A Cost-oriented methodology for the design of Web based IT architectures

Danilo Ardagna

Politecnico di Milano
Italy
Summary

- Research objectives and Motivation
- Presentation of proposed methodology
- ISIDE
- Empirical verifications
- Conclusions and Future work
Research objectives and Motivation

- **Objectives**
 - Support the Architectural Design of Web IT Systems minimizing TCO

- **Motivation**
 - The Architectural design of IT systems is traditionally led optimizing single subsystems separately
 - Fill literature gap
Design Methodology: architectural alternatives

- Thin vs. fat clients
- Number of tiers
- Total number of servers
- Allocation of applications
Design Phases

System Designer defines exploration domain

Technology Requirements Model

Infrastructural Model

Optimization

Physical Model
Technology Requirements Model

- Organization Sites S_i
- Buildings B_i
- Applications A_i
- User classes C_i
- Requests R_i
- Databases D_i
Technology Requirements Model - An example

Request R₁
- \(f(R₁) = 3 \) req/min
- \(\Phi(R₁) = \begin{array}{c|cc}
 \text{Application} & \text{CPU-Time} & \text{disk-time} \\
 \hline
 A₂ & 1 & 0.2 \\
 A₃ & 1.5 & 0.1 \\
 A₄ & 2 & 1.3 \\
 A₅ & 2.4 & 1.1 \\
\end{array} \)

Request R₂
- \(f(R₂) = 1 \) req/min
- \(\Phi(R₂) = \begin{array}{c|cc}
 \text{Application} & \text{CPU-Time} & \text{disk-time} \\
 \hline
 A₆ & 0.5 & 0.2 \\
 A₇ & 1 & 0.3 \\
\end{array} \)

System Specifications
- Type(A₁) = monolithic
- \(\Delta₁(A₁) = \begin{array}{c|c|c|c}
 \text{MIPS} & \text{RAM} & \text{OS} \\
 \hline
 120 & 16 & W98 \\
 150 & 32 & W2000 \\
\end{array} \)
- Type(A₂) = server
 - Tuning-system(A₂) = (W2000, PIII 450, Raid-5 SCSI)
 - RAM(A₂) = 512 MB
 - \(d(A₂) = 150 \) MB

Application Performance
- **CPU-Time**
 - A₇
 - 100 B
 - 200 B
 - A₆
 - 20 KB
 - 100 KB
 - A₄
 - 50 KB
 - 1 KB
 - A₃
 - 20 KB
 - 1 KB
 - A₂
 - 150 KB
 - 150 B
 - A₁
 - 20 KB
 - 100 KB
 - A₅
 - 50 KB
 - 1 KB
 - A₈
 - d(A₈) = 50 MB
 - A₉
 - d(A₉) = 50 MB

D. Ardagna, C. Francalanci - SAC 2002
The Infrastructural Design Model

- Goal: Build a virtual IT architecture with components that can meet requirements with no approximation

- To a Technology Requirements Model are associated N Infrastructural Models, vice versa to an Infrastructural Model a single Physical Model is assigned

- The solution domain is defined specifying:
 - Type of client computers
 - Number of computing levels of requests
The Infrastructural design Process

<table>
<thead>
<tr>
<th>Virtual Computing Resource</th>
<th>Symbol</th>
<th>Variables</th>
<th>Analytical Formulation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Server</td>
<td>VS<sub>i</sub></td>
<td>Frequency of requests</td>
<td>f(R<sub>i</sub>)</td>
<td></td>
</tr>
<tr>
<td>Primary Memory</td>
<td></td>
<td>RAM = ∑<sub>VS<sub>i</sub></sub>RAM(A<sub>i</sub>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual application server for WT/HFC</td>
<td>VAS<sub>i</sub></td>
<td>Computing Power</td>
<td>MIPS = n(C<sub>i</sub>)·p(C<sub>i</sub>)·[\text{max}\ (\text{MIPS}(A<sub>i</sub>, OS, RP, \text{think-time}(C<sub>i</sub>)))]</td>
<td>MIPS(A<sub>i</sub>, OS, RP, \text{think-time}(C<sub>i</sub>)) returns MIPS required to support execution of application A<sub>i</sub> on the target operating system OS under the specified remote protocol RP for a user of specified think-time; p(C<sub>i</sub>) returns the percentage of concurrent users in class C<sub>i</sub></td>
</tr>
<tr>
<td>Primary Memory</td>
<td></td>
<td>RAM = n(C<sub>i</sub>)·p(C<sub>i</sub>)·[\sum\text{RAM} (A<sub>i</sub>, OS, RP, \text{think-time}(C<sub>i</sub>))]</td>
<td>RAM(A<sub>i</sub>, OS, RP) returns RAM required to support execution of application A<sub>i</sub> on the target operating system OS under the specified remote protocol RP for a user of specified think-time.</td>
<td></td>
</tr>
<tr>
<td>Virtual fat client</td>
<td>VFG<sub>i</sub></td>
<td>Computing Power</td>
<td>MIPS = [\text{max}\ (\text{MIPS}(A<sub>i</sub>, OS))]</td>
<td>MIPS(A<sub>i</sub>, OS) returns MIPS required to support execution of application A<sub>i</sub> on the target operating system OS</td>
</tr>
<tr>
<td>Primary Memory</td>
<td></td>
<td>RAM = ∑<sub>FG<sub>i</sub></sub>RAM(A<sub>i</sub>, OS)</td>
<td>RAM(A<sub>i</sub>, OS) returns RAM required to support execution of application A<sub>i</sub> on the target operating system OS</td>
<td></td>
</tr>
<tr>
<td>Virtual HFC</td>
<td>VHFC<sub>i</sub></td>
<td>Computing Power</td>
<td>MIPS = [\text{max}\ (\text{MIPS}(A<sub>i</sub>, OS))]</td>
<td>MIPS(A<sub>i</sub>, OS) returns MIPS required to support execution of application A<sub>i</sub> on the target operating system OS</td>
</tr>
<tr>
<td>Primary Memory</td>
<td></td>
<td>RAM = ∑<sub>FG<sub>i</sub></sub>RAM(A<sub>i</sub>, OS)</td>
<td>RAM(A<sub>i</sub>, OS) returns RAM required to support execution of application A<sub>i</sub> on the target operating system OS</td>
<td></td>
</tr>
</tbody>
</table>
The Physical Design Model

- Optimization iterates the following steps:
 - Selection of an Infrastructural Model
 - Association of commercial components with virtual computing resources

- Commercial components are selected:
 - Virtual Server: Resource Utilization lower than 60%
 - Virtual WT and HFC servers, FC, HFC: MIPS \geq MIPS*
 - Virtual thin clients: design criteria that discriminate low and high performance devices are satisfied
Optimization algorithm: Tabu Search

- **Heuristic** algorithm
- **Initial solution**
- Defining possible **movements**
- **Neighborhood** exploration
- **Tabu list** check
Empirical Verifications

- Thin vs. fat clients

<table>
<thead>
<tr>
<th></th>
<th>20% Management Cost reduction</th>
<th>35% Management Cost reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEW</td>
<td>19%</td>
<td>35%</td>
</tr>
<tr>
<td>STW</td>
<td>23%</td>
<td>39%</td>
</tr>
<tr>
<td>KW</td>
<td>30%</td>
<td>44%</td>
</tr>
</tbody>
</table>

- Number of tiers

Minimum cost solution savings
Empirical Verifications

- Total number of servers:
 - Application server for raising frequencies
 - Server farm supporting WT users

![Configuration Cost](chart1)

![Minimum cost solution savings](chart2)

Average saving 79.92%
Conclusions and Future Work

- The methodology allows the identification of the architectural solution that minimizes costs.
- Preliminary results show that cost reductions can be significant.
- Cost oriented approach can be a complement to traditional performance evaluations.
- Future work: Network design alternatives and legacy systems.