2.2 Minimum cost spanning trees

Spanning trees have a number of applications:

• network design (communication, electrical, ...)
• compact memory storage (DNA)
• diffusion of secret messages
• ...

2.2.1 Problem and Prim's algorithm

Example

Design a communication network so as to connect n cities (offices) at minimum total cost.

Model: Graph $G = (N, E)$ with $n = |N|$, $m = |E|$ and a cost function $c : E \to c_e \in \mathbb{R}$, with $e = [v, w] \in E$
Properties:

1) Each pair of cities must communicate \(\Rightarrow \) connected subgraph containing all the nodes

2) Minimum total cost \(\Rightarrow \) subgraph with no cycles

Problem

Given an undirected graph \(G = (N, E) \) and a cost function, find a spanning tree of minimum total cost

\[
\min_{T \in X} \sum_{e \in T} C_e
\]

where \(X \) is the set of all spanning trees of \(G \)
Theorem

A. Cayley (1889)

A complete graph with \(n \) nodes has \(n^{n-2} \) spanning trees, for \(n \geq 1 \).

Esempio

\(n = 3 \)

Recall: a tree with \(n \) nodes has \(n - 1 \) edges
Example Prim's algorithm

Some feasible solutions:

$S = \{1\}$

$T = \emptyset$

$S = \{1, 2\}$

$T = \{\{1, 2\}\}$
\[S = \{1, 2\} \]

\[S = \{1, 2, 5\} \]

\[S = \{1, 2, 3, 5\} \]

\[S = N \]

\[\text{costo: 9} \]
Prim's algorithm

Connected graph $G = (N, E)$ with a cost function

Set of edges $T \subseteq E$ such that $G_T = (N, T)$ is a spanning tree of G

BEGIN

T := \emptyset; S := {1};

WHILE $|T| < n-1$ DO /* a tree with n nodes has $n-1$ edges */

find $[v,h] \in \delta(S)$ of min cost, with $v \in S$ e $h \in N \setminus S$;

T := T \cup {[v,h]};

S := S \cup {h};

END-WHILE

END
Prim algorithm is a *greedy algorithm* : at each step a min cost edge is selected among those in the cut induced by the current set of nodes S without reconsidering previous decisions.
2.2.2 $O(n^2)$ implementation

Data structure:

• $k =$ number of edges selected so far

• Subset $T \subseteq E$ of selected edges

• Subset $S \subseteq N$ of nodes incident to the selected edges

....
• $C[j] = \min \{ c_{ij} : i \in S \} \quad \forall j \notin S$; \quad \text{se} \ [i,j] \notin E, \ c_{ij} = +\infty

\begin{align*}
\text{pred}[j] &= \begin{cases}
\text{“predecessore” di } j \text{ nell’albero minimo,} & \forall j \in S \\
\min \{ c_{ij} : i \in S \} & \forall j \notin S
\end{cases}
\end{align*}
$\text{cut } \delta(S) = \{[1,3], [1,4], [1,5], [2,3], [2,5]\}$

$S = \{1, 2\}$

$T = \{[1,2]\}$

$\text{pred}[2] := 1$

$C[3] := c_{23} = 3$ (since $c_{23} < c_{13}$)

$\text{pred}[3] := 2$

$C[5] := c_{15} = 2$ (since $c_{15} = c_{25}$)

$\text{pred}[5] := 1$

$C[4] := c_{14} = 6$ (since $[2,4]$ does not exist)

$\text{pred}[4] := 1$

$h := 5; \ \text{pred}[h] := 1; \ S := S \cup \{5\}; \ T := T \cup \{[1,5]\}$

etc…
\(O(n^2)\) version of Prim's algorithm

BEGIN

\[T := \emptyset; \ S := \{1\}; \quad /* \text{initialization} */ \]

FOR \(j := 2 \ \text{TO} \ n \ \text{DO} \quad /* \forall \ \text{nodes} \ j \notin S \ */ \]
\[
T := T \cup \{[1, j]\}; \quad \text{if} [1,j] \notin E, \ c_{1j} = +\infty \\
C[j] := c_{ij}; \quad \text{pred}[j] := 1; \]

END-FOR

FOR \(k := 1 \ \text{TO} \ n-1 \ \text{DO} \quad /* \text{select} n - 1 \ \text{edges of the tree} */ \]
\[
\text{min} := +\infty; \\
\text{min} := C[j]; \quad \text{h} := j; \quad \text{END-IF} \\
S := S \cup \{h\}; \quad T := T \cup \{[\text{pred}[h], h]\}; \quad /* \text{extend} \ S \ \text{and} \ T */ \\
\text{END-FOR} \\
\text{END-FOR} \\
\text{END}
\]
Example

\[S = \{1\} \]
\[T = \emptyset \]
\[C = (+\infty, 1, 4, 6, 2) \]
\[\text{pred} = (1, 1, 1, 1, 1, 1) \]

\[S = \{1, 2\} \]
\[T = \{[1,2]\} \]
\[C = (+\infty, 1, 3, 6, 2) \]
\[\text{pred} = (1, 1, 2, 1, 1) \]

\[S = \{1, 2, 5\} \]
\[T = \{[1,2], [1,5]\} \]
\[C = (+\infty, 1, 2, 4, 2) \]
\[\text{pred} = (1, 1, 5, 5, 1) \]

etc...
A minimum spanning tree consists of the $n-1$ edges $[\text{pred}[j], j]$ con $j = 2, ..., n$.

Example: Since $\text{pred} = (1, 1, 5, 5, 1)$ a spanning tree consists of the edges: $[1,2], [5,3], [5,4]$ and $[1,5]$

![Minimum spanning tree diagram]

cost: 9
BEGIN
<initialization>
FOR j:=2 TO n DO
 (...)
END-FOR
FOR k:=1 TO n-1 DO
 FOR j:=2 TO n DO
 (...)
 END-FOR
END-FOR
END

1. Initialization requires $O(n)$
2. They are executed $n - 1$ times in the external cycle
3. The two internal FOR cycles require $O(n)$ each

Overall complexity: $O(n^2)$
For sparse graphs, where $m << n(n-1)/2$, a more sophisticated data structure leads to an $O(m \log n)$ complexity.
Prim's algorithm is exact, i.e., it is guaranteed to yield a minimum spanning tree of G, regardless of the choice of the first node and of the minimum cost edge selected in case of ties in $\delta(S)$.

Few optimization problems admit exact greedy algorithms!

We will show that each selected edge belongs to a minimum spanning tree.
Cost-decreasing edges

Given a spanning tree T, an edge $e \not\in T$ is cost decreasing if when it is added to T it creates a cycle $C \subseteq T \cup \{e\}$ and there exists an edge $f \in C \setminus \{e\}$ such that $c_e < c_f$

$$c(T \cup \{e\} \setminus \{f\}) < c(T) = \sum_{e' \in T} c_{e'}$$
Property of optimum trees

If a spanning tree T^* is of minimum total cost, no cost-decreasing edge exist.

$$c_e \geq c_f \text{ for each } f \in C \setminus \{e\}$$

Otherwise we could decrease the cost of T^* by exchanging the cost-decreasing edge e with any f of C with $c_e < c_f$!
Proposition

Given $S \subseteq N$ and a minimum cost edge $e = [v, h] \in \delta(S)$, then there exists a minimum spanning tree containing e.

Dim. By contradiction: Let $T^* \subseteq E$ be a min spanning tree with $e \notin T^*$

Adding $e \Rightarrow$ cycle C

Let $f \in \delta(S) \cap C$

If $c_e = c_f$ then $T^* \cup \{e\} \setminus \{f\}$ is optimum since same cost of T^*

If $c_e < c_f$, e is a cost-decreasing edge and hence T^* is not minimum!
2.2.4 **Kruskal algorithm**

input

\[G = (N, E) \text{ and a cost function} \]

output

Subset of edges \(T^* \subseteq E \) s.t. \(G_{T^*} = (N, T^*) \) is a spanning tree of \(G \)

Idea: sort the edges in order of non-decreasing cost and select the edges which do not create cycles.
Esempio

[1,2], [2,5], [1,5], [3,5], [2,3], [4,5], ...

\[1 \quad 2 \quad 2 \quad 2 \quad 3\]

\[\text{costo: } 9\]
Kruskal's algorithm

BEGIN
sort the edges of G in order of non-decreasing cost;
T* := ∅;
WHILE |T*| < (n-1) DO
 select an edge e ∈ E of minimum cost;
 E := E \ {e};
 IF T* ∪ {e} is acyclic THEN T* := T* ∪ {e};
END-WHILE
END
Complexity

• Order \(m \) edges: \(O(m \log m) \)

\[
\log m < \log n^2 = 2\log n \quad \Rightarrow \quad O(m \log n)
\]

• Check that an edge creates a cycle: in constant time by checking that its two nodes belong to two different connected components (c.c.)

Each update of the node labels for the c.c.: \(O(n) \)

\[\Rightarrow \text{overall complexity: } O(m \log n + n^2)\]

N.B. Complexity can be reduced by using a more sophisticated data structure
A tree T is **minimum** if and only if **no cost-decreasing edges exist.**

(\Rightarrow)

If a cost-decreasing edge exists, T is not optimum (property of minimum trees)

(\Leftarrow)

If **no cost-decreasing edges exist**, then T is optimum

By exchanging edges we can transform the optimum T^* found by Prim algorithm into T without modifying the total cost, hence T is optimum.
Kruskal's algorithm is exact

Each edge $e \notin T^* \ (T^*$ is the resulting spanning tree) has been discarded because it would have created a cycle.

Moreover $c_e \geq \ldots$ of all edges of that cycle, since the edges are considered in order of non-decreasing cost.

\Rightarrow the resulting spanning tree satisfies the optimality condition and hence is of minimum total cost.

no cost-decreasing edge exists
Optimality test

The optimality condition allows us to verify whether a given spanning tree G_T is optimum:

$G = (N, E)$

$G_T = (N, T)$

$c(T) = 9$

It suffices to check that each $e \in E \setminus T$ is not a cost-decreasing edge.
2.2.5 **Indirect application**

Optimal message passing:

Given a communication network $G = (N, E)$ whose edges $[i, j] \in E$ correspond to the pairs of “nodes” that can directly communicate.

Let p_{ij}, $0 \leq p_{ij} \leq 1$, be the probability a secret message is intercepted along edge $[i, j] \in E$

How to pass a secret message to all the “nodes” of G while minimizing the probability of interception?
Minimize the probability of interception (along an edge) ⇐

Maximize the probability of non-interception

\[
\max \prod_{[i,j] \in T} (1 - p_{ij})
\]

\(T\) is spanning tree

- Diffusion to all nodes ⇒ connected
- acyclic to avoid redundancy and a higher probability of interception
Applicando una funzione monotona crescente, ad esempio log(.), non cambiano le soluzioni ottime (solo il valore)

\[\max \log(\prod_{[i,j] \in T} (1 - p_{ij})) \equiv \max \sum_{[i,j] \in T} \log(1 - p_{ij}) \]

Si adattano in modo ovvio gli algoritmi di Prim e Kruskal.