Identification, Adaptation, Learning

The Science of Learning Models from Data

Edited by

Sergio Bittanti
Politecnico di Milano
Piazza Leonardo da Vinci 32
I-20133 Milano, Italy

Giorgio Picci
Università di Padova
Via Gradenigo 6/A
I-35131 Padova, Italy

Springer
Published in cooperation with NATO Scientific Affairs Division
Dedicated to the memory of E.J. Hannan (1921–1994)

Photograph by Peter Hall taken at the farewell to Geof Watson Princeton University, 1992
This book collects the lectures given at the NATO Advanced Study Institute *From Identification to Learning* held in Villa Olmo, Como, Italy, from August 22 to September 2, 1994.

The school was devoted to the themes of *Identification, Adaptation and Learning*, as they are currently understood in the Information and Control engineering community, their development in the last few decades, their inter-connections and their applications. These titles describe challenging, exciting and rapidly growing research areas which are of interest both to control and communication engineers and to statisticians and computer scientists.

In accordance with the general goals of the Institute, and notwithstanding the rather advanced level of the topics discussed, the presentations have been generally kept at a fairly tutorial level. For this reason this book should be valuable to a variety of researchers and to graduate students interested in the general area of Control, Signals and Information Processing. As the goal of the school was to explore a common methodological line of reading the issues, the flavor is quite interdisciplinary. We regard this as an original and valuable feature of this book.

During the two weeks of the school at Villa Olmo we have experienced a unique atmosphere and a most remarkable climate of interaction and communication between the outstanding experts gathered in Como for this occasion. It is remarkable that some of them hardly ever meet at conferences or at scientific meetings as their different fields have traditionally evolved along separate lines. The openness and active participation in discussions by both students and speakers, was a major point for the success of this Advanced Study Institute. The editors of this volume would like to thank all lecturers, and the remaining members of the Organizing Committee, S.K. Mitter and Jan C. Willems, for their helpful advice.

The superb local organization provided by the Centro di Cultura Scientificca Alessandro Volta deserves a primary acknowledgement, for it was a major factor for the smooth development of the school. Special thanks go to Manuela Troglio for her care in the general organizational aspects, and to Emanuela Salati for her kindness and patience in dealing with daily problems of students and teachers.
Last but not least, we would like to thank NATO for believing in this project and for the generous support of the Institute, and the Consiglio Nazionale delle Ricerche (CNR) of Italy which also provided financial funding. The general support of the Dipartimento di Elettronica e Informazione of the Politecnico di Milano is also gratefully acknowledged.

The final software layout of the book is due to Stefano Bertoncello, with the assistance of Marco Lovera.

March 1996

Sergio Bittanti and Giorgio Picci
Table of Contents

Geometric Methods for State Space Identification
Anders Lindquist and Giorgio Picci ... 1

1. Introduction ... 1
 1.1 Stationary Signals and the Statistical Theory of Model Building 4
 1.2 Input-Output Models .. 9

2. State Space Models of Stationary Processes 10

3. Spectral Factorization .. 15
 4. Spectral Factorization and the LMI 20
 4.1 Ordering, (A,C) Pairs and Uniform Choice of Basis in X 25

5. Finite-Interval Realizations of a Stationary Process 28
 5.1 Forward and Backward Kalman Filtering and the Family of
 Minimal Stationary Realizations of y 28
 5.2 Finite-Interval Realizations .. 32

6. Estimation, Partial Realization and Balancing 37
 6.1 Positivity ... 40
 6.2 The Hilbert Space of a Stationary Signal 43
 6.3 Identification Based on Finite Data 45
 6.4 The Partial Realization Problem .. 46
 6.5 Partial Realization via SVD .. 49
 6.6 Stochastic Balanced Realizations: the Stationary Setting 51
 6.7 Stochastic Balanced Realizations: the Case of Finite Data 56

7. The "Subspace Methods" Identification Algorithm of Van Overschee
 and DeMoor .. 56
 7.1 Choosing Bases in the Predictor Spaces 57
 7.2 Skipping some Redundant Steps .. 62
 7.3 The Least Squares Implementation 63
 7.4 Use of the SVD ... 64

Parameter Estimation of Multivariable Systems Using
Balanced Realizations
J. M. Maciejowski .. 70

1. Introduction .. 70
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Problem Setting</td>
<td>71</td>
</tr>
<tr>
<td>3. Identifiable Parametrizations</td>
<td>76</td>
</tr>
<tr>
<td>4. Balanced Parametrization</td>
<td>78</td>
</tr>
<tr>
<td>5. Some Useful Classes of Models</td>
<td>81</td>
</tr>
<tr>
<td>5.1 Minimum-Phase Models</td>
<td>81</td>
</tr>
<tr>
<td>5.2 Positive-Real Models</td>
<td>83</td>
</tr>
<tr>
<td>6. Outline of Parameter Estimation</td>
<td>86</td>
</tr>
<tr>
<td>7. Gradient Calculations</td>
<td>88</td>
</tr>
<tr>
<td>8. Finding an Initial Model</td>
<td>91</td>
</tr>
<tr>
<td>8.1 Available Methods</td>
<td>91</td>
</tr>
<tr>
<td>8.2 Realization Methods</td>
<td>92</td>
</tr>
<tr>
<td>8.3 Subspace Methods</td>
<td>98</td>
</tr>
<tr>
<td>8.4 Guaranteeing Stability</td>
<td>104</td>
</tr>
<tr>
<td>8.5 Estimating n</td>
<td>106</td>
</tr>
<tr>
<td>9. Examples</td>
<td>107</td>
</tr>
<tr>
<td>9.1 Distillation Column</td>
<td>107</td>
</tr>
<tr>
<td>9.2 Industrial Dryer</td>
<td>111</td>
</tr>
<tr>
<td>9.3 Sea Wave Spectrum</td>
<td>112</td>
</tr>
<tr>
<td>10. Conclusions</td>
<td>114</td>
</tr>
</tbody>
</table>

Balanced Canonical Forms
Raimund J. Ober

1. Introduction | 120 |
2. Lyapunov Balanced Realizations and Model Reduction | 126 |
3. A Lyapunov Balanced Canonical Form for Stable Continuous-Time Systems | 129 |
4. L-Characteristic, LQG-Balanced Canonical Form and Model Reduction for Minimal Systems | 146 |
5. Characteristics, Canonical Forms and Model Reduction for Bounded-Real and Positive-Real Systems | 162 |
6. Concluding Remarks | 179 |

From Data to State Model
Paolo Rapisarda and Jan C. Willems

1. Introduction | 184 |
2. Background | 187 |
2.1 Discrete Time Systems | 187 |
2.2 Latent Variables | 191 |
2.3 State Models | 193 |
2.4 Existence and Uniqueness of State Space Models | 195 |
2.5 Input/State/Output, Output Nulling, and Driving Variable Representations | 196 |
2.6 Recapitulation | 199 |
3. From Difference Equation to State Models | 199 |
5. Nonlinear Algorithms .. 275
 5.1 Two-Stage Nonlinear Algorithm 275
 5.2 Convex and Concave Windows 277
 5.3 Frequency Domain Analysis .. 277
 5.4 Trapezoidal Window .. 278

6. Engineering Applications ... 279

System Identification with Information Theoretic Criteria
A.A. Stoorvogel and J.H. van Schuppen 289
1. Introduction ... 289
2. Problem Formulation ... 290
3. Approximation with Mutual Information 292
 3.1 Mutual Information .. 292
 3.2 A Parameter Estimation Problem 294
 3.3 Relation of Mutual Information, H_∞ Entropy, and LEQG Cost 295
 3.4 Parameter Estimation with an Exponential-of-Quadratic Cost 296
 3.5 Parameter Estimation with H_∞ Entropy 298
4. Approximation with Likelihood and Divergence 300
 4.1 Approximation with the Likelihood Function 300
 4.2 Divergence .. 301
 4.3 Relation of Likelihood Function and Divergence 302
 4.4 Approximation with Divergence 304
 4.5 Parameter Estimation by Divergence Minimization 306
5. Concluding Remarks .. 308

A. Concepts from Probability and the Theory of Stochastic Processes 310
 A.1 Probability Concepts .. 310
 A.2 Gaussian Random Variables 310
 A.3 Concepts from the Theory of Stochastic Processes 312

B. Concepts from System Theory 313

C. Concepts from Information Theory 314

D. Information Measures of Gaussian Random Variables 317

E. Information Measures of Stationary Gaussian Processes 320

F. LEQG Optimal Stochastic Control 327

G. H-Infinity Control with an Entropy Criterion 332

Least Squares Based Self-Tuning Control Systems
Sergio Bittanti and Marco Campi 339
1. Introduction .. 339
2. Self-Tuning Adaptive Control 341
 2.1 Basic Self-Tuning Concepts 341
 2.2 Mathematical Framework ... 342
 3.1 Imaginary and Asymptotic Imaginary Systems 345
 3.2 Adaptive Stabilization .. 346
On Neural Network Model Structures in System Identification
L. Ljung, J. Sjöberg, and H. Hjalmarsson

1. Introduction and Summary
 1.1 What is the Problem?
 1.2 Black Boxes
 1.3 Nonlinear Black Box Models
 1.4 Estimating \(\hat{g}_N \)
 1.5 Properties of the Estimated Model
 1.6 Basis Functions
 1.7 What Is the Neural Network Identification Approach?
 1.8 Why Have Neural Networks Attracted So Much Interest?
 1.9 Related Approaches

2. The Problem
 2.1 Inferring Relationships from Data
 2.2 Prior Assumptions
 2.3 Function Classes

3. Some General Estimation Results

4. The Bias/Variance Trade-Off

5. Neural Nets
 5.1 Feedforward Neural Nets
 5.2 Recurrent Neural Nets

6. Algorithmic Aspects
 6.1 Search Directions
 6.2 Back-Propagation: Calculation of the Gradient
 6.3 Implicit Regularization
 6.4 Off-line and On-line Algorithms
 6.5 Local Minima

7. Adaptive Methods
 7.1 Adaptive Basis Function Expansion
 7.2 The “Curse” of Dimensionality
 7.3 Methods to Avoid the “Curse”
8. Specific Properties of NN Structures .. 388
9. Models of Dynamical Systems Based on Neural Networks 389
 9.1 A Review of Linear Black Box Models ... 389
 9.2 Choice of Regressors for Neural Network Models 391
 9.3 Neural Network Dynamic Models .. 392
 9.4 Some Other Structural Questions .. 393
 9.5 The Identification Procedure ... 393

An Overview of Computational Learning Theory and Its Applications to Neural Network Training
M. Vidyasagar .. 400
1. Introduction ... 400
2. Problem Formulation .. 401
3. Summary of Known Results .. 403
4. Families of Measures with a Nonempty Interior 407
5. Totally Bounded Families of Measures ... 409
6. Two Sufficient Conditions .. 414
7. Conclusions ... 416
Appendix: A Counterexample .. 417

Just-in-Time Learning and Estimation
George Cybenko .. 423
1. Introduction ... 423
2. Global Models ... 425
3. Local Models ... 427
4. Just-In-Time Models .. 428
 4.1 Analysis of Just-In-Time Models .. 429
 4.2 Discussion ... 432

Wavelets in Identification
A. Benveniste, A. Juditsky, B. Delyon, Q. Zhang, and P-Y. Glorennec 435
1. Introduction, Motivations, Basic Problems .. 435
 1.1 Two Application Examples .. 436
2. Basic Mathematical Problems .. 438
3. Classical Methods of Nonlinear System Identification:
 Linear Nonparametric Estimators .. 440
 3.1 Projection Estimates as an Example of Linear Nonparametric Estimators .. 441
 3.2 Choice of Model Order, Bandwidth, or Binwidth:
 the Generalized Cross Validation – GCV – Method 442
4. Performance Analysis of the Nonparametric Estimators 443
 4.1 Lower Bounds for Best Achievable Performance 444
 4.2 Discussion ... 446
Table of Contents

5. Nonlinear Estimates ... 447

6. Wavelets: What They Are, and Their Use in
 Approximating Functions .. 449
 6.1 The Continuous Wavelet Transform 449
 6.2 The Discrete Wavelet Transform:
 Orthonormal Bases of Wavelets and Extensions 450
 6.3 Wavelets and Besov Spaces 453

7. Wavelets: Their Use in Nonparametric Estimation 456

8. A Wavelet Network for Practical System Identification 458
 8.1 The Wavelet Network and Its Structure 459
 8.2 Constructing the Wavelet Library W 459
 8.3 Selecting Best Wavelet Regressors 460

9. Fuzzy Models: Expressing Prior Information in
 Nonlinear Nonparametric Models 462

10. Experimental Results ... 464
 10.1 Modelling the Gas Turbine System 464
 10.2 Modelling the Hydraulic Actuator of the Robot Arm 465

11. Discussion and Conclusions 470

Fuzzy Logic Modelling and Control

P. Albertos ... 479

1. Motivation ... 479

2. Fuzzy Logic Basic Concepts 481
 2.1 Fuzzy Logic Variables 482
 2.2 Fuzzy Logic Operations 485
 2.3 Approximated Reasoning 486
 2.4 Defuzzification .. 490
 2.5 Fuzzy Systems .. 492

3. Fuzzy Logic Controller Structure 494
 3.1 Fuzzifier .. 495
 3.2 Fuzzy Operator .. 495
 3.3 Defuzzification .. 497

4. FLC Analysis ... 497
 4.1 Fuzzy Systems Approximation Properties 499

5. Fuzzy Logic Controllers Design 500
 5.1 Experimental FLC Design 501
 5.2 FLC from Linear Ones .. 502
 5.3 FLC Supervision ... 503

6. Process Fuzzy Modelling .. 504

7. Cement Kiln Control ... 505
 7.1 Process Description .. 506
 7.2 Control Structure .. 507
Searching for the Best: Stochastic Approximation, Simulated Annealing and Related Procedures
Georg Pflug .. 514

1. Introduction ... 514
2. Deterministic Iterations, Fixpoints and Convergence 515
3. Stochastic Iterations, Stationary Distributions and Convergence ... 517
4. Simulated Annealing and Global Optimization 522
5. Stochastic Approximation 524
6. Robustness of Dynamical Systems 534
7. Parallelization ... 537
 7.1 Stochastic Ordering 538
8. Response Surface Methods 543
9. Bandit Processes .. 544

List of Contributors ... 550