still useful when attemping to gauge

the impact of the countermeasures, when applied to, for ex-

ample, legacy binary code that is not secure. In such a case,

our proposed indirect jump technique is the only one that

can be easily implemented.

4 Concluding Remarks

In this paper, we evaluated the currently existing solu-

tions and compared them to a new technique which we pro-

pose for protecting against the BTB side channel attack in-

troduced in [5, 6].

The countermeasures can be easily implemented either

in high-level code, by a simple source code transformation,

or by re-targeting the compiler, once the target architecture

is known, or even through link-time or dynamic code opti-

mization.

References

[1] David Brumley and Dan Boneh. Remote timing at-

tacks are practical. Computer Networks, 48(5):701–

716, 2005.

[2] Jean-Sébastien Coron. Resistance against differen-

tial power analysis for elliptic curve cryptosystems.

In CHES ’99: Proceedings of the First International

Workshop on Cryptographic Hardware and Embed-

ded Systems, pages 292–302, London, UK, 1999.

Springer-Verlag.

4

Figure 1. Memory Usage in OpenSSL RSA square-and-multiply algorithm

./newattack.ind 1,891,376 bytes x ms

ms0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 500.0

b
y
te

s

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

heap-admin

x408A0BF:???

x80595DF:CRYPTO_malloc

stack(s)

[3] Bradley D. Hoyt, Glenn J. Hinton, Andrew F. Glew,

and Subramanian Natarajan. Branch target buffer

for dynamically predicting branch instruction out-

comes using a predicted branch history. US Patent

08/509331, Internation Class G06F 9/38, 1996.

[4] P. Y. T. Hsu and E. S. Davidson. Highly concur-

rent scalar processing. In ISCA ’86: Proceedings

of the 13th annual international symposium on Com-

puter architecture, pages 386–395, Los Alamitos, CA,

USA, 1986. IEEE Computer Society Press.

[5] Onur Acıiçmez, Çetı́n Kaya Koç, and Jean-Pierre

Seifert. On the power of simple branch prediction

analysis. In ACM Symposium on Information, Com-

puter and Communications Security, ASIACCS 2007,

Mar 2007.

[6] Onur Acıiçmez, Jean-Pierre Seifert, and Çetı́n

Kaya Koç. Predicting secret keys via branch predic-

tion. In Topics in Cryptology, The Cryptographers’

Track at the RSA Conference, CT-RSA 2007, volume

4377 of LNCS, pages 225–242. Springer, Feb 2007.

[7] Paul C. Kocher. Timing attacks on implementations

of diffie-hellman, rsa, dss, and other systems. In Neal

Koblitz, editor, CRYPTO, volume 1109 of Lecture

Notes in Computer Science, pages 104–113. Springer,

1996.

[8] Scott A. Mahlke, Richard E. Hank, James E. Mc-

Cormick, David I. August, and Wen-Mei W. Hwu.

A comparison of full and partial predicated execution

support for ilp processors. In ISCA ’95: Proceedings

of the 22nd annual international symposium on Com-

puter architecture, pages 138–150, New York, NY,

USA, 1995. ACM Press.

[9] David Molnar, Matt Piotrowski, David Schultz, and

David Wagner. The program counter security model:

Automatic detection and removal of control-flow side

channel attacks. In Dongho Won and Seungjoo Kim,

editors, ICISC, volume 3935 of Lecture Notes in Com-

puter Science, pages 156–168. Springer, 2005.

[10] Nicholas Nethercote and Julian Seward. Valgrind: A

program supervision framework. Electr. Notes Theor.

Comput. Sci., 89(2), 2003.

5

