Models for languages

Models suitable to recognize/accept, translate, compute languages
– They “receive” an input string and process it

• Operational models (Automata)

Models suitable to describe how to generate a language
– Sets of rules to build phrases of a language

• Generative models (Grammars)
Grammars (1)

• Generative models produce strings
 – grammar (or syntax)

• A grammar is a set of rules to build the phrases of a language
 – It applies to any notion of language

• A formal grammar generates strings of a language through a rewriting process
Rewriting

• Rewriting relevant to many fields
 – Mathematics
 – Computer science
 – Logic

• It consists of a wide range of methods for replacing subterms of a “formula” with other terms
 – Potentially nondeterministic
Examples

• Semantically equivalent formulae in propositional logic
 – $A \land B$ can be replaced with $\neg(\neg A \lor \neg B)$
 – $\neg A \lor B$ can be replaced with $A \Rightarrow B$
 – ...

• Examples of tautologies in FOL
 – We can rewrite the tautology $\neg A \lor A$ by replacing A with a w.f.f. of propositional or FOL logic
Linguistic rules (1)

• Natural languages are explained through rules such as:
 – A phrase is made of a subject followed by a predicate
 – A subject can be a noun or a pronoun or ...
 – A predicate can be a verb followed by a complement

• Programming languages are expressed similarly:
 – A program consists of a declarative part and an executable part
 – The declarative part ...
 – The executable part consists of a statement sequence
 – A statement can be ...
Linguistic rules (2)

• In general, a linguistic rule describes a “main object”
 – Examples: a book, a program, a message, ...
as a sequence of “composing objects”

• Each “composing object” is “refined” by replacing it with more detailed objects and so on... until a sequence of base elements is obtained
Grammars (2)

• A grammar is a linguistic rule
• It is composed by
 – a main object: initial symbol
 – composing objects: nonterminal symbols
 – base elements: terminal symbols
 – refinement rules: productions
• Formally?
Quotes

“A grammar can be regarded as a device that enumerates the sentences of a language”

“A grammar of L can be regarded as a function whose range is exactly L”

Definition

• A grammar is a tuple \(<V_N, V_T, P, S>\) where
 – \(V_N\) is the nonterminal alphabet (or vocabulary)
 – \(V_T\) is the terminal alphabet (or vocabulary)
 – \(V = V_N \cup V_T\)
 – \(S \in V_N\) is a particular element of \(V_N\) called axiom or initial symbol
 – \(P \subseteq V^* \cdot V_N \cdot V^* \times V^*\) is the (finite) set of rewriting rules or productions

• A grammar \(G = <V_N, V_T, P, S>\) generates a language on the alphabet \(V_T\)
Productions

• A production is an element of $V^* \cdot V_N \cdot V^* \times V^*$
 – This is usually denoted as $\langle \alpha, \beta \rangle$, where
 \[\alpha \in V^* \cdot V_N \cdot V^* \text{ and } \beta \in V^* \]
• We generally indicate a production as $\alpha \rightarrow \beta$
 – α is a sequence of symbols including at least one nonterminal symbol
 – β is a (potentially empty) sequence of (terminal or non terminal) symbols
Example

- $V_N = \{S, A, B, C, D\}$
- $V_T = \{a, b, c\}$
- S is the initial symbol
 - It is not mandatory to call it S
- $P = \{
 S \rightarrow AB,
 BA \rightarrow cCD,
 CBS \rightarrow ab,
 A \rightarrow \varepsilon
\}$
- The generated language is on the alphabet $\{a, b, c\}$
Chomsky hierarchy (1)

- Grammars are classified according to the form of their productions
- Chomsky classified grammars in four types

![Diagram showing the Chomsky hierarchy with types 0, 1, 2, and 3 nested inside each other.]

Grammars
Chomsky hierarchy (2)

• Type 3 grammars restrict productions to a single nonterminal on the left-hand side and a right-hand side consisting of a single terminal, possibly followed (or preceded, but not both in the same grammar) by a single nonterminal
 – The rule $S \rightarrow \varepsilon$ is also allowed here if S does not appear on the right side of any rule

• Type-2 grammars are defined by rules of the form $A \rightarrow \gamma$ where A is a nonterminal and γ is a string of terminals and nonterminals
Chomsky hierarchy (3)

• **Type-1 grammars** have rules of the form $\alpha A\beta \rightarrow \alpha \gamma \beta$, where A is a nonterminal and α, β and γ are strings of terminals and nonterminals.

 – γ must be non-empty

 – The rule $S \rightarrow \epsilon$ is allowed if S does not appear on the right side of any rule

• **Type-0 grammars** include all formal grammars
Immediate derivation relation

\[\alpha \Rightarrow \beta \ (\beta \text{ is obtained by immediate derivation from } \alpha) \]

- \(\alpha \in V^* \cdot V_N \cdot V^* \) and \(\beta \in V^* \)

if and only if

\[\alpha = \alpha_1 \alpha_2 \alpha_3, \quad \beta = \alpha_1 \beta_2 \alpha_3 \text{ and } \alpha_2 \rightarrow \beta_2 \in P \]

\(\rightarrow \) \(\alpha_2 \) is rewritten as \(\beta_2 \) in the context \(\langle \alpha_1, \alpha_3 \rangle \)
Example

In the grammar G

- $V_N = \{S, A, B, C, D\}$
- $V_T = \{a,b,c\}$
- S is the initial symbol
- $P = \{S \rightarrow AB, BA \rightarrow cCD, CBS \rightarrow ab, A \rightarrow \varepsilon\}$

- $aaBAS \Rightarrow aacCDS$
- $bcCBSAdd \Rightarrow bcabAdd$
Language generated by a grammar

• Given a grammar \(G = \langle V_N, V_T, P, S \rangle \)

\[\forall x \ (x \in L(G) \iff x \in V_T^* \land S \Rightarrow^+ x) \]

• Informally the language generated by a grammar \(G \) is the set of all strings
 – Consisting only of terminal symbols that can be derived from \(S \)
 – In any number of steps
Example 1

- $G_1 = \langle \{S, A, B\}, \{a, b, 0\}, P, S \rangle$
 - $P = \{S \rightarrow aA, A \rightarrow aS, S \rightarrow bB, B \rightarrow bS, S \rightarrow 0\}$

- Some derivations
 - $S \Rightarrow 0$
 - $S \Rightarrow aA \Rightarrow aaS \Rightarrow aa0$
 - $S \Rightarrow bB \Rightarrow bbS \Rightarrow bb0$
 - $S \Rightarrow aA \Rightarrow aaS \Rightarrow aabB \Rightarrow aabbS \Rightarrow aabb0$

- An easy generalization $L(G_1) = \{aa, bb\}^* . 0$
Example 2

• $G_2=\langle\{S\}, \{a,b\}, \{S\rightarrow aSb \mid ab\}, S\rangle$
 – $\{S\rightarrow aSb \mid ab\}$ is an abbreviation for $\{S\rightarrow aSb, S\rightarrow ab\}$

• Some derivations
 – $S \Rightarrow ab$
 – $S \Rightarrow aSb \Rightarrow aabb$
 – $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaabbb$

• An easy generalization $L(G_2)={a^n b^n \mid n>0}$
 – $L(G_2)={a^n b^n \mid n\geq0}$ if we substitute $S\rightarrow ab$ with $S\rightarrow \epsilon$
Example 3

• $G_3 = \langle \{S, A, B, C, D\}, \{a, b, c\}, P, S \rangle$
 – $P = \{ S \rightarrow aACD, A \rightarrow aAC | \varepsilon, B \rightarrow b, CD \rightarrow BDc, CB \rightarrow BC, D \rightarrow \varepsilon \}$

• Some derivations
 – $S \Rightarrow aACD \Rightarrow aCD \Rightarrow aBDc \Rightarrow^* abc$
 – $S \Rightarrow aACD \Rightarrow aaACCD \Rightarrow aaCBDc \Rightarrow aaBCDc \Rightarrow aabCDc \Rightarrow aabBDcc \Rightarrow aabbDcc \Rightarrow aabbcc$
 – $S \Rightarrow aACD \Rightarrow aaACCD \Rightarrow aaCCD \Rightarrow aaCC$
Some natural questions

• What is the practical use of grammars?
• What languages can be obtained through grammars?
• What is the relationship between automata and grammars?
 – And between languages generated by grammars and languages accepted by automata?
 – And the Chomsky hierarchy?
Some answers

• Chomsky hierarchy can be “renamed”
 – Type 3 grammars: regular
 – Type 2 grammars: context-free
 – Type 1 grammars: context-sensitive
 – Type 0 grammars: unrestricted

• Correlations
 – Regular grammars – regular languages - FSAs
 – Context-free grammars – context-free languages - NDPDAs
 – Unrestricted grammars – recursively enumerable languages - MTs
Automata, languages, and grammars

<table>
<thead>
<tr>
<th>Chomsky hierarchy</th>
<th>Grammars</th>
<th>Languages</th>
<th>Minimal automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type-0</td>
<td>Unrestricted</td>
<td>Recursively enumerable</td>
<td>Turing machine</td>
</tr>
<tr>
<td>Type-1</td>
<td>Context-sensitive</td>
<td>Context-sensitive</td>
<td>(Linear bounded automaton)</td>
</tr>
<tr>
<td>Type-2</td>
<td>Context-free</td>
<td>Context-free</td>
<td>NDPDA</td>
</tr>
<tr>
<td>Type-3</td>
<td>Regular</td>
<td>Regular</td>
<td>FSA</td>
</tr>
</tbody>
</table>
Definition

• If for each $\alpha \rightarrow \beta \in P$ we have $|\alpha| = 1$ and
 \[\beta \in V_N. V_T \cup V_T \cup \{\epsilon\}, \] the grammar is left regular
• If for each $\alpha \rightarrow \beta \in P$ we have $|\alpha| = 1$ and
 \[\beta \in V_T. V_N \cup V_T \cup \{\epsilon\}, \] the grammar is right regular
• A grammar is regular (RG) iff it is either left regular or right regular
• A language is regular iff it is generated by some regular grammar
 – There must be at least one grammar that generates it
RGs and FSAs

Let A be a FSA. An equivalent RG G can be found constructively. Equivalent means that G generates exactly the same language that is recognized by A (and vice versa).

Regular grammars, finite state automata and regular expressions are different models to describe the same class of languages.
Building a RG from a FSA

- If A=<Q, I, δ, q₀, F>, then it is possible to build G=<VN, VT, S, P> such that
 - VN = Q,
 - VT = I,
 - S = q₀
 - For all δ(q, i) = q’
 - q → i q’ ∈ P
 - If q’ ∈ F then q’ → ε ∈ P

- δ*(q, x) = q’ if and only if q ⇒* xq’
Building a FSA from a RG

If $G=\langle V_N, V_T, S, P \rangle$ then it is possible to build $A=\langle Q, I, \delta, q_0, F \rangle$ such that

- $Q = V_N \cup \{q_F\}$
- $I = V_T$
- $q_0 = S$
- $F = \{q_F\}$
- For all $A \rightarrow bC$, $\delta(A,b) = C$
- For all $A \rightarrow b$, $\delta(A,b) = q_F$
Example (1)

- Build an automaton that recognizes the language L on the alphabet \{a, b, 0, 1\}, such that a string x is in L if x has the following properties:

 - If x starts with ‘a’ then x has an even number of ‘1’s and an odd number of ‘0’s
 - If x starts with ‘b’ then x has an even number of ‘0’s and an odd number of ‘1’s
Example (2)

• Equivalent grammar

- \(S \to aS_1 \mid bS_5 \mid 0S_9 \mid 1S_9 \mid \varepsilon \)
- \(S_1 \to aS_1 \mid bS_1 \mid 1S_2 \mid 0S_4 \)
- \(S_2 \to aS_2 \mid bS_2 \mid 1S_1 \mid 0S_3 \)
- \(S_3 \to aS_3 \mid bS_3 \mid 0S_2 \mid 1S_4 \)
- \(S_4 \to aS_4 \mid bS_4 \mid 0S_1 \mid 1S_3 \mid \varepsilon \)
- \(S_5 \to aS_5 \mid bS_5 \mid 0S_6 \mid 1S_8 \)
- \(S_6 \to aS_6 \mid bS_6 \mid 0S_5 \mid 1S_7 \)
- \(S_7 \to aS_7 \mid bS_7 \mid 0S_8 \mid 1S_6 \)
- \(S_8 \to aS_8 \mid bS_8 \mid 0S_7 \mid 1S_5 \mid \varepsilon \)
- \(S_9 \to aS_9 \mid bS_9 \mid 0S_9 \mid 1S_9 \mid \varepsilon \)
Definition

• A grammar is called **context-free (CFG)** if
 – for each $\alpha \rightarrow \beta \in P$, we have $|\alpha| = 1$, i.e., α is an element of V_N.

• They are called context-free because the rewriting of α does not depend on its context
 – context = part of the string surrounding it
Context-free grammars

• CFGs are the same as the BNFs (BNF = Backus-Naur Form) used for defining the syntax of programming languages
 – they are well fit to define typical features of programming and natural languages, ... but not all
• Regular grammars are also context-free grammars
 – But not vice versa
Example of BNF

<if_statement> ::=
 if <boolean_expression> then
 <statement_sequence>
 [else <statement_sequence>]
end if ;

<statement_sequence> ::= <statement> [;
 <statement_sequence>]

• Terminals in red bold
• Nonterminals surrounded by angular brackets
• Optional items enclosed in square brackets
CFGs are equivalent to NDPDAs

intuitive justification (no proof: the proof is the “core” of compiler construction)
$S \Rightarrow aSb \Rightarrow aabb$
Definition

• General (also called unrestricted) grammars are grammars without any limitation on productions
 – They correspond to type 0 in the Chomsky hierarchy
• Both context-free grammars and regular grammars are non-restricted
General grammars and TMs

• General grammars (GGs) and TMs are equivalent formalisms
 – Given a GG it is possible to build a TM that recognizes the language generated by the grammar
 – Given a TM it is possible to define a GG that generates the language accepted by the TM

• How?
From a GG to a TM (1)

Given a general grammar \(G = \langle V_N, V_T, P, S \rangle \), let us construct a NDTM \(M \) such that \(L(M) = L(G) \):

- \(M \) has one memory tape
- The input string \(x \) is on the input tape
- The memory tape is initialized with \(S \) (better: \(Z_0S \))
- The memory tape in general will contain a string \(\alpha (\in V^*) \)
 - It is scanned searching the left part of some production of \(P \)
 - When one is found, (not necessarily the first one) \(M \) operates a nondeterministic choice and the chosen part is replaced by the corresponding right part (if there are many right parts, again, \(M \) operates nondeterministically)
From a GG to a TM (2)

• In this way, whenever $\alpha \Rightarrow \beta$ we have

 \[c_s = \langle q_s, Z_0 \alpha \rangle \vdash^* \langle q_s, Z_0 \beta \rangle \]

 for some state q_s

• If and when the tape contains a string $y \in V_T^*$, it is compared with x

 • If they coincide, x is accepted

 • otherwise this particular sequence of moves does not lead to acceptance
Remarks

• Using a NDTM facilitates the construction but it is not necessary

• Note that, if $x \notin L(G)$, M might even try infinitely many computations, none of which leads to acceptance
 – some of these might never terminate, thus (correctly) being unable to conclude that $x \in L(G)$
 – *and* being unable to conclude $x \notin L(G)$

Indeed the definition of acceptance requires that M reaches an accepting configuration if and only if $x \in L$
 – It does not require that M terminates its computation in a non-final state if $x \notin L$
 – Again, we have the complement problem and the asymmetry between solving a problem in the positive or negative sense
From a TM to a GG (1)

Given a single-tape TM M, let us build a general grammar G, that generates L(M):

– First, G generates all strings of the type x$X, x ∈ V_T^*, X being a “copy of x” composed of nonterminal symbols (e.g., for x = aba, x$X = aba$ABA)
 • This can be done with a finite number of productions
– G simulates the configurations of M using the string on the right of $
– G has a derivation x$X ⇒* x iff x is accepted by M
 • The basic idea is to simulate each move of M by an immediate derivation of G
From a TM to a GG (2)

G has therefore derivations of the form xX$⇒x$q,X$ (initial configuration of M)

Furthermore

- If, in M, $\delta(q,A) = <q', A', R>$ then G includes the production $qA \rightarrow A'q'$
- If, in M, $\delta(q,A) = <q', A', S>$ then G includes the production $qA \rightarrow q'A'$
- If, in M, $\delta(q,A) = <q', A', L>$ then G includes the production $BqA \rightarrow q' BA'$

∀ B in the alphabet of M (recall that M is single-tape, hence it has a unique alphabet for input, memory, and output)
If and only if: \(x\$\alpha\text{BqAC}\beta \Rightarrow x\$\alpha\text{BA'}q'C\beta \), etc.

– We finally add productions allowing \(G \) to derive from \(x\$\alpha\text{BqFAC}\beta \) the string \(x \) alone iff \(M \) reaches an accepting configuration \((\alpha\text{BqFAC}\beta) \), by deleting whatever is at the right of $ (including the $)