Detecting Drops On Lens in Wireless Multimedia Sensor Network Nodes

Cesare Alippi, Giacomo Boracchi, Manuel Roveri
Politecnico di Milano
7 November 2009
ROSE 2009, Lecco
Outline

- The issue
- Our approach
- The observation model
- The blur measure
- The change detection test
- Experiments
- Concluding remarks
The issue

- We consider Wireless Multimedia Sensor Networks (WMSN) used for monitoring outdoor environment.

- The nodes (or the network) should then be able to determine when there is some structural information loss in the image acquisition system.

- In particular we consider the degradation induced by drops on the camera lens, as this may result because of rain, humidity, waves…
What’s up when a rain drop falls on camera lens
What’s up when a rain drop falls on camera lens
What’s up when a rain drop falls on camera lens
The issue

- We want to provide the network with the capabilities to **determine** when there is a drop on camera lens.
The issue

- We want to provide the network with the capabilities to **determine when** there is a drop on camera lens.

\[\{ z_i \}_{i=1,...,N} \]
The issue

- We want to provide the network with the capabilities to determine when there is a drop on camera lens.

\[\{ Z_i \}_{i=1, \ldots, N} \]
The issue

- We want to provide the network with the capabilities to \textbf{determine} \textit{when} there is a drop on camera lens.

\[\{ Z_i \} \, i=1,\ldots,N \]
We want to provide the network with the capabilities to **determine when** there is a drop on camera lens.

\[\{Z_i\}_{i=1,...,N} \]
The issue

- We want to provide the network with the capabilities to determine when there is a drop on camera lens.

\[\{ Z_i \}_{i=1,...,N} \]
We want to provide the network with the capabilities to determine when there is a drop on camera lens.

\[\{\mathcal{Z}_i\}_{i=1,\ldots,N} \]
We want to provide the network with the capabilities to **determine when** there is a drop on camera lens.

\[\{Z_i\}_{i=1,\ldots,N} \]
The issue

- We want to provide the network with the capabilities to determine when there is a drop on camera lens.

$$\{Z_i\}_{i=1,...,N}$$
We want to provide the network with the capabilities to determine when there is a drop on camera lens.

\[\{ z_i \}_{i=1,...,N} \]
The issue

WSN Constraints:

- Images have to be **processed locally**
 - In order to avoid **sending huge amount of data** on the network
 - Thus processing must have **low computational complexity**

- **Do not assume stationarity** in the observed scene,
 - frames could have been acquired at very different instants as the image acquisition is not continuous
 - we have **no a priori information** about the scene
Our Approach

- Drops on camera lens are modeled as a **blur operator**.

- We combine
 - a **low-complexity blur measure**
 - a **sophisticated change detection test** on these measures

- The **blur measure** can be computed **directly on each sensor node**

- The blur measures are **scalar** that can be sent on the network

- The **test** can be reasonably **executed on cluster head**
Our Approach

- Each node periodically compute blur measures
Our Approach

- Each node periodically computes blur measures and sends them to the remote station.
Our Approach

- The remote station run the test and determine if one node is acquiring corrupted data
Our Approach

- and then the network adopts some strategy to compensate the node
The Observation Model

- For the sake of simplicity the observed image z is modeled as the result of a **degradation process** D that acts on the original (and unknown) image y:

$$z(x) = D(y)(x) = B(y)(x) + \eta(x), \ x \in \mathcal{X}$$

$$B(y)(x) = \int_{\mathcal{X}} y(x) h(x, s) ds$$ is the blur operator

$h(x, \cdot)$ is the Point Spread Function at pixel x

η is the noise term

\mathcal{X} is the image domain
The Observation Model

- Space invariant blur \(h(x, s) = g(x - s) \quad x \in \mathcal{X} \)
The Observation Model

- Space variant blur

$$h(x, s) = g(x, s) \quad x \in \mathcal{X}$$
The Observation Model

- Space invariant blur

\[h(x, s) = \begin{cases}
\delta(x - s), & x \in \mathcal{X}_0 \\
g(x, s), & x \in \mathcal{X}_1
\end{cases}, \quad \mathcal{X}_0 \cup \mathcal{X}_1 = \mathcal{X} \]
The Observation Model

- We assume that we have a sequence of images

\[z_i(x) = B_i(y_i)(x) + \eta(x), \quad i = 1, \ldots, N \]

and possibly the original images \(y_{i-1} \) and \(y_i \) are different, as they have been acquired at different time instants.

- Since estimating such a blur is a very ill-posed, we simply measure the “amount of blur” in the resulting image.

- The blur operator may also change within the image sequence.
The Blur Measure

- We use a **blur-measure** taken from auto-focus algorithms

\[m_i = \int_{\mathcal{X}} ||\nabla z_i(x)||_1 dx \]

where \(|| \cdot ||_1 \) is the \(\ell^1 \) norm.

The observations are assumed to have 0 mean.

- The underlying mechanism of this measure reflects the intuitive idea that the blur suppresses the high frequency components of an image.

- The blur measure is computed on each observed image **separately**: **no comparison** is performed among \(z_i \) and \(z_{i-1} \), as these may be acquired in very different time instants.
The Blur Measures
The Blur Measures

![Image of a graph showing the blur measure over frame number. The x-axis represents frame number ranging from 0 to 2000, and the y-axis represents blur measure ranging from 1.5 to 4.5 \times 10^4. There are fluctuations in the graph, with a green dot indicating a specific frame number.]
The Blur Measures

![Image of a camera capturing a scene with buildings and a car, alongside a graph showing a plot of blur measure versus frame number. The graph indicates a decrease in blur measure over time.]
The Blur Measures

![Graph showing changes in blur measure over frame number]

- Frame Number
- Blur Measure

7th November 2009 - Giacomo Boracchi - ROSE 2009
The Blur Measures

![Graph showing the blur measure over frame numbers.](image)

Frame Number

- Blur Measure

- Frame Number

7th November 2009

-Giacomo Boracchi- ROSE 2009
The Blur Measures

![Graph showing the blur measure over frame number.](attachment:image.png)
Change Detection Test

- A statistical technique to monitor the state of a process over time.

- We use CI-CUSUM test on blur measures m_i to detect changes in the statistical behavior of the degradation process \mathcal{D}
Change Detection Test

- A statistical technique to monitor the state of a process over time.

- We use **CI-CUSUM test on blur measures** m_i to detect changes in the statistical behavior of the degradation process \mathcal{D}
 - Stationarity means the acquisition system has **no structural loss** due to blur: i.e. **no drop**.
Change Detection Test

- A statistical technique to monitor the state of a process over time.

- We use **CI-CUSUM test on blur measures** m_i to detect changes in the statistical behavior of the degradation process \mathcal{D}
 - Stationarity means the acquisition system has **no structural loss** due to blur: i.e. **no drop**.
 - The arrival of **a drop on camera lens** changes the statistical behavior of the blur measures, and thus it is detected as a **non-stationarity** in the test.
Change Detection Test

- A statistical technique to monitor the state of a process over time.

- We use **CI-CUSUM test on blur measures** m_i to detect changes in the statistical behavior of the degradation process \mathcal{D}
 - Stationarity means the acquisition system has **no structural loss** due to blur: i.e. **no drop**.
 - The arrival of a **drop on camera lens** changes the statistical behavior of the blur measures, and thus it is detected as a **non-stationarity** in the test.

- CI-CUSUM is **general** and is automatically configured from a **training set of** m_i computed from images in the stationary state.
The training set is composed by 500 drop-free images.
The CI-CUSUM test estimates some figures of merit ϕ for m_i in absence of drops, and define the null hypothesis, Θ^0 as “being in the no-drop state”.

The alternative hypotheses Θ^1 are defined as “not being in Θ^0 ”, and thus address any type of changes w.r.t. the initial stationary state.
The Training Set

- Definition of the stationary and the alternative hypothesis
The test computes the figures of merit ϕ by grouping observations in the validation set.

For each group, the test computes the log-likelihoods between the figures of merit of the current state with those of the initial stationary state, and compare it with an automatically defined thresholds.
The Training Set

- Change Detection

![Graph showing Change Detection with training and validation sets, and indices Θ₀, Θ₁, φᵢ, and φₜₛ.]}
The Training Set

- Change Detection

![Graph of training and validation sets with annotations]

- Training set
- Validation set
- \(\Theta^0 \)
- \(\Theta^1_s \)
- \(\phi_{TS} \)
- \(\phi_i \)
The Training Set

- Change Detection

![Graph showing training and validation sets with corresponding metrics and frame numbers.](image-url)
The Training Set

- Change Detected at frame 1160
Experiments

- We adopted the following figures of merit

 - **DL** Detection Latency: the number of images acquired before identifying a change in the blurring process.

 - **FP** False Positive, the number detected changes not supported by a real change in the blurring process.

 - **FN** False Negative, the number missed changes in the blurring process
Experiments

- Detection Latency
Experiments

- False Positive
Experiments

- False Negative
Experiments on Synthetically Blurred Images

- We generated sequences from 75 grayscale images in a random order
Experiments on Synthetically Blurred Images

- We generated sequences from 75 grayscale images in a random order.
Experiments on Sythetically Blurred Images

- We generated sequences from 75 grayscale images in a random order.
- For simplicity, the blur has been generated with a 2D convolution with a Gaussian kernel h having standard deviation ν.

\[B(y) = (y \ast h) \]

- Noise has been generated from a Normal distribution.

\[\eta \sim N(0, \sigma^2) \]

- We considered different amount of blur and noise.

$\nu = 1, \ldots, 8 \quad \sigma = 0.02, 0.04, 0.06, 0.08$

- Each sequence contains 1000 blur-free images (500 are used for training the CI-CUSUM) and 1000 blurred images.
- Results have been averaged among 100 sequences for each parameter pair.
Experiments on Sythetically Blurred Images

- Two blur operators:
 - the blur affects the whole image

\[\sigma = 0.08 \]
\[\nu = 1 \]
Experiments on Synthetically Blurred Images

- Two blur operators:
 - the blur affects the **whole** image

\[\sigma = 0.08 \]
\[\nu = 4 \]
Experiments on Synthetically Blurred Images

- Two blur operators:
 - the blur affects the **whole** image

$$\sigma = 0.08$$
$$\nu = 8$$
Experiments on Sythetically Blurred Images

- Two blur operators:
 - the blur affects the **whole** image
 - the blur affects **part** of the image

\[
\sigma = 0.02 \\
\nu = 1
\]
Experiments on Synthetically Blurred Images

- Two blur operators:
 - the blur affects the **whole** image
 - the blur affects **part** of the image

\[\sigma = 0.02 \]

\[\nu = 4 \]
Experiments on Sythetically Blurred Images

- Two blur operators:
 - the blur affects the **whole** image
 - the blur affects **part** of the image

\[\sigma = 0.02 \]
\[\nu = 8 \]
Experiments on Sythetically Blurred Images

- Detection Latency: Blur on the whole image
Experiments on Synthetically Blurred Images

- Detection Latency: Blur on part of images
Experiments on Synthetically Blurred Images

- False Positive and False Negative results

<table>
<thead>
<tr>
<th>Blur</th>
<th>Detection</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FULL</td>
<td>0.02</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.02</td>
<td>10</td>
<td>18</td>
<td>18</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FULL</td>
<td>0.04</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.04</td>
<td>14</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FULL</td>
<td>0.06</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.06</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FULL</td>
<td>0.08</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>13</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.08</td>
<td>9</td>
<td>11</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PART</td>
<td>0.02</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.02</td>
<td>11</td>
<td>8</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>34</td>
<td>17</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PART</td>
<td>0.04</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.04</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>37</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>PART</td>
<td>0.06</td>
<td>12</td>
<td>11</td>
<td>19</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.06</td>
<td>12</td>
<td>11</td>
<td>19</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>38</td>
<td>19</td>
<td>4</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>PART</td>
<td>0.08</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>$FP(%)$</td>
<td>0.08</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>12</td>
<td>13</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>$FN(%)$</td>
<td>36</td>
<td>20</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>
Experiments on Sythetically Blurred Images

- False Positive are independend of the amount of blur

<table>
<thead>
<tr>
<th>Blur</th>
<th>(\sigma)</th>
<th>Detection</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FULL</td>
<td>0.02</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>1</td>
</tr>
<tr>
<td>FULL</td>
<td>0.04</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>6</td>
</tr>
<tr>
<td>FULL</td>
<td>0.06</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>2</td>
</tr>
<tr>
<td>FULL</td>
<td>0.08</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>6</td>
</tr>
<tr>
<td>PART</td>
<td>0.02</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>34</td>
</tr>
<tr>
<td>PART</td>
<td>0.04</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>37</td>
</tr>
<tr>
<td>PART</td>
<td>0.06</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>38</td>
</tr>
<tr>
<td>PART</td>
<td>0.08</td>
<td></td>
<td>FP(%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FN(%)</td>
<td>36</td>
</tr>
</tbody>
</table>
False Positive are independent of the amount of blur

<table>
<thead>
<tr>
<th>Blur</th>
<th>σ</th>
<th>Detection</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FULL</td>
<td>0.02</td>
<td>$FP(%)$</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FN(%)$</td>
<td>1</td>
</tr>
<tr>
<td>FULL</td>
<td>0.04</td>
<td>$FP(%)$</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FN(%)$</td>
<td>6</td>
</tr>
<tr>
<td>FULL</td>
<td>0.06</td>
<td>$FP(%)$</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FN(%)$</td>
<td>2</td>
</tr>
<tr>
<td>FULL</td>
<td>0.08</td>
<td>$FP(%)$</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$FN(%)$</td>
<td>6</td>
</tr>
</tbody>
</table>
Experiments on Synthetically Blurred Images

- False Negative decreases as the blur amount increases

<table>
<thead>
<tr>
<th>Blur</th>
<th>Detection</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\sigma)</td>
<td>1</td>
</tr>
<tr>
<td>FULL</td>
<td>0.02</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>FULL</td>
<td>0.04</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>FULL</td>
<td>0.06</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>FULL</td>
<td>0.08</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>PART</td>
<td>0.02</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>PART</td>
<td>0.04</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>PART</td>
<td>0.06</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
<tr>
<td>PART</td>
<td>0.08</td>
<td>(FP(%))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(FN(%))</td>
</tr>
</tbody>
</table>
Experiments on Camera Images

- We acquired 25 sequences of QVGA uncompressed frames
 - 1000 frames drop free
 - 1000 frames with drops
 - the first 500 drop-free frames have been used as training set
Experiments on Camera Images
Experiments on Camera Images

- We acquired 25 sequences of QVGA uncompressed frames
 - 1000 frames drop free
 - 1000 frames with drops
 - the first 500 drop-free frames have been used as training set

<table>
<thead>
<tr>
<th>FP(%)</th>
<th>FN(%)</th>
<th>DL (Number of images)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
<td>161.0</td>
</tr>
</tbody>
</table>
Concluding Remarks

- When processing video sequences, the FP are typically determined by the presence of occluding objects, whenever these did not appear in the training set.

- We need a training set which is representative of the scenario.

- In case some user-supervised information is available, this could be integrated by the test.
Ongoing Works

- Development of a lighter test to be implemented directly on the node.
- The nodes are able to monitor by themselves the degradation process.
- Integration of light/time information in the test.
Questions?