Global and Local QoS Constraints Guarantee in Web Service Selection

Danilo Ardagna
Barbara Pernici

Politecnico di Milano
Italy
Motivations

- In SOA, complex applications can be composed as business processes invoking a variety of available Web services.
- Develop applications by specifying component Web services only through their required functional characteristics and non-functional constraints.
- Select Web services during process execution from a registry of available services, satisfying the specified requirements.
WS Selection is an Optimization Problem

- Local optimization: run time selection of the best candidate service which supports the execution of the running high level activity
- Global optimization: identification of the set of candidate services which satisfy the end user preferences for the whole application
- Quality of Service (QoS) constraints at local and global level
Outline

- Formal definitions
- MAIS Framework
- Mixed Integer Programming Model Formulation for the WSC problem
- Experimental results
- Conclusions and Future Work
Process Model

- The composite service is specified by using BPEL4WS and is characterized by a single initial and end task
- Annotations specify branches probability of executions, maximum number of iterations of cycles, and local and global constraints
- Each Web service implements a single operation
- Cycles are unfolded according to their maximum number of iterations
Formal Definitions

- Let $w_{si,j}$ be the i-th Web service candidate for the execution of task t_j.
- Execution Path (ep_l): a set of tasks $\{t_1,t_2,...,t_n\}$, such that t_1 is the initial task, t_n is the final task and no t_i, t_j belong to alternative branches.
- Sub path (sp_{ml}): a sequence of tasks $[t_1,t_2,...,t_n]$, $t_i \in ep_l \ \forall i$, from the begin to the end task which does not contain any parallel sequence.
- Execution Plan (epl_k): a set of ordered couples $(t_j,w_{s_{i,j}})$, indicating that task t_j included in epl_k is executed by a given WS $w_{s_{i,j}}$.
- Global Plan: a set of ordered couples $(t_j,w_{s_{i,j}})$, which associates every task t_j to a given WS $w_{s_{i,j}}$ and satisfies local and global constraints for all execution paths.
An Example

- Global constraints:
 - Price ≤ 6$
 - Execution time ≤ 7 sec.
- Solution: ws\(_{2,1}\), ws\(_{2,2}\) and ws\(_{2,3}\) (no global constraints violation in all cases)
The MAIS Framework

- Candidate Web services are retrieved from the MAIS registry
- Quality values are parameters of the WSC problem
- Web services selection and execution are interleaved (optimization and re-optimization)
MAIS Architecture
Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_{i,j}$</td>
<td>$ws_{i,j}$ execution time</td>
</tr>
<tr>
<td>$a_{i,j}$</td>
<td>$ws_{i,j}$ availability</td>
</tr>
<tr>
<td>$p_{i,j}$</td>
<td>price for $ws_{i,j}$ execution</td>
</tr>
<tr>
<td>$r_{i,j}$</td>
<td>$ws_{i,j}$ reputation</td>
</tr>
<tr>
<td>WS_j</td>
<td>set of indexes corresponding to candidate Web services of task t_j</td>
</tr>
<tr>
<td>\mathcal{A}</td>
<td>set of tasks included in the composite service specification</td>
</tr>
<tr>
<td>$\mathcal{F_l}$</td>
<td>set of tasks included in the execution path ep_l</td>
</tr>
<tr>
<td>L</td>
<td>number of execution path arising from the composite service specification</td>
</tr>
</tbody>
</table>
Problem Formulation

- The WSC problem is multi-objective and a simple additive weighting technique is used to evaluate the overall value of QoS from multiple quality dimensions.
- Decision variables:
 - $y_{i,j}$ equals 1 if the Web service $ws_{i,j}$ executes task t_j, 0 otherwise.
 - x_j start time of task t_j
 - e_j task t_j duration
Objective Function

- Plan score:

\[
score(e_{pl}) = w_1 \frac{\max Q^l_{1} - exeTime_l}{\max Q^l_{1} - \min Q^l_{1}} + w_2 \frac{avail_l - \min Q^l_{2}}{\max Q^l_{2} - \min Q^l_{2}} + \\
+w_3 \frac{\max Q^l_{3} - price_l}{\max Q^l_{3} - \min Q^l_{3}} + w_4 \frac{repl_l - \min Q^l_{4}}{\max Q^l_{4} - \min Q^l_{4}}
\]

- Problem objective:

\[
\max \sum_{i=1}^{L} freq_i \cdot score(e_{pl})
\]
Problem Constraints

Assignment constraints:

\[\sum_{i \in WS_j} y_{i,j} = 1; \quad \forall j \in A \]

Task duration constraints:

\[\sum_{i \in WS_j} e_{i,j} y_{i,j} = e_j; \quad \forall j \in A \]

\[x_k - (e_j + x_j) \geq 0; \quad \forall t_j \rightarrow t_k \]
Problem Constraints

- **Local constraints:**
 \[
 \sum_{i \in WS_{j_1}} p_{i,j_1} y_{i,j_1} \leq \bar{p}_{j_1}
 \]

- **Execution time constraints:**
 \[
 \sum_{j \in sp_{m}^l} e_j \leq exeTime_l; \ \forall sp_{m}^l \in epl
 \]

 \[exeTime_l \leq E; \ \forall l\]

- **Availability constraints:**
 \[
 avail_l = \prod_{j \in A_l} \prod_{i \in WS_j} a_{i,j}^{y_{i,j}};
 \]

 \[avail_l \geq A; \ \forall l\]

- **Price constraints:**
 \[
 price_l = \sum_{j \in A_l} \sum_{i \in WS_j} p_{i,j} y_{i,j}
 \]

 \[price_l \leq B; \ \forall l\]

- **Reputation constraints:**
 \[
 repl_l = \frac{1}{|A_l|} \sum_{j \in A_l} \sum_{i \in WS_j} r_{i,j} y_{i,j}
 \]

 \[repl_l \geq R; \ \forall l\]

The problem is NP-hard, it is equivalent to a Multiple choice Multiple dimension Knapsack Problem
Re-optimization

- Re-optimization is performed:
 - if the current QoS value q_n differs from the corresponding prediction \tilde{q}_n (variability of performance of Web services)
 - if a Web service invocation fails
 - for end user 's context switch
 - after the evaluation of switch conditions
 - periodically with an adaptive time period T_p (new candidate services)

- Re-optimization reduces the number of variables of the problem and can be computed efficiently
Concretizator Implementation

- XML file: constraints, weights
- MILP formulation
- BPEL4WS specification
- XML file (re-opt): process state, current cycles iteration

Diagram:
- MAIS registry
- Candidate Web services
- Process Translator
- Process Tuner
- CPLEX
- Global Plan
Optimization Performance

- The effectiveness of our approach has been tested on a wide set of randomly generated instances.
- The number of tasks has been varied between 7 and 70. The number of candidate Web services per task has been varied between 10 and 50.
- We compared our solutions with the solutions provided by the local optimization.
- On average global optimization improves local optimization results by 20-30%.
Optimization Performance
Future Work

- Probabilistic execution of cycles included in composite service specifications
- QoS parameters negotiation to further improve a global plan or to identify a feasible solution if it does not initially exist
Thanks! Any questions?