2.2 Optimal cost spanning trees

Spanning trees have a number of applications:

- network design (communication, electrical, ...)
- IP network protocols
- compact memory storage (DNA)
- ...
2.2.1 Minimum cost spanning tree problem

Example

Design a communication network so as to connect \(n \) cities at minimum total cost.

Model: Graph \(G = (N, E) \) with \(n = |N| \), \(m = |E| \) and a cost function \(c : E \rightarrow c_e \in \mathbb{R} \), with \(e = [v, w] \in E \).
Required properties:

1) Each pair of cities must communicate ⇒ connected subgraph containing all the nodes.

2) Minimum total cost ⇒ subgraph with no cycles.

Problem

Given an undirected graph $G = (N, E)$ and a cost function, find a spanning tree of minimum total cost

$$\min_{T \in X} \sum_{e \in T} c_e$$

where X is the set of all spanning trees of G
Some feasible solutions:

\[G = (N, E) \]

\[c(T_1) = 16 \]
\[c(T_2) = 9 \]
\[c(T_3) = 11 \]
Theorem (A. Cayley 1889)

A complete graph with \(n \) nodes \((n \geq 1) \) has \(n^{n-2} \) spanning trees.

Examples: \(K_3 \) (\(n=3 \), \(m=3 \) edges) has 3 spanning trees

\[K_5 \] (\(n=5 \), \(m=10 \)) has 125 spanning trees

Recall: A tree with \(n \) nodes has \(n - 1 \) edges.
2.2.2 Prim’s algorithm

Idea: Iteratively build a spanning tree.

At each step, add to the current partial tree an edge of minimum cost among those which connect a node from the partial tree to another node that does not belong to it.
Given $G = (N,E)$ with edge costs

Procedure:

$S = \{1\}$

$T = \emptyset$

$S = \{1, 2\}$

$T = \{[1,2]\}$
$S = \{1, 2\}$

$S = \{1, 2, 3, 5\}$

$S^* = \{1, 2, 5\}$

$S = \{1, 2, 5\}$

$c(T) = 9$
Pseudocode of Prim’s algorithm

Input
Connected \(G = (N, E) \) with edge costs

Output
Subset of edges \(T \subseteq E \) such that \(G_T = (N, T) \) is a spanning tree of \(G \)

BEGIN

\[T := \emptyset; \quad S := \{1\}; \]

WHILE \(|T| < n-1 \) DO /* a tree with \(n \) nodes has \(n-1 \) edges */

Select an edge \([v, h] \in \delta(S)\) of minimum cost (\(v \in S \) and \(h \in N \setminus S \));

\[T := T \cup \{[v, h]\}; \]

\[S := S \cup \{h\}; \]

END-WHILE

END

If all edges are scanned at each iteration, complexity: \(O(nm) \)
2.2.3 Exactness of Prim’s algorithm

Definition: An algorithm is *exact* if it provides an optimal solution for every instance, otherwise it is *heuristic*.

Proposition: Prim’s algorithm is exact.

We show that each selected edge belongs to a minimum spanning tree.

As we shall see, exactness does not depend on the choice of the first node or of the edge of minimum cost in \(\delta(S) \).
Let F be a partial tree (spanning nodes in $S \subseteq N$) contained in an optimal tree of G. Consider $e = [v, h] \in \delta(S)$ of minimum cost, then there exists a minimum cost spanning tree of G containing e.

Proof

By contradiction:

Let $T^* \subseteq E$ be a minimum cost spanning tree with $F \subseteq T^*$ and $e \notin T^*$.

Adding edge e creates the cycle C.

Let $f \in \delta(S) \cap C$.

If $c_e = c_f$ then $T^* \cup \{e\} \setminus \{f\}$ is (also) optimal since it has same cost of T^*.

If $c_e < c_f$ then $c(T^* \cup \{e\} \setminus \{f\}) < c(T^*)$, hence T^* is not optimal.
Definition: A *greedy algorithm* constructs a feasible solution iteratively by making at each step a “locally optimal” choice, without reconsidering previous choices.

Observation: Prim’s algorithm is a greedy algorithm.

At each step a minimum cost edge is selected among those in the cut $\delta(S)$ induced by the current set of nodes S.

N.B. For most discrete optimization problems greedy-type algorithms yield a feasible solution with no guarantee of optimality.
Various greedy algorithms for the minimum cost spanning tree problem are based on the cut property:

- Boruvka (1926)
- Kruskal (1956) -- Exercise 2.2
- Prim (1957)
- ...
2.2.4 \(O(n^2) \) implementation

Data structure:

- \(k \) = number of edges selected so far
- Subset \(T \subseteq E \) of selected edges
- Subset \(S \subseteq N \) of nodes incident to the selected edges

.....
• \(C[j] = \min \{c_{ij} : i \in S\} \) for \(j \notin S \) -- if \([i,j] \notin E\), \(c_{ij} = +\infty \)

\[
\text{closest}[j] = \begin{cases}
\text{argmin} \{c_{ij} : i \in S\}, & \text{for } j \notin S \\
\text{“predecessor” of } j \text{ in the min spanning tree}, & \text{for } j \in S
\end{cases}
\]
Example

Iteration 1: \(T = \{[1,2]\}, \ C = (+\infty, 1, 4, 6, 2), \ \text{closest} = (1, 1, 1, 1, 1) \)

Iteration 2: \[\text{cut } \delta(S) = \{[1,3], [1,4], [1,5], [2,3], [2,5]\} \]

\[S = \{1, 2\} \]

\begin{align*}
C[3] &:= c_{23} = 3 \ (\text{since } c_{23} < c_{13}) \\
\text{closest}[3] &:= 2 \\
C[5] &:= c_{15} = 2 \ (\text{since } c_{15} = c_{25}) \\
\text{closest}[5] &:= 1
\end{align*}

\[C[4] := c_{14} = 6 \ (\text{since } [2,4] \text{ does not exist}) \]
\[\text{closest}[4] := 1 \]

Since \(C[5] = c_{15} \leq C[3] = c_{23} \) and \(C[5] = c_{15} \leq C[4] = c_{14} \), then

\[h := 5, \ \nu = \text{closest}[h] := 1, \ S := S \cup \{5\}, \ T := T \cup \{[1,5]\}\]
$O(n^2)$ version of Prim's algorithm

BEGIN

T := \emptyset; S := \{1\}; /* initialization */

FOR j:=2 TO n DO /* \forall nodes j \notin S */

C[j] := c_{1j};
closest[j] := 1;

END-FOR

FOR k:=1 TO n-1 DO /* select \(n - 1\) edges of the tree */

min := +\infty;

FOR j:=2 TO n DO /* select minimum edge in \(\delta(S)\) */

IF j \notin S AND (C[j] < min) THEN

min := C[j]; h := j; END-IF

END-FOR

S := S \cup \{h\}; T := T \cup \{\text{closest}[h], h\}; /* extend S and T */

FOR j:=2 TO n DO /* update C[j] e closest[j] \(\forall j \notin S\) */

IF j \notin S AND (c_{hj} < C[j]) THEN

C[j] := c_{hj}; closest[j] := h; END-IF

END-FOR

END-FOR

END
Example

\[T = \emptyset \]
\[C = (+\infty, 1, 4, 6, 2) \]
\[\text{closest} = (1, 1, 1, 1, 1) \]

\[S = \{1\} \]
\[C = (+\infty, 1, 4, 6, 2) \]
\[\text{closest} = (1, 1, 1, 1, 1) \]

\[T = \{[1, 2]\} \]
\[C = (+\infty, 1, 3, 6, 2) \]
\[\text{closest} = (1, 1, 2, 1, 1) \]

\[S = \{1, 2\} \]
\[C = (+\infty, 1, 3, 6, 2) \]
\[\text{closest} = (1, 1, 2, 1, 1) \]

\[S = \{1, 2, 5\} \]
\[C = (+\infty, 1, 2, 4, 2) \]
\[\text{closest} = (1, 1, 5, 5, 1) \]

\[T = \{[1, 2], [1, 5]\} \]
\[C = (+\infty, 1, 2, 4, 2) \]
\[\text{closest} = (1, 1, 5, 5, 1) \]

\[\text{etc...} \]

How to retrieve the spanning tree from closest?

The minimum spanning tree found by Prim’s algorithm consists of the $n-1$ edges: $[\text{closest}[j], j]$ with $j = 2, ..., n$.

Example: Since $\text{closest} = (1,1,5,5,1)$ a spanning tree consists of the edges: $[1,2]$, $[5,3]$, $[5,4]$ and $[1,5]$.

total cost: 9
Complexity

BEGIN
 <initialization>
 FOR j:=2 TO n DO
 (...) END-FOR
 FOR k:=1 TO n-1 DO
 FOR j:=2 TO n DO
 (...) END-FOR
 END-FOR
 FOR j:=2 TO n DO
 (...) END-FOR
 END-FOR
END

1. initialization requires $O(n)$
2. They are executed $n - 1$ times in the external cycle
3. The two internal FOR cycles require $O(n)$ each

Overall complexity: $O(n^2)$
For sparse graphs, where $m \ll n(n-1)/2$, a more sophisticated data structure leads to an $O(m \log n)$ complexity.
2.2.5 Optimality condition

Definition: Given a spanning tree \(T \), an edge \(e \not\in T \) is cost decreasing if when \(e \) is added to \(T \) it creates a cycle \(C \) with \(C \subseteq T \cup \{e\} \) and \(\exists \) an edge \(f \in C \setminus \{e\} \) such that \(c_e < c_f \).

\[
c(T \cup \{e\} \setminus \{f\}) < c(T) = \sum_{e' \in T} c_{e'},
\]

A tree T is of minimum total cost if and only if no cost-decreasing edge exists.

Proof \((\Rightarrow)\) If a cost-decreasing edge exists, T is not of minimum total cost.

Because the cost of T could be decreased by exchanging the cost-decreasing edge e with any f of C with $c_e < c_f$.
\(\iff \) If no cost-decreasing edge exists, then \(T \) is of minimum total cost.

Let \(T^* \) be a minimum cost spanning tree found by Prim’s algorithm.

It can be verified that, by exchanging one edge at a time, \(T^* \) can be iteratively transformed into \(T \) without modifying the total cost.

Thus \(T \) is also optimal.
The optimality condition allows us to verify whether a given spanning tree G_T is optimum:

It suffices to check that each $e \in E \setminus T$ is not a cost-decreasing edge.
Given a communication network $G = (N, E)$, we want to broadcast a secret message to all the nodes so that it is not intercepted along any edge.

Let p_{ij}, $0 \leq p_{ij} \leq 1$, be the probability the message is intercepted along edge $[i,j] \in E$.

Problem

How to broadcast the message to all the nodes of G so as to minimize the probability of interception along any edge?
Minimize the probability of interception (along any edge)

\[\Updownarrow \]

Maximize the probability of non-interception

\[
\max \prod_{[i,j] \in T} (1 - p_{ij})
\]

\(T \) is a spanning tree

\[\begin{cases}
\bullet \text{ Broadcasting to all nodes } \Rightarrow \text{ connected} \\
\bullet \text{ acyclic to avoid redundancy and a higher probability of interception}
\end{cases} \]
By applying a monotone increasing function like $\log(.)$, the optimal solutions remain unchanged (only the solution values change)

\[
\max \log \left(\prod_{[i,j] \in T} (1 - p_{ij}) \right) \equiv \max \sum_{[i,j] \in T} \log(1 - p_{ij})
\]

Solved by a straightforward adaptation of any minimum cost spanning tree algorithm