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a b s t r a c t

We study the problem of on-line joint QoS routing and channel assignment for performance optimization
in multi-channel multi-radio wireless mesh networks, which is a fundamental issue in supporting quality
of service for emerging multimedia applications. To our best knowledge, this is the first time that the
problem is addressed. Our proposed solution is composed of a routing algorithm that finds up to k but
not necessarily feasible paths for each demand and an on-demand channel (re)assignment algorithm that
adapts network resources to maintain feasibility of one of the paths. We also study the problem of obtain-
ing an upper bound on the network performance. First, we consider an artificial version of the problem, in
which all demands arrive at the same time, and formulate it as a mixed integer linear programming
model. To tackle the complexity of the model, it is relaxed that provides a tight upper bound while
improves solution time up to 3.0e+5 times. Then, we model the original problem by extending the relaxed
model to consider dynamic demands, it leads to a huge model; thus, we develop another model, which is
equivalent to the first one and is decomposable. It is broken down by a decomposition algorithm into sub-
problems, which are solved sequentially. Our extensive simulations show that the proposed solution has
comparable performance to the bound obtained from the decomposition algorithm; it efficiently exploits
available channels, and needs very few radios per node to achieve high network performance.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

QoS of Service (QoS) support, which is entailed by emerging
multimedia services, is an essential component in broadband
wireless mesh networks (WMN). It is challenging since multimedia
services require intensive resources and the capacity of WMNs is
shrunk by the interferences arise from the shared nature of the
wireless media. Multi-channel multi-radio networking is a promis-
ing approach to mitigate the interferences and boost network
capacity.

The main problem is to maximize network performance while
maintaining QoS requirements. Contrary to the traditional network
throughput maximization problem, in this problem, the network
performance is measured in terms of acceptance rate of QoS sensi-
tive traffic demands. A demand is accepted if the network can meet
its QoS requirements. Due to the fact that bandwidth is the most
ll rights reserved.

s a visiting PhD student at
ds provided by Iran Telecom-
IN project SESAME.

khshi), khorsandi@aut.ac.ir
important QoS requirement for multimedia applications, which
influences other requirements such as delay jitter as well [1], we
focus on this requirement. Consequently, in the problem studied
in this paper, a demand is accepted if there is a path with sufficient
bandwidth that is named feasible path.

Existence of the feasible path depends on available bandwidth
of links, which is specified by channel assignment pattern and flow
routes. It depends on channel assignment because each link has to
share its physical channel capacity with other interfering links,
which are determined by the channel assignment. Flow routing
affects links available bandwidth as it specifies the load on each
link. Therefore, to maximize the network performance, routing
path of flows and channels of links should be jointly optimized that
leads to the joint QoS routing and channel assignment problem.
Although a few solutions have been proposed for both QoS routing
and channel assignment problems in multi-channel multi-radio
WMNs, the joint problem has not yet been studied.

The existing algorithms for QoS routing problem [2–12] either
do not consider the multi-channel nature of the network or assume
that channel assignment is performed before loading the network,
and it is fixed. The solutions obtained by these algorithms are sub-
optimal as they are not capable of adapting network resources
according to traffic demands. Furthermore, their performance
depends on the channel assignment algorithm.2
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The proposed channel assignment schemes in the literature are
classified into two broad categories: static and dynamic1 [13,14]. In
the former category, channels are assigned for a long period of time
while in the latter, channels may be reassigned frequently over time
according to needs. Static methods are oblivious to dynamics of
network traffic; consequently, they give suboptimal network
performance. On the other hand, dynamic approaches aim to achieve
better performance by adapting network resources for traffic
demands. However, existing dynamic channel assignment algo-
rithms [15–20] do not consider end-to-end QoS requirements of
flows and are not coupled with routing.

In this paper, we study the on-line joint QoS routing and channel
assignment problem. In this problem, it is assumed that each
demand arrives at a particular time and requires a specific band-
width. The demand is accepted if we can find a path with sufficient
bandwidth, otherwise it is rejected. The primary goal is to maxi-
mize acceptance rate of the demands by jointly optimizing routing
and channel assignment. We assume that routing and channel
assignment are parts of the network management tool, so they
are centralized algorithms and run on the call admission control
(CAC) server, which has a fairly accurate and complete view of
the network. It should be noted that in spite of existing many solu-
tions for the joint routing and channel assignment problem, they
are not applicable to this problem because they do not consider
end-to-end QoS requirements and are off-line schemes.

Our contributions to the on-line joint QoS routing and channel
assignment problem are as follows.

� We formulate the problem and identify the design require-
ments of the algorithms for QoS routing and channel assign-
ment subproblems.
� We design the QoS driven dynamic channel assignment

(QDDCA) algorithm as an efficient resource management tool
to adapt network resources according to traffic demands.
� We develop a k-shortest path based on-line QoS routing

algorithm. This algorithm and QDDCA are integrated in the joint
QoS routing and channel assignment (JQRCA) algorithm to
provide an efficient solution for the problem.
� We propose a technique to obtain an upper bound on the net-

work performance. We develop an optimal mixed integer linear
programming (MILP) model for an artificial version of the prob-
lem, in which demands are static. Due to intractability of the
model, we relax it to get an upper bound. By extending the
relaxed model to dynamic demand case, we model the original
problem. Since it leads to an enormous model; we develop a
decomposition algorithm which splits the problem into many
small subproblems and solves them sequentially.

The remaining of this paper is organized as follows. In Section 2,
we review the related work and highlight shortcomings of existing
solutions to apply them on this problem. Assumptions, system
models, and problem statement are presented in Section 3. We ex-
plain the main ideas of our solution in Section 4. The QDDCA algo-
rithm is presented in details in Section 5. Section 6 explains the
JQRCA algorithm. The technique to obtain an upper bound on the
network performance is explicated in Section 7; moreover, in this
section, we present the simulation results to show the efficiency
of the technique. Simulation results to evaluate the performance
of JQRCA under various settings of network and traffic parameters
are presented in Section 8. Finally, Section 9 concludes this paper.
1 Fast switching is a special case of the dynamic approaches in which channels are
changed per-packet. The method needs particular MAC protocol and is not considered
in this paper.
2. Related work

In this section, we review three categories of related work
including QoS routing algorithms in WMN, dynamic channel
assignment schemes, and solutions proposed for the joint routing
and channel assignment problem.

There are a number of studies on the problem of finding feasible
path in WMN [2–5] since it is NP-Complete in multi-hop wireless
networks [21,22]. A genetic algorithm was proposed in [2] and in
[3–5], flooding based algorithms were developed. The key issues
in this problem are to estimate link available bandwidth and con-
trol admission of demands, which have been studied in [6–8].
However, these solutions only focus on finding a feasible path
and do not consider the network performance optimization
problem.

The problem of optimizing network performance has been stud-
ied in [9–11]. In [9], the authors proposed a routing metric to find
the cost-effective paths. The proposed routing metric in [10] con-
siders link available bandwidths and channel diversity. A hop-
count bounded heuristic algorithm was proposed in [11] that finds
the feasible path with the maximum bottleneck capacity. Although
these solutions attempt to maximize network performance, they
assume that channel assignment is fixed; thus, their performance
depends on the given channel assignment. The authors in [11,12]
considered the channel assignment problem besides QoS routing,
but they did not solve the joint problem. In both solutions, there
are two phases; in the first phase, a static load-unaware channel
assignment is performed and the second phase is QoS routing.

The previous work on dynamic channel assignment in multi-
channel multi-radio WMN can be viewed in two categories [13]:
the approaches designed to mitigate external interference [15–17]
and the solutions that reassign channels based on local load mea-
surements [18–20]. In the first category, there is an external source
of interference, nodes measure interference periodically, and switch
to the least interfered channel. Although minimizing the external
interference improves network performance, this category does
not explicitly consider network traffic, its dynamics, and QoS
requirements. In the second category, each node measures its link
loads and if detects an overloaded link, changes the channel of the
link. These solutions attempt to improve the one-hop capacity of
the network but cannot guarantee the end-to-end bandwidth
requirement of flows, which is the main constraint in supporting
QoS.

Combinations of channel assignment and other problems,
including routing, scheduling, and power control have been the
subject of many studies [23–34]. The goal of these joint problems
is to maximize network throughput subject to a fairness constraint.
The number of adjustable parameters is the factor makes the dif-
ference between these studies. A group combined routing and
channel assignment [23–27], while some others studied the joint
problem of routing, channel assignment, and scheduling [28–31].
Another group even took the power and/or rate control into ac-
count [33,34].

We have a closer look at the joint routing and channel assign-
ment algorithms [23–27]; the second and third groups are beyond
the scope of this paper. In [23], an iterative algorithm was pro-
posed; for a given set of flows, the algorithm iteratively adjusts
routing and channel assignment as long as it can improve network
throughput. The authors in [24] developed a simulated annealing
based method to find the optimal channel assignment and routing.
The idea of the solution in [25] is to split a large optimization prob-
lem into many small subproblems. The subproblems are solved
independently, and the final feasible solution is obtained after post
processing. The architecture proposed in [26] uses multipath rout-
ing and meanwhile attempts to minimize the interference between
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multiple paths of each flow. The joint routing and channel assign-
ment problem was modeled as a non-linear mixed integer problem
in [27]; after linearization, the authors used the dual decomposi-
tion methods to find a near optimal solution.

These solutions are not applicable to the on-line joint QoS rout-
ing and channel assignment problem for the following reasons.
First, the desired objective, maximizing per-flow achievable rate,
is different from the goal of the joint QoS routing and channel
assignment in which the number of admitted demands should be
maximized. Second, these solutions are off-line; they need informa-
tion of all flows at the beginning. Third, when traffic pattern
changes, e.g., a new flow is added, these algorithms may change
all already assigned channels and reroute all flows that lead to a
significant overhead to update entire network.

3. System model and problem statement

In this section, first, we describe the assumptions and system
models; then, the problem considered in this paper is formulated.
Notations used through the paper are denoted in Table 1.

3.1. Assumptions

We consider IEEE 802.11 based multi-channel multi-radio
wireless mesh networks. In the network, all nodes are static, have
multiple radios and all radios have the same transmission range TR

and interference range IR. It is supposed that the RTS/CTS mecha-
nism is enabled. It is assumed that there are j orthogonal channels
and the adjacent channel interference is negligible due to proper
design and implementation of wireless network interface
cards and sufficient spectral separation between the channels
[11,15,16,18,20,23,28,29,32]. The physical channel capacity of link
(u,v) on channel k is ck

ðu;vÞ Mb/s. Detailed measurements in WMNs
reported in [35] showed that the PHY layer is stable and predict-
able; hence, we use the abstract model and assume that the phys-
ical channel capacity does not vary over time. We assume that each
link can transmit on only one channel at any given time, flows are
not splittable, and radios have not fast switching capability.

3.2. Network model

Network is modeled by a digraph G = (V,E), where V is a set of n
vertices and E is a set of edges. Each v 2 V corresponds to a node in
Table 1
Notations.

Notation Description

V Set of nodes and jVj = n
E Set of edges and jEj = m
D Set of demands, D = {di = (si,di,bi, ti,ei)}, and jDj = h
K Set of channel, jKj = j
TR Transmission range
IR Interference range, IR = TR � q and q > 1
ru The number of radios of node u
p A path in the network
W Channel assignment pattern
(u,v) Link (u,v) 2 E

ck
ðu;vÞ Physical channel capacity of (u,v) on channel k

I(u,v) Interference set of link (u,v)
I0ðu;vÞ I(u,v) when the same channel is assigned to all linksbI Size of the largest interference set

wW
ðu;vÞ Weight of link (u,v) under channel assignment W

l(u,v) Total load on link (u,v)

lkðu;vÞ Load on link (u,v) on channel k

f i
ðu;vÞ Flow of di on link (u,v)

U The set of existing flows
the network. Suppose d(u,v) is the Euclidean distance between u
and v. For a given pair of nodes u and v, there is a link (u,v) 2 E if
and only if d(u,v) 6 TR.

3.3. Interference model

We use the interference range model [36], which is a special case
of the protocol model [37]. This model, in conjunction with the
RTS/CTS mechanism, yields that links (u1,v1) and (u2,v2) interfere
with each other if the same channel is assigned to both of them
and if the sender or receiver of one of them is in the interference
range of the sender or receiver of the other one [11,16,28]; more
specifically, d(u1,u2) 6 IR or d(u1,v2) 6 IR or d(v1,u2) 6 IR or
d(v1,v2) 6 IR. I(u,v) is the set of the links that interfere with (u,v).
By definition (i) (u,v) 2 I(u,v), (ii) ðu1;v1Þ 2 Iðu2 ;v2Þ if and only if
ðu2;v2Þ 2 Iðu1 ;v1Þ, and (iii) I(u,v) corresponds to neighbors of (u,v) in
the link interference/contention graph. We denote the interference
set of (u,v) by I0ðu;vÞ when the same channel is assigned to all links in
the network. Note that I0ðu;vÞ contains all the links in the interfer-
ence rage of (u,v).

3.4. Available bandwidth model

The authors in [38] proposed two sufficient conditions for feasi-
bility of bandwidth allocation in multi-hop wireless networks: the
row constraint and the scaled clique constraint. In the following, we
explain the row constraint; the scaled clique constraint is dis-
cussed in more details in Section 7.1.2.

Let U denote the set of exiting flows in the network that specify
the load on each link, lk

ðu;vÞ. The row constraint enforces that

X
ða;bÞ2Iðu;vÞ

lk
ða;bÞ

ck
ða;bÞ
6 1 8ðu; vÞ 2 E; ð1Þ

where k is the channel assigned to (u,v) and (a,b). In (1),
lkða;bÞ
ck
ða;bÞ

is the

fraction of time (a,b) needs to transmit load lk
ða;bÞ. Hence, the row

constraint imposes that the aggregate transmission time in each
interference set should be less than or equal to one. Throughout this
paper, we refer (1) as the capacity constraint. By satisfying the
capacity constraint, we ensure that the physical capacity of each

link, ck
ðu;vÞ, is sufficient to carry the load, lk

ðu;vÞ, subject to the interfer-
ences. Consequently, the bandwidth allocation for the set U of
existing flows is feasible, all the flows can be transmitted at the de-
sired rate, and their required bandwidth is guaranteed. Using the
capacity constraint (1), the available bandwidth of a link is defined
as follows.

Definition 1. Suppose that the set of existing flows is denoted by
U; in this case, available bandwidth of (u,v) on channel k is

ALBk
Uðu;vÞ ¼ ck

ðu;vÞ 1�
P
ða;bÞ2Iðu;vÞ

lkða;bÞ
ck
ða;bÞ

� �
.

Note that satisfying (1) implies 1�
P
ða;bÞ2Iðu;vÞ

lkða;bÞ
ck
ða;bÞ

P 0 8ðu;vÞ 2 E

that means ALBk
Uðu;vÞP 0 8ðu;vÞ 2 E. Thus, the last inequality is a

sufficient condition for feasibility of bandwidth allocation for the
set U of existing flows in the network.

3.5. Problem statement

The problem studied in this paper is to optimize network
performance, which is measured in terms of acceptance rate of
demands with QoS constraints. In the problem, there is a set of
demands D = {di = (si,di,bi, ti,ei)} in which, demand di arrives at time
ti, needs a path with bandwidth bi from node si to node di. If it is
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admitted, it will leave the network at time ei. A feasible path from s
to d needs to be found to admit demand d; it is a path that
allocating the required bandwidth b through it does not violate
the capacity constraint (1) of any link. Let U denote the set of exist-
ing flows before the arrival of d and U0 = U [ d. In the wired net-
work, ALBk

Uðu;vÞ > b 8ðu;vÞ 2 p is the necessary and sufficient
condition for feasibility of the path p for demand d.2 However, in
wireless networks, due to the intra-flow interference, a demand
may use the available bandwidth of each link multiple times; more-
over, because of the inter-flow interference, a demand uses the
bandwidth of the links which are not in the path of the demand.
Hence, ALBk

Uðu;vÞ > b is a necessary but not sufficient condition.
The sufficient condition for feasibility of a path p for demand d is
ALBk

U0 ðu; vÞ > 0 8ðu;vÞ 2 E, which means that the capacity constraint
(1) is satisfied for all links after allocating the bandwidth b for
demand d that creates the new set U0 of existing flows.3

Note that the network performance optimization problem is, in
fact, the problem of maximizing the probability of existence of fea-
sible paths. Resource availability in the network is the main factor
that affects existence of feasible paths. The factor is influenced by
routing and channel assignment algorithms, which act as the re-
source consumer and producer, respectively. Routing algorithm
determines how network resources are consumed by flows and
channel assignment algorithm, according to Definition 1, specifies
the available bandwidth of each link. There is an interaction be-
tween these algorithms; routing algorithm selects paths according
to the resources that are specified by channel assignment; on the
other hand, if routing algorithm needs additional bandwidth on a
link, channel assignment algorithm can provide it by rearranging
channels. In summary, to maximize the probability of existence
feasible paths, routing and channel assignment should be jointly
optimized.

In this paper, we consider the on-line version of the problem in
which there is not any information about a demand before it ar-
rives. At the demand arrival time, CAC decides to accept the de-
mand or not. The admission strategy can be greedy or non-greedy.
In the former strategy, each demand is accepted if and only if there
is a feasible path for it. However, in the latter, CAC may decide to
reject a demand in spite of existence of a feasible path for some
reasons, e.g., because the demand is very resource intensive. Here,
we consider the greedy strategy. It is appropriate to maintain
(absolute) fairness since it aims to admit every demand disrespect
of its bandwidth requirement. Moreover, we assume that it is not
allowed to reroute the flows in the networks, whereas we use
channel reassignment to adapt network resources dynamically.
4. Solution approach and design requirements

Our proposed solution for the problem is an iterative algorithm
that consists of two phases: finding a path and maintaining its fea-
sibility. The solution is an integration of two algorithms, a routing
algorithm to find a path and an on-demand channel (re)assignment
algorithm to maintain feasibility of the path. The main idea be-
hinds the solution is that channel assignment can be used as an
effective resource management tool to adapt network resources
according to the needs of the network traffic. Based on this idea,
the core of the iterative algorithm is as follows. For a given de-
mand, the routing algorithm finds a not necessarily feasible path.
If the path is infeasible, the channel assignment algorithm at-
tempts to rearrange channels to make the path feasible; if it fails,
another path is found and so on. This iteration continues until
2 For wired network, we have I(u,v) = {(u,v)}.
3 Note that in wired networks, ALBk

Uðu;vÞ > b 8ðu; vÞ 2 p implies tha
ALBk

U0 ðu;vÞ > 0 8ðu;vÞ 2 E; hence, this is also a sufficient condition in wired networks

t
.

the demand is accepted by finding a feasible path or some other
criteria are met. Details of these algorithms will be explained in
Sections 5 and 6. In the following of this section, we identify the
design requirements of each algorithm; satisfaction of the require-
ments is discussed in Sections 5.1 and 6.1.

To design the routing and channel assignment algorithms, three
sorts of issues should be considered. The first issue is to achieve the
performance optimization goal, maximizing acceptance rate of de-
mands. For this purpose, the routing algorithm should select opti-
mal paths, and the channel assignment algorithm needs to adapt
network resources according to traffic demands.

The second issue is the interaction between these algorithms.
The routing algorithm must be aware of the capabilities of the
channel assignment algorithm. Since the path found by the routing
algorithm is not necessarily feasible, it should avoid selecting
infeasible paths that cannot be made feasible by the channel
assignment algorithm. On the other hand, the channel assignment
algorithm should take into account the optimality of the path
found by the routing algorithm because the routing metric used
by the routing algorithm can be a function of (available) bandwidth
and/or interference, and these parameters depend on channel
assignment. Hence, the channel reassignment strategy must be
consistent with the routing metric; in other words, channels se-
lected by the channel assignment algorithm must not contradict
optimizing path weights, which is aimed by the routing algorithm.

Third, it is preferred to use local information in both routing and
channel reassignment; using the whole global network informa-
tion to compute routing metric or reassign channels leads to high
computational complexity which is unacceptable. Besides the
information locality, channel reassignment must also maintain im-
pact locality, which implies a channel reassignment of link should
not propagate in the whole network and should not influence other
links far away from the link. Satisfying the information locality
does not necessarily guarantee the impact locality because chang-
ing channel of a link may trigger many other reassignments in the
network due to the channel dependency and limited number of
radios, which is known as the ripple effect [18].

Besides these requirements, the number of channel reassign-
ments should be minimized. This is necessary to reduce the over-
head of the algorithm and amount of the signaling traffic used to
update channels in the network.

5. QoS driven dynamic channel assignment

As discussed in the previous section, channel assignment is the
second phase of our proposed solution. It runs if the path found by
the routing algorithm is not feasible. The input of the channel
assignment problem is a demand routed through a path p and
the objective is to make the path feasible if it is not.

In this section, we first clarify the design choices in the channel
(re)assignment algorithm. Then, we explain how they help us to
meet the requirements mentioned in Section 4, and finally, we
present the QoS Driven Dynamic Channel Assignment (QDDCA)
algorithm and its computational complexity analysis.

5.1. Design choices

There are four design decisions in the channel (re)assignment
algorithm: channel reassignment strategy, best channel selection
metric, group channel change technique, and resource utilization
strategy. In the following, we clarify our choices for these
decisions.

5.1.1. On-demand channel reassignment
Our channel reassignment strategy is on-demand; channels are

changed only if the path found by the routing algorithm is not
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feasible under current channel assignment. As explained in Section
3.5, ALBk

U0 ðu;vÞ > 0 8ðu;vÞ 2 E is the sufficient condition for feasi-
bility of the path, where U0 is the set of flows, including the new
demand. Therefore, infeasibility of the path implies that allocating
the required bandwidth through the path violates the capacity
constraint (1) of at least one link; in other words, $ (u,v) 2 E s.t.
ALBk

U0 ðu;vÞ < 0. The link for which its capacity constraint is violated
is named violated link; it is the key concept in our proposed
solution.

The main body of the on-demand algorithm is as follows. For a
given path, we check feasibility of the path. If the path is feasible,
the demand is accepted; otherwise, we find the violated links and
change their channels. The new channel for each violated link is
the best feasible channel. Satisfying feasibility and finding the best
channel are explained in the following.

Note that violated links are not necessarily in the path; even, it
is possible that none of the links in the path is violated while there
are some other violated links in the network. Fig. 1 illustrates this
issue. Assume a channel with capacity 100 is assigned to all links.
In this figure, interference range of nodes b and g are shown by
dashed circles; so, I(a,b) = I(b,c) = {(a,b), (b,c), (d,e)} and I(d,e) = {(a,b),
(b,c), (d,e), (f,g)}. Two flows, one from d to e and another from f to
g, are already admitted and now, there is a new traffic demand
from a to c. If the required bandwidth 20 is allocated on links
(a,b) and (b,c), the capacity constraint of links (a,b) and (b,c) are

satisfied, lða;bÞ
100 þ

lðb;cÞ
100 þ

lðd;eÞ
100 < 1, but the constraint of (d,e) is not,

lða;bÞ
100 þ

lðb;cÞ
100 þ

lðd;eÞ
100 þ

lðf ;gÞ
100 > 1; thus, the out-of-path link (d,e) is violated,

whereas the in-path links (a,b) and (b,c) are not.
5.1.2. Feasibility satisfaction
A feasible channel assignment needs to satisfy the capacity and

radio constraints. The capacity constraint is defined by (1) and the
radio constraint enforces that the number of channels assigned to
the links of node u must be at most ru. Suppose link (u,v) is vio-
lated, and we want to assign a new channel to the link. It is easy
to see that the radio constraint at node u is satisfied if at least
one of the following conditions holds: (i) a radio of u is already
tuned to the new channel, or (ii) the old channel assigned to
(u,v) can be replaced by the new channel, or (iii) there is a free
radio in the node. To avoid the ripple effect [18], the second condi-
tion holds only if no link except (u,v) uses the old channel.

Radio consumption to switch to the new channel depends on
the satisfied condition. Satisfaction of the first condition not only
needs no extra radio, but also it implies that the radio tuned to
the old channel can be freed if no other link uses the channel. In
case of satisfaction of the second condition, once again, no extra
radio is needed but no radio can be freed because the radio tuned
to the old channel now is used by the new channel. If the third
Fig. 1. Illustration of out-of-path violated links. Interference ranges and flows are
shown by dashed circles and dashed arrows, respectively. The same channel with
capacity 100 is assigned to all links. The new flow from a to c violates capacity
constraint of out-of-path link (d,e).
condition is true, not only no radio can be freed but also an extra
radio is used for the new channel. Therefore, to minimize radio
consumption, these conditions are checked in the aforementioned
order, and the radio constraint is satisfied as soon as one of the
conditions is true.

According to these constraints, we define two types of channels
as follows.

Definition 2. Candidate channel for a link is a channel that
satisfies the radio constraint in both nodes of the link.
Definition 3. Valid channel is a candidate channel that also satis-
fies the capacity constraint.
5.1.3. Best channel selection
When there is more than one valid channel for a violated link,

the best one should be selected. As we mentioned earlier, it affects
the optimality of the path found by routing algorithm and hence
must be consistent with routing. Let wW

ðu;vÞ be the weight of link
(u,v) under channel assignment W. If wW

ðu;vÞ depends on interfer-
ence, I(u,v), or bandwidth, ALBk

Uðu;vÞ, changing channel assignment
from W to W modifies link (and consequently, path) weights.

Routing algorithm finds an optimal path under channel assign-
ment W by minimizing the weight of the path, W(p,W), which is
the sum of the weight of the links in the path, Wðp;WÞ ¼P
ðu;vÞ2pwW

ðu;vÞ. To be consistent with routing, we define the best
channel as the channel that if assigned to the violated link mini-
mizes the weight of the network under new channel assignment
W; WðG;WÞ, which is the sum of the weight of all links,
WðG;WÞ ¼

P
ðu;vÞ2EwW

ðu;vÞ. Due to this definition, the computational
complexity of finding the best channel is proportional to O(m).
However, if routing metric is based on local information, minimiz-
ing WðG;WÞ is accomplished with considerably lower computa-
tional complexity. In the special case, if we enforce the routing
metric to use only the information of the links in the interference
set of each link, wW

ðu;vÞ / Iðu;vÞ, we can find the best channel with
computational complexity OðbIÞ, where bI is the size of the largest
interference set. In this special case, changing channel of a link at
most affects the weight of the links in its interference range. It is
easy to show that if new channel assignment W is obtained from
channel assignment W by changing the channel of link (u,v), we
have

minWðG;WÞ¼min WðG;WÞþ
X

ða;bÞ2Iðu;vÞ[Iðu;vÞ

wW
ða;bÞ�

X
ða;bÞ2Iðu;vÞ[Iðu;vÞ

wW
ða;bÞ

0@ 1A
¼min

X
ða;bÞ2Iðu;vÞ[Iðu;vÞ

wW
ða;bÞ�

X
ða;bÞ2Iðu;vÞ[Iðu;vÞ

wW
ða;bÞ

0@ 1A;
ð2Þ

where Iðu;vÞ is the interference set of (u,v) under channel assignment
W. In (2), the second term in the right-hand side of the first line is
the aggregate weight of the links in I(u,v) and Iðu;vÞ after changing
the channel of (u,v) and the third term is the aggregate weight
before the channel reassignment. Eq. (2) implies that we need to
compute the difference between these two aggregate weights,
which is a local computation with complexity OðbIÞ. The best channel
is the one that gives the minimum value of the difference.

5.1.4. Group channel change
The aforementioned procedure to resolve violations focuses on

the violated links and attempts to find the best valid channel for
the links. However, there are situations, in which although there
is not any valid channel for a violated link, changing the channel
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of the links in its interference set resolves the violation. An example
is shown in Fig. 2. Assume that there are two available channels in
the frequency spectrum and the physical channel capacities are
100. In this figure, interference ranges of nodes c, d, and f are shown
by dashed circles. There are four already admitted flows in the net-
work: (i) form a to b, (ii) from e to f, (iii) from g to h, and (iv) from k
to l. In this example, allocating the required bandwidth 30 for the
new traffic demand from c to d violates capacity constraint of link
(c,d), lðc;dÞ

100 þ
lðe;f Þ
100 þ

lðg;hÞ
100 þ

lðk;lÞ
100 > 1. There is not any valid channel for

the violated link because both channels are already overloaded in
the interference range of (c,d). However, if we assign channel 1 to
links (e, f) and (g,h), the violation of (c,d) is resolved. This strategy
of channel reassignment is called Group Channel Change.

This strategy has a side effect; channel reassignments to resolve
a violated link may affect the available bandwidth of other links
beyond the interference range of the violated link; e.g., in Fig. 2,
resolving the violation of (c,d) affects ALB1

Uði; jÞ where (i,j) R I(c,d).
To control the side effect and maintain the impact locality, we pro-
pose a group channel change procedure that limits channel reas-
signments in range 2IR of path p; the procedure is allowed to
change the channel of link (u3,v3) if $(u2,v2), (u1,v1) s.t.
ðu3; v3Þ 2 Iðu2 ;v2Þ; ðu2;v2Þ 2 Iðu1 ;v1Þ, and (u1,v1) 2 p.

Our recursive procedure is as follows. We distinguish between the
in-path violated links and the out-of-path ones. If violated link
(u2,v2) is out-of-path, we change channels of links ðu3;v3Þ 2 Iðu2 ;v2Þ

one-by-one that reduces the number of interfering links with
(u2,v2) and, as a result, increases ALBk

Uðu2; v2Þ. When violated link
(u1,v1) is in-path, we can move violation from the link to other links
ðu2; v2Þ 2 Iðu1 ;v1Þ. For each candidate channel of (u1,v1), we assign the
channel to the link, since it is not a valid channel, this assignment vio-
lates capacity constraints of some links ðu2;v2Þ 2 Iðu1 ;v1Þ. Now, we
have a new set of violated links and attempt to resolve these viola-
tions. Note that this procedure creates a loop because if there is
not any valid channel for a new violated link, the group channel
change procedure is reapplied on the link and if the link is in-path,
the procedure creates another new set of violated links and so on.
Hence, we do not move violation of the new violated links to other
links to avoid the loop; in other words, we treat them as out-of-path
links.

5.1.5. On-demand resource utilization and initial channel assignment
Available channels in frequency spectrum and radios are scarce

resources in multi-channel multi-radio WMNs. We assign a chan-
nel to a link only if it is in the path of a flow to utilize the resources
efficiently. When a flow leaves the network, we check all the links
in its route. If there is not any flow routed through link (u,v) on
channel k, we remove the channel from the link and check radios
Fig. 2. Illustration of group channel change. Interference ranges and flows are
shown by dashed circles and dashed arrows, respectively. Links and assigned
channels are shown by solid lines. (c,d) is a violated link and changing channel of
(e, f) and (g,h) to channel 1 resolves the violation.
of nodes u and v; at each node, if no link uses channel k, we free
the radio tuned to the channel.

The main advantage of this strategy is that it increases the prob-
ability of existence of free radios, which directly improves the
probability of finding feasible paths. Suppose (u,v) is a violated link
and both nodes u and v have a free radio; in this case, the set of
candidate channels for the link contains all available channels that
boosts the probability of existence of at least one valid channel.

To remove the channel of a link, we assign virtual channel 0 to
it, which has the following features. First, its physical capacity is 0;
routing any flow along a link on channel 0 makes the link violated.
Second, interference set of a link on channel 0 contains only the
link. Third, assigning the channel to a link does not consume any
radio. In the initial channel assignment, when there is not any load,
all links are assigned to channel 0.

In real applications, to maintain network connectivity, which is
required for signaling traffic even when there is not any load to/
from a node, the virtual channel 0 can be a default channel. To re-
move the channel of a link, we temporarily assign the default chan-
nel to it. If it is impossible due to the radio constraint, it implies
that some channels have been assigned to the links of the node;
thus, the node is already connected to the network.

5.2. Achieving design goals

These proposed design choices help us to satisfy the design
requirements mentioned in Section 4. Table 2 shows the relation
between the design choices and requirements. Acceptance rate is
boosted by on-demand channel reassignment that resolve viola-
tions, on-demand resource utilization, which frees channels and
radios, and group channel change that offers more opportunities
to resolve violations. The number of channel reassignments is kept
small by the on-demand channel reassignment strategy as it reas-
signs channels only if it is needed. The routing consistency require-
ment is met by the best channel selection technique that selects
channels according to the routing metric. The proposed solution
is localized since selecting the best channel needs local informa-
tion as long as the routing metric is localized and the group chan-
nel change mechanism limits channel reassignments in range 2IR

of routing path.

5.3. QDDCA algorithm

The aforementioned design choices are integrated in the QoS
Driven Dynamic Channel Assignment (QDDCA) algorithm. Pseu-
do-code of the algorithm is shown in Algorithms 1–4. For a given
demand (s,d,b, t,e) routed through path p, QDDCA checks feasibility
of bandwidth allocation. If the path is not feasible, it finds violated
links and calls RESOLVEVIOLATION. For each violated link, RESOLVEVIOLA-

TION first tries to resolve the violation using LINKCHANNELCHANGE,
which assigns the best valid channel to the link if it exists; if
Table 2
Relation between design choices and requirements of channel assignment algorithm.

Goal Choices

On-demand
reassignment

Best
channel
selection

On-
demand
utilization

Group
channel
change

Maximizing
acceptance rate

p p p

Minimizing # of
channel
reassignments

p

Routing
consistency

p

Locality
p p
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LINKCHANNELCHANGE cannot resolve the violation, GROUPCHANNELCHANGE

is invoked in line 5. Since changing channel of a link can resolve
multiple violations, after each successful resolve, the remaining
violated links are rechecked in line 9.

In group channel change, as mentioned before, we distinguish
between in-path and out-of-path violated links. GROUPCHAN-

NELCHANGE in line 1 checks that if the link is out-of-path or is created
by the GROUPCHANNELCHANGE itself. If at least one of these conditions
holds, it changes the channel of the links in the interference set of
the violated link in line 3. If both conditions in line 1 are false,
GROUPCHANNELCHANGE checks each candidate channel for the violated
link, in lines 7–9, by assigning it to the link, finding new violated
links, and attempting to resolve the new violations.
Table 3
Notation used for computational complexity analysis of QDDCA.

Notation Complexity of algorithm

O(QDDCA) QDDCA
O(RV) RESOLVEVIOLATION

O(LCC) LINKCHANNELCHANGE

O(GCC1) Lines 2–3 of GROUPCHANNELCHANGE

O(GCC2) Lines 5–9 of GROUPCHANNELCHANGE

Algorithm 1. QDDCA ((s,d,b, t,e),p)

1: Check allocating bandwidth b through path p
2: if path p is feasible then
3: return Accept
4: else
5: VL Violated Links
6: RESOLVEVIOLATION(VL)
7: if violations were resolved then
8: return Accept
9: else
10: return Reject

Algorithm 2. RESOLVEVIOLATION(VL)

1: while VL is not empty do
2: (u,v) VL[0]
3: LINKCHANNELCHANGE(u,v)
4: if violation was not resolved then
5: GROUPCHANNELCHANGE(u,v)
6: if violation was not resolved then
7: return Reject
8: else
9: Remove unviolated links from VL

Algorithm 3. LINKCHANNELCHANGE(u,v)

1: VC Valid Channels for (u,v)
2: if VC is not empty then
3: Update the channel of (u,v) to the best channel

Algorithm 4. GROUPCHANNELCHANGE(u,v)

1: if (u,v) is out-of-path or (u,v) 2 NVL then
2: while (u,v) is violated and there is unvisited (a,b) 2 I(u,v)

do
3: LINKCHANNELCHANGE(a,b)
4: else
5: CC Candidate channels for (u,v)
6: for "ch 2 CC and if (u,v) is violated do
7: Change channel of (u,v) to ch
8: NVL New Violated Links
9: RESOLVEVIOLATION(NVL)
5.4. Worst case computational complexity

The worst case running time of the QDDCA algorithm is the case
that all links in path p are violated and LINKCHANNELCHANGE cannot
resolve the violations. In this case, for each link, we have to call
GROUPCHANNELCHANGE, wherein lines 5–9 run and RESOLVEVIOLATION is
recalled for the newly generated violated links. In the worst case,
LINKCHANNELCHANGE again cannot resolve the new violations and we
have to call GROUPCHANNELCHANGE again. However, in this case, lines
2–3 run that break the recursive function calls.

To analyze the worst case, we use the notations in Table 3. Let j
be the number of channels, and r̂ be the maximum number of
radios per node. OðLCCÞ ¼ Oðjðr̂ þ ÎÞÞ as we need to check the
radio and capacity constraints per channel. OðGCC1Þ ¼ OðLCCÞbI ¼
OðjbIðr̂ þbIÞÞ. OðGCC2Þ ¼ Oðjr̂ þ jðbI þbIðOðLCCÞ þ OðGCC1ÞÞÞÞ ¼ O
ðj2bI2ðr̂ þbIÞÞ since the radio constraint must be checked for j chan-
nels and at most there would be bI new violated links that
RESOLVEVIOLATION is called for. The length of path can be at most n,
so OðRVÞ ¼ nðOðLCCÞ þ OðGCC2ÞÞ ¼ Oðnj2bI2ðr̂ þbIÞÞ and finally
OðQD DCAÞ ¼ OðnbIÞ þ OðRVÞ ¼ Oðnj2bI2ðr̂ þbIÞÞ.

It should be noted that the worst case occurs very rarely in
practice. Our simulations, which are presented in Section 8.7, show
that the length of paths is much less than the number of nodes, n,
the number of violated links is less than the length of the path, and
the number of additional new violated links generated by
GROUPCHANNELCHANGE is less than one per violated link.
6. Joint QoS routing and channel assignment

We explained in Section 4 that the first phase of our proposed
solution is routing. The input of the routing algorithm is a demand,
and the objective is to find a path, which is not necessarily feasible.
In this section, we first clarify the design choices, then, discuss how
the choices aid us to accomplish the desired design objectives, and
finally, we present the Joint QoS Routing and Channel Assignment
(JQRCA) algorithm and its computational complexity analysis.

6.1. Design choices

The major design decisions in the routing algorithm are prun-
ing, search algorithm, and routing metric, which are explained in
details in the following.

6.1.1. Pruning
Network pruning is a well-known mechanism in QoS routing to

exclude from the search space the links that have not sufficient re-
sources. Contrary to the QoS routing problem, in the joint QoS rout-
ing and channel assignment problem, if the current available
bandwidth of a link is not sufficient to route a flow through it,
the link should not be pruned because it is possible to provide ade-
quate bandwidth for the link through an appropriate channel
reassignment.

However, the channel assignment algorithm cannot provide any
arbitrary bandwidth; it must obey the physical channel capacity
and radio constraints. Since we assume each link can only use
one channel, the maximum possible load on link (u,v) can be at
most ck

ðu;vÞ; this is the best case in which no other link interferes
with it. For a given demand d = (s,d,b, t,e), link (u,v) is pruned if
lðu;vÞ þ b > maxk2K 0 fck

ðu;vÞg, where K0 is the set of candidate channels



B. Bakhshi et al. / Computer Communications 34 (2011) 1342–1360 1349
for (u,v), because routing the demand through the link makes it
violated and the violation cannot be resolved. This inequality also
considers the radio constraint; if there is not any candidate channel
for a link due to the constraint, maxk2K 0 fck

ðu;vÞg ¼ 0, the link is
pruned because routing any demand through the link makes it vio-
lated while there is not any possibility to resolve it.

6.1.2. Search algorithm
To search the network graph, we use the k-shortest path algo-

rithm. There are two reasons for this choice. First, in the previous
section, we developed a channel reassignment algorithm that takes
a path as the input and reassigns channels to make it feasible.
However, it cannot guarantee feasibility of any given path; there-
fore, instead of examining only one path, we investigate k paths
one-by-one to increase the probability of finding feasible paths.
Second, the algorithm is adjustable; the number of paths can be
used to adjust the trade-off between the running time and the
probability of finding feasible path.

We use the k-shortest path algorithm to find only one feasible
path; the JQRCA algorithm is a single-path algorithm. Although
splitting a flow among multiple paths may increase the probability
of finding feasible (multi) path, it has its own complexities. It com-
plicates the design of the algorithm and in real applications causes
out-of-order packet reception, which is not acceptable in most
cases. Moreover, our simulations in Section 8.3 show that as long
as the required bandwidth of flows is not comparable to physical
channel capacities, flow splitting and multipath routing are not
notably beneficial.

6.1.3. Routing metric
As we discussed in Section 4, the network performance depends

on bandwidth availability in the network. To optimize it, we should
minimize bandwidth consumption at each link, which is directly
proportional to the size of the interference sets. Thus, we need to
find the path with minimum interference that implies the routing
metric should be the size of the interference set, wW

ðu;vÞ ¼ jIðu;vÞj. If
the channel of a link is the virtual channel 0, we find the size of
the interference set for each candidate channel of the link and use
the average of them as its weight. Note that this routing metric sat-
isfies the locality constraint mentioned in Section 5.1.3.

6.2. Achieving design goals

The proposed choices in the previous section meet the design
requirements we identified in Section 4. Table 4 shows the relation
between the choices and objectives. Network pruning, k-shortest
path routing, and the interference based routing metric improve
acceptance rate; since, the pruning mechanism excludes the links
that cannot be resolved, the k-shortest path algorithm provides
more opportunity to search the network, and the interference
based routing metric aims to minimize resource consumption by
each demand. The channel assignment awareness requirement is
met by the pruning algorithm as it considers the capabilities of
the channel assignment algorithm and excludes the links that the
algorithm cannot resolve. Since both the pruning mechanism and
Table 4
Relation between design choices and objectives of QoS routing.

Goal Choices

Pruning k-Shortest path Routing metric

Maximizing
p p p

acceptance rate
Channel assignment

p

awareness
Locality

p p
the routing metric use the local information of each link, the
proposed solution is localized.

6.3. JQRCA algorithm

As we mentioned, our solution iteratively finds a path and at-
tempts to make the path feasible. It is implemented by integrating
the k-shortest path algorithm and QDDCA. Pseudo-code of the
algorithm is shown in Algorithm 5.

To find k paths, k instances of each node except the source node
are initialized and added to the list L in lines 1–2. u[i]�w and u[i]�p
are the weight and parent of instance u[i], respectively. In the main
loop of the algorithm, the minimum weight instance u[i] is selected
by GETBESTINSTANCE and the partial path p0 from the source node to
node u is found by GETPARTIALPATH. If node u is the destination, we
have found a path; therefore, in lines 7–9, we check feasibility of
the path, reassign channels if it is required, and finish the algorithm
by accepting the demand in the case of feasibility of the path. If u is
not the destination, we need to update the weight of the instances of
the neighbors of u. An instance v[j] is updated if (u,v) is not pruned, v
is not in partial path p0, and the current weight of the instance, v[j].w,
is greater than the total weight of link (u,v) and partial path p0.

Algorithm 5. JQRCA ((s,d,b,e, t),k)

1: for i = 1 to k do
2: "u 2 Vn{s}, u[i]�w 1 and add u[i] to L
3: while the number of found paths to t is less than k do
4: u[i] GETBESTINSTANCE(L)
5: p0  GETPARTIALPATH(u[i])
6: if u = t then
7: QDDCA ((s,d,b, t,e),p0)
8: if Accepted then
9: Finish
10: else
11: for each (u,v) 2 E do
12: if (u,v) is not pruned and v R p0 and $v[j] s.t.

v½j��w > Wðp0;WÞ þwW
ðu;vÞ then

13: v ½j��w Wðp0;WÞ þwW
ðu;vÞ

14: v[j]�p u[i]
15: update L
6.4. Worst case computational complexity

We assume list L is implemented by the Fibonacci heap, so
OðGetBestInstanceÞ ¼ OðlogðknÞÞ and the complexity of initializing
the heap in lines 1–2 is O(kn log(kn)). Each part of the main loop
of the algorithm runs different times. Lines 4 and 5 run kn times,
so total complexity of this part is O(kn(log (kn) + n)). Lines 7–9
run at most k times; the total complexity is OðOðQDDCAÞkÞ ¼
Oðknj2bI2ðr̂ þbIÞÞ. The last part, lines 11–15, runs km times, conse-
quently the total complexity is O(knm). Combining all these
running times yields to OðJQRCAÞ ¼ Oðkn logðknÞÞ þ OðknðlogðknÞþ
nÞÞþOðknj2bI2ðr̂þbIÞÞþOðknmÞ¼OðknlogðknÞþknmþknj2bI2ðr̂þbIÞÞ.
7. Performance bound

In this section, we obtain an upper bound on the network perfor-
mance, which is used in Section 8 to evaluate the performance of
the JQRCA algorithm. For the sake of simplicity of presentation, in
the first step, we start from an artificial version of the problem in
which the QoS demands are static and obtain the optimal feasible
solution for it through formulating the problem as a MILP model,
OPTIMALSTATIC. Due to the computational complexity of the model,
we relax it to get an upper bound, RELAXEDSTATIC model. In the second
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step, we assume that flows are reroutable and extend the relaxed
model to consider the dynamics of the demands over the time,
DYNAMICUB1 model. However, it leads to a huge model that is intrac-
table in practical problems. We deal with it by proposing another
model, DYNAMICUB2, which is equivalent to the first model, but it
is decomposable, and developing a decomposition algorithm,
MOSTGREEDYONLINE, for it. We show that the models for dynamic de-
mands simulate the behavior of the on-line greedy CAC strategies,
which we study here. The solution of the extended model, which
is acquired by the decomposition algorithm, is the performance
bound of the on-line joint QoS routing and channel assignment
problem. Fig. 3 summarize our approach to obtain the upper bound.

7.1. Static demands performance bound

The static demands performance bound problem is as follows. A
multi-channel multi-radio WMN, which is modeled by a digraph,
and a set of static QoS demands are given. By the static demands,
we mean all the demands arrive at time 0. The question is what
the maximum number of admissible demands is. For this problem,
we develop an optimal MILP model and since it is extremely diffi-
cult, we relax it and obtain a relaxed model that is tremendously
easier and provides a tight bound for the problem.

7.1.1. Optimal model
In the optimal MILP model, we use the assumptions we made in

the previous sections; each link can only use one channel, there is
not fast switching capability, and the capacity constraint is mod-
eled by the row constraint (1). However, we assume that flows
are splittable and multipath routing is used. In addition to the
notations in Table 1, we use the following variables. Binary variable
xk
ðu;vÞ is the channel assignment variable,

xk
ðu;vÞ ¼

1; if link ðu;vÞ transmits on channel k;

0; otherwise:

�
Binary variable ai denotes admission of demand di,

ai ¼
1; if demand di is accepted;
0; otherwise:

�
Tuning radios to channels is modeled by variable yk

u,

yk
u ¼ 1; if channel k is assigned to a radio of node u:

The optimal model is as follows. Its objective function is to max-
imize the number of admitted demands,

maximize
X
di2D

ai: ð3Þ

Since at most one channel is assigned to each link, we haveX
k2K

xk
ðu;vÞ 6 1 8ðu;vÞ 2 E: ð4Þ
Time based constraints 
and assuming rerouting

Proposition 2

Dynamic Demands 
Decomposable model: 

DYNAMICUB2

Static Demands 

Assuming static 
demands

Optimal model: 
OPTIMALSTATIC

Assuming fast 
switching

Relaxed model:  
RELAXEDSTATIC

Upper bound model: 
DYNAMICUB1

DecompositionDecomposition Algorithm: 
MOSTGREEDYONLINE

Performance Bound  

Fig. 3. The proposed approach to obtain network performance bound.
Obviously, the variable yk
u cannot be greater than 1, so

yk
u 6 1 8k 2 K; 8u 2 V : ð5Þ

If link (u,v) uses channel k, the channel must be assigned to a radio
in both nodes u and v, therefore

xk
ðu;vÞ 6 yk

u; xk
ðu;vÞ 6 yk

v 8k 2 K; 8ðu;vÞ 2 E: ð6Þ

The radio constraint forces that the number of channels assigned to
the links of a node must be at most the number of radios of the
node; in other words,X
k2K

yk
v 6 rv 8v 2 V : ð7Þ

If link (u,v) transmits a load on channel k, the channel must be as-
signed to the link. So, we have

lkðu;vÞ 6 xk
ðu;vÞc

k
ðu;vÞ 8k 2 K; 8ðu;vÞ 2 E: ð8Þ

The load transmitted by each link must be equal to the load offered
on it by flows in the network,X
k2K

lk
ðu;vÞ ¼

X
di2D

f i
ðu;vÞ 8ðu; vÞ 2 E: ð9Þ

Modeling the capacity constraint is a little complicated. To
check the capacity constraint (1), I(u,v) and the channel assigned
to (u,v) must be given, but indeed these are determined after solv-
ing the optimization model. To deal with this issue, in the optimi-
zation model, we use I0ðu;vÞ instead of I(u,v) and check the constraint
for all channels, there are j constraints per link. Recall that I0ðu;vÞ is
the interference set of (u,v) when a common channel is assigned to
all links in the network. However, only one of the j constraints
should be satisfied and the remaining must be don’t-care because
if channel k is not assigned to (u,v), it is meaningless to impose a
limitation on the aggregate load transmitted on this channel in
the interference range of the link. This is modeled using the big
M technique and the constraint is

X
ða;bÞ2I0ðu;vÞ

lk
ða;bÞ

ck
ða;bÞ
6 1� xk

ðu;vÞ

� �
M þ 1 8k 2 K; 8ðu;vÞ 2 E: ð10Þ

In (10), if channel k is assigned to link ðu; vÞ; xk
ðu;vÞ ¼ 1, the right-

hand side will be ‘‘1’’, and the constraint imposes that the aggregate
load transmitted by the links in the interference rage of ðu;vÞ; I0ðu;vÞ,
on channel k must not exceed physical channel capacities. However,
for other channels k0 – k where xk0

ðu;vÞ ¼ 0, this constraint becomes
don’t-care since M is a big value. The big value implies that M must

be greater than
P
ða;bÞ2I0ðu;vÞ

lkða;bÞ
ck
ða;bÞ

; since
lkða;bÞ
ck
ða;bÞ
6 1 and jI0ðu;vÞj 6 bI , we need

M > bI.
Finally, the routing and flow conservation constraint must be

satisfied if demand is accepted, which is modeled as

X
ðu;vÞ2E

f i
ðu;vÞ �

X
ðv;uÞ2E

f i
ðv ;uÞ ¼

aibi; if u ¼ si;

�aibi; if u ¼ di;

0; otherwise;

8><>: 8u 2 V ; 8di 2 D:

ð11Þ

Note that routing variables f i
ðu;vÞ are real variables because of flow

splitting and multipath routing assumptions. The last constraints
are the bounds,



Table 5
The number of maximal cliques.

Node # Link # Interference graph
maximal clique #

25 126 8
50 234 107

100 656 204
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xk
ðu;vÞ 2 f0;1g; ai 2 f0;1g; lk

ðu;vÞ P 0; f i
ðu;vÞ P 0; yk

u P 0:

ð12Þ

Putting (3)–(12) altogether provides an optimal model for the
static demands performance bound problem that is
Model:
4 In fact, it is a suffici
5 We used MACE pro
OPTIMALSTATIC
Objective:
 (3)

Subject to:
 (4)–(12).
Whereas solving the OPTIMALSTATIC model gives an optimal feasi-
ble solution, it is extremely difficult. The model cannot be solved
easily even for small networks and a few number of demands.
The complexity arises from the binary variables xk

ðu;vÞ and ai. In
the following, we deal with the complexity by relaxing this optimal
model.

7.1.2. Upper bound
The binary variable xk

ðu;vÞ used for channel assignment is the
source of the difficulty of OPTIMALSTATIC. We assume that radios are
capable to do fast switching to tackle the complexity. Using this
assumption, variable xk

ðu;vÞ is relaxed as

xk
ðu;vÞ ¼ Fraction of time that link ðu;vÞ transmits on channel k:

However, this relaxation causes a problem. The capacity con-
straint (10) is a conditional constraint and needs the binary vari-
able xk

ðu;vÞ. We replace it by the scaled clique constraint to deal
with this issue. It enforces that the aggregate load of the links in
each maximal clique of the interference graph should not exceed
the scaled physical channel capacity. The clique constraint without

scaling is a necessary condition4 and formulated as
P
ðu;vÞ2Qi

lkðu;vÞ
ck
ðu;vÞ
6 1

in multi-rate networks [39], where Qi is a maximal clique. As shown
in [38], to be a sufficient condition, the constraint must be scaled.

There are two issues about the scaling. First, the number of
maximal cliques in an arbitrary graph theoretically can be expo-
nential; but, in practice, in the interference graph of multi-hop
wireless networks, it is limited and all maximal cliques can be
found very easily. Table 5 shows the number of maximal cliques
in the interference graph of three random topologies. The maxi-
mum time to find all maximal cliques is less than one second in
our experiments on an Intel Pentium IV 3.0 GHz machine.5

Second, the value of the scale should be selected properly. The
authors in [38] showed that it depends on the imperfection ratio
of the interference graph. A recent simulation based study of the
imperfection ratios of interference graphs provided two conclu-
sions [41]. First, as the number of nodes increases the value of
the scale decreases. Second, scale = 1.0 is a good approximation
but to be more conservative, we can use scale ¼ 1

1:21 ¼ 0:826. Based
on this study, we use both these values to find two bounds.

Let c be the scale, Qi be a maximal clique in the interference
graph when a common channel is assigned to all links, and set
Fig. 4. An example of unschedulable solution. Label of each link is (channel, load),
label of each node is the schedule of channel activation on its radio, ck

ðu;vÞ ¼ 10, and
qu = 1. Whereas all the constraints of RELAXEDSTATIC are satisfied, there is not any
feasible schedule.

ent condition only in perfect interference graphs.
gram to enumerate maximal cliques [40].
U = {Q1,Q2, . . .} be the set of the maximal cliques. The relaxed mod-
el for the static demands performance bound problem is as follows.

Obviously, variable xk
ðu;vÞ is bounded by 1,

xk
ðu;vÞ 6 1 8k 2 K; 8ðu; vÞ 2 E: ð13Þ

Load transmitted by link (u,v) on channel k is proportional to the
fraction of time that the link is active on the channel, so

lk
ðu;vÞ ¼ xk

ðu;vÞc
k
ðu;vÞ 8k 2 K; 8ðu; vÞ 2 E: ð14Þ

When a link of node u, either (u,v) or (v,u), uses channel
k; xk

ðu;vÞ > 0, in fact, a radio of the node is tuned to the channel
and utilized for that transmission for xk

ðu;vÞ fraction of time. Obvi-
ously, total utilization of radios of a node cannot exceed the number
of radios; in other words,X
k2K

X
ðu;vÞ2E

xk
ðu;vÞ þ

X
ðv;uÞ2E

xk
ðv;uÞ

 !
6 ru 8u 2 V : ð15Þ

The scaled clique constraint is

X
ðu;vÞ2Qi

lk
ðu;vÞ

ck
ðu;vÞ
¼

X
ðu;vÞ2Qi

xk
ðu;vÞ 6 c 8k 2 K; 8Q i 2 U; ð16Þ

that imposes the total time allocated to all conflicting links must be
less than or equal to c. The bound constraints are

xk
ðu;vÞ P 0; ai 2 f0;1g; lkðu;vÞ P 0; f i

ðu;vÞ P 0: ð17Þ

These constraints and objective function (3) gives the relaxed model
as
Model:
 RELAXEDSTATIC
Objective:
 (3)

Subject to:
 (9), (11), (13)–(17).
It is important to note that even if the exact value of the scale is
used, this relaxed model will be an upper bound because its solu-
tion may not be schedulable. An example of unschedulable solution
is depicted in Fig. 4. In this example, in the first time-slot, nodes a
and b activate channel 1 on their radios to transmit the load on link
(a,b), the length of this time-slot is half of the scheduling frame,
x1
ða;bÞ ¼ 0:5, since the load on the link is 5 and the physical channel

capacity is 10. In the second time-slot, channel 2 is activated on the
radios of nodes b and c to transmit the load on link (b,c), the length
of this time-slot is also half of the scheduling frame, x2

ðb;cÞ ¼ 0:5.
However, there is not any time-slot to transmit the load on link
(c,a) on channel 3 even though all the constraints of the
RELAXEDSTATIC model are satisfied. Our simulation results presented
in the next subsection show that this issue is not an important
matter and RELAXEDSTATIC provides a tight bound.



Table 6
Parameters of the topologies used in simulations.

Parameter Values

Name T-10 T-15 T-25 T-50
Area (m2) 500 � 500 600 � 600 750 � 750 1000 � 1000
Node # 10 15 25 50
TR (m) 200 200 200 200
IR (m) 400 400 400 400
Radio # Random [2,5] Random [2,5] Random [2,5] Random [2,5]
Channel # 12 12 12 12
ck
ðu;vÞ (Mb/s) 100 100 100 100
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7.1.3. Simulation results
In this subsection, we present simulation results to show the

efficiency and tightness of the RELAXEDSTATIC model. We conducted
the simulations in three 10, 15, and 25 nodes random topologies
with parameters shown in Table 6. In each experiment, 50 random
demands were offered to the network. The required bandwidth of
each demand was a uniform random variable in [1,Bmax] Mb/s. We
used CPLEX 11.0 [42] on an Intel Pentium IV 3.0 GHz machine with
2 Gigabytes RAM. Time limit to solve the model was 10 h. The re-
sults presented in this section are the average of five experiments.
We evaluate RELAXEDSTATIC using following metrics.

Definition 4. Bound gap of the relaxed model is
Relaxed Model Accepted Demands #� Optimal Model Accepted Demands #

Optimal Model Accepted Demands #
:

Definition 5. Time ratio of the relaxed model is

Optimal Model Solution Time
Relaxed Model Solution Time

:

Table 7 shows the simulation results. In this table, rows ‘‘Opti-
mal,’’ ‘‘Not Scaled,’’ and ‘‘Scaled’’ are the results of OPTIMALSTATIC and
RELAXEDSTATIC with c = 1.0 and c = 0.826, respectively. The ‘‘Exceed
#’’ row is the number of times that OPTIMALSTATIC was not solved
in the specified time limit, in these cases, we used the best integer
solution as the result. Optimality gap of the best integer solution,
which is reported by the solver, is represented in the ‘‘Optimality
Gap’’ row.

These results lead to the following conclusions. First,
RELAXEDSTATIC is a tight relaxation of the optimal model as the bound
gap is very small. Second, RELAXEDSTATIC is incredibly, up to 3.22e+5
times, faster than OPTIMALSTATIC. Third, the best integer solution is a
fairly good approximation of the optimal solution since the opti-
mality gap is quite small. Fourth, these results confirm the conclu-
sions in [41]: (i) c = 0.826 is too conservative for small topologies
as the bound gap is negative in T-10 and T-15. (ii) As the number
of nodes increases, c = 1.0 and c = 0.826 get looser and tighter,
respectively.
xk
ðu;vÞ;tj

P 0; ai 2 f0;1g; lðu;vÞ;tj
P 0; f i

ðu;vÞ;tj
P 0:
7.2. Dynamic demands performance bound

Dynamic demands performance bound problem is, in fact, the
performance bound of the joint QoS routing and channel assign-
ment problem in which each demand di arrives at time ti and has
a limited holding time ei � ti. Again, the question is the maximum
number of admissible demands. As explained before, for the
problem, we first develop an upper bound model by extending
RELAXEDSTATIC; then, propose another model, which is equivalent to
the first one and is decomposable; finally, we develop a decompo-
sition algorithm that divides the second model into subproblems
and solves them sequentially.
7.2.1. Upper bound model
As mentioned, in this problem, we should model the dynamics

of the demands, which need to update network configurations
(routing and channel assignment) at the demand arrival times.
We deal with the problem by extending RELAXEDSTATIC in the follow-
ing ways. First, we introduce a time set T, which is T = {t1, t2, . . . , th},
and duplicate the channel assignment variables, xk

ðu;vÞ, for each
tj 2 T, i.e., we add new variables xk

ðu;vÞ;tj
8k2 K; 8ðu;vÞ 2 E; 8tj 2 T.

Second, we assume that accepted demands can be rerouted; thus,
flow routes are time-dependent and reoptimized at each demand
arrival time. They are denoted by f i

ðu;vÞ;tj
8di 2D; 8ðu;vÞ 2 E; 8tj 2 T.

Third, decision variable ai is not duplicated because a demand is
either accepted or not independent of the time we observe the
network. Fourth, the required bandwidth of demand di is defined as

bi;tj
¼

bi; if ti 6 tj 6 ei;

0; otherwise:

�

These extensions yield a model that is composed of h instances of
the RELAXEDSTATIC model, an instance per demand arrival. At each
arrival time tj 2 T, decision variables must satisfy the constraints
of the instance of RELAXEDSTATIC corresponds to the time, which are
defined as following.

Definition 6. Constraints must be satisfied at time tj, CONSSET(tj),
are

xk
ðu;vÞ;tj

6 1 8k 2 K; 8ðu; vÞ 2 E;

lkðu;vÞ;tj
¼ xk

ðu;vÞ;tj
ck
ðu;vÞ 8k 2 K; 8ðu;vÞ 2 E;

X
k2K

X
ðu;vÞ2E

xk
ðu;vÞ;tj

þ
X
ðv;uÞ2E

xk
ðv;uÞ;tj

 !
6 rv 8v 2 V ;

X
ðu;vÞ2Qi

lk
ðu;vÞ;tj

ck
ðu;vÞ

¼
X
ðu;vÞ2Qi

xk
ðu;vÞ;tj

6 c 8k 2 K; 8Qi 2 U;

X
di2D

f i
ðu;vÞ;tj

¼
X
k2K

lk
ðu;vÞ;tj

8ðu; vÞ 2 E;

X
ðu;vÞ2E

f i
ðu;vÞ;tj

�
X
ðv ;uÞ2E

f i
ðv;uÞ;tj

¼
aibi;tj

; if u ¼ si

�aibi;tj
; if u ¼ di

0; otherwise

8><>: 8u 2 V ; 8di 2 D;

ð18Þ

and

k



Table 7
Simulation results of OPTIMALSTATIC and RELAXEDSTATIC. The parameters of the simulation topologies are shown in Table 6.

Topology T-10 T-15 T-25

Bmax 20 30 20 30 20 30

Accepted # Optimal 48.8 44 49.4 44.4 46.6 40
Not Scaled 49.3 45.4 49.4 45 49.9 44.8
Scaled 48.5 42.8 48.8 42.6 48.8 42

Bound gap Not Scaled 1.09e�2 3.13e�2 0 1.35e�2 7.09e�2 1.20e�1
Scaled �6.15e�3 �2.84e�2 �1.21e�2 �4.05e�2 4.68e�2 5.00e�2

Time (s) Optimal 2.17e+4 3.60e+4 1.09e+4 3.60e+4 3.60e+4 3.60e+4
Not Scaled 9.50e�2 1.73e�1 4.74e�1 6.24e�1 8.71e�1 3.38e+0
Scaled 1.20e�1 1.12e�1 4.62e�1 8.90e�1 2.16e+0 5.71e+0

Time ratio Not Scaled 2.28e+5 2.08e+5 2.30e+4 5.77e+4 4.13e+4 1.07e+4
Scaled 1.81e+5 3.22e+5 2.36e+4 4.04e+4 1.67e+4 6.31e+3

Exceed # 2 5 1 5 5 5
Optimality gap 1.66e�2 1.13e�1 6.38e�2 1.27e�1 7.46e�2 2.08e�1
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The major complexity of this model is that these instances are
not independent because variables ai "di 2D appear in all of them.
In other words, demands are not preemptable; if a demand is ac-
cepted in the solution of one of the instances, it must be accepted
in the remaining. As a result, we have to solve the h instances alto-
gether simultaneously.

An important issue in modeling the dynamic demands perfor-
mance problem, which needs to be addressed carefully, is the
objective function of the model. If (3) is optimized, this model will
be an appropriate model for the off-line joint QoS routing and chan-
nel assignment problem, in which the information about all de-
mands is given at the beginning and solving the model finds the
maximum number of admissible demands. However, in this paper,
we have focused on the on-line greedy CAC strategy, where the
information about a demand is not known before its arrival time
and at demand arrival time, since the on-line algorithm does not
aware of future demands, it greedily attempts to accept the given
demand. We borrow the idea proposed in [43] to model this behav-
ior of on-line algorithms, which is assigning profit qi to demand di

and maximizing the aggregate profit of accepted demands. Sup-
pose D is sorted in ascending order of ti, the profit is assigned as

qi ¼ 2h�i ð19Þ

and the objective function is

maximize
X
di2D

aiqi: ð20Þ

These profits imply that if there is a feasible path for demand di,
it is not rejected in favor of accepting subsequent demands dj be-
cause qi >

Ph
j¼iþ1qj 8di 2 D. This inequality implies that the model

first puts its effort to accept d1, then consider d2, after that, d3 and
so on; this exactly simulates the behavior of on-line greedy CAC
algorithms.

The optimization model for the dynamic demands performance
problem is
Model:
 DYNAMICUB1(D,q)

Objective:
 (20)

Subject to:
 CONSSET(tj) "tj 2 T
where q is the profit assignment vector obtained by (19). Since in-
stead of OPTIMALSTATIC, we use the RELAXEDSTATIC model, DYNAMICUB1
provides an upper bound on the network performance achievable
through on-line greedy algorithms. Tightness of the model depends
on the scale used in RELAXEDSTATIC and as discussed in the previous
subsection, in large networks, scale 0.826 yields a tighter bound
than scaled 1.0.
There is a problem about DYNAMICUB1, this model will be huge
even for medium size networks and a large number of demands;
it is not solvable for practical networks. In the following, we
decompose it to deal with this issue.

7.2.2. Decomposition
In this subsection, at the first step, we define a model that is

equivalent to DYNAMICUB1, the set of accepted demands is the same
for both models. Then, in the second step, we show this model is
decomposable and develop an algorithm to decompose it.

The decomposable model is obtained through following modifi-
cations in DYNAMICUB1. First, instead of ai for each demand we
consider ai;tj

for each demand di and tj 2 T. Second, we consider
two additional constraints

ai;tj
6 bi;tj

M 8di 2 D; 8tj 2 T; ð21Þ

where M > (min{bi})�1 and

ai;tj
6 ai;ti

8di 2 D; 8tj 2 T: ð22Þ

Constraints (21) and (22) impose that ai;tj
must be zero if bi;tj

¼ 0 or
ai;ti
¼ 0, respectively. Third, profit assignment is

qi;tj
¼

0; tj < ti;

1; tj ¼ ti;

2; tj > ti;

8><>: 8di 2 D; 8tj 2 T: ð23Þ

Fourth, the new objective function is

maximize
X
tj2T

X
di2D

ai;tj
qi;tj

: ð24Þ

Consequently, the decomposable model is
Model:
 DYNAMICUB2(D,q)

Objective:
 (24)

Subject to:
 (21), (22), and CONSSET0(tj) "tj 2 T
where CONSSET0(tj) is the same set of constraints denoted by
CONSSET(tj) but ai is replaced by ai;tj

and q is the profit assignment
vector obtained by (23).

We use following propositions to show that DYNAMICUB1 and
DYNAMICUB2 are equivalent models.

Proposition 1. In the solution of DYNAMIC UB2, we have ai;ti
¼ ai;tj

where ti 6 tj 6 ei.
Proof. The proof can be found in the Appendix. h
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Proposition 2. For a given D, we have ai ¼ ai;ti
, where ai and ai;ti

are
obtained by solving the DYNAMICUB1 and DYNAMICUB2 models,
respectively.
Proof. The proof can be found in the Appendix. h

In DYNAMICUB1, the accepted demands are determined by ai, de-
mand di is accepted if ai = 1; now, if we define it in DYNAMICUB2
using ai;ti

, demand di is accepted if ai;ti
¼ 1, the set of accepted de-

mands obtained by both models are the same due to Proposition 2;
in other words, these models are equivalent.

The distinguishing feature of the DYNAMICUB2 model is that we
can decompose it into h subproblems and solve them sequentially.
Note that constraint CONSSET0(tj) "tj 2 T in the model is indeed h
independent sets of constraints, there is not any common variable
among them. Each set contains the decision variables, and con-
straints correspond to a tj 2 T. Therefore, DYNAMICUB2 can be
decomposed into h subproblems where jth subproblem is
Model:
 SUBUB2ðD0tj
;q; j)P
Objective:
 maximize di2D0tj
ai;tj

qi;tj
Subject to:
 CONSSET0(tj)
In this model, constraints (21) and (22) are not included, we

take them into account using D0tj

� D instead of D. Demand
di R D0tj

if either of these conditions holds.

� tj < ti or tj > ei since bi;tj
¼ 0 and constraint (21) implies ai;tj

¼ 0.
� ti < tj 6 ei and ai;ti

¼ 0 because constraint (22) enforces ai;tj
¼ 0.

Since when ti < tj 6 ei, constraint (21) does not impose any
restriction, the first condition is equivalent to the constraint. In a
similar way, the second condition is equivalent to (22) as the con-
straint is don’t-care when ai;ti

¼ 1. Therefore, SUBUB2 is a valid
decomposition of DYNAMICUB2 as it takes all the constraints of
DYNAMICUB2 into consideration.

Note that the second condition needs the optimal value of ai;ti
; it

implies that SUBUB2ðD0ti
;q; iÞmust be solved before SUBUB2 ðD0tj

;q; jÞ
for each j > i; in other words, SUBUB2 subproblems should be solved
sequentially starting from SUBUB2 ðD0t1

;q;1Þ. This is implemented
by the decomposition algorithm as shown in Algorithm 6. In this
algorithm, if di is rejected, it is removed from D0 in line 10, due
to (22); moreover, it is removed in line 13 because of (21) if it does
not overlap with the next demand.
Table 8
Parameters of simulation traffic.
Algorithm 6. MOSTGREEDYONLINE(D)
Parameter Value

1:
 Create empty set D0
2:
 for i = 1 to h do

Number of demands (h) 300
Arrival rate Poisson random variable with
3:
 di D[i]
mean k demands per minute
4:
 Add di to D0
Holding time ðl�1
i ¼ ei � tiÞ Exponential random variable
5:
 Assign profits q according (23)
with mean 10 min
6:
 Solve SUBUB2(D0,q, i)

Required bandwidth (bi) Uniform random variable in [1,Bmax] Mb/s
7:
 if ai;ti

¼ 1 then

8:
 Add di to the Accepted demand set

9:
 else
Table 9
10:
 Remove di from D0
The correspondence between demand arrival rate, incoming traffic, and overload
11:
 for each dj 2 D0 do

percentage.
12:
 if ej < ti+1 then
k (demand/min) Incoming traffic (Mb/s) Overload %
13:
 Remove dj from D0
T-15 T-25 T-50
This algorithm is named ‘‘most greedy on-line’’ since it is on-
 2 210 22 18 15
4 420 44 36 30
6 630 66 54 45
8 840 88 72 60

10 1050 110 90 75
line, it does not use the information of a demand before it arrives,
and is the greediest algorithm; it accepts demands if there is a
feasible network configuration, which is checked by solving the
SUBUB2 optimization model.
8. Simulation results

In this section, we present simulation results to evaluate the
performance of the JQRCA algorithm. After clarifying the simula-
tion setup and simulated algorithms, we study the effect of differ-
ent parameters on the performance of the algorithms. Moreover,
we present results on the average case computational complexity
and overhead of the JQRCA algorithm.

8.1. Simulation setup

We used a flow-level event-driven simulator developed in Java.
Simulations were performed on an Intel Pentium IV 3.0 GHz
machine with 2 Gigabytes RAM and CPLEX 11.0 was used. Three
random topologies with 15, 25, and 50 nodes as shown in Table
6 were used. In each run of the simulations, a set of random traffic
demands with the parameters shown in Table 8 was used. These
were the default values used in all simulations, unless otherwise
is stated. The simulation parameters, e.g., k, Bmax, and j, were tuned
to consider the networks under lightly loaded to highly overloaded
conditions. The results presented in this section are the average
obtained from ten different demand sets.

We simulated three solutions for the on-line joint QoS routing
and channel assignment problem: the JQRCA algorithm, the
MOSTGREEDYONLINE algorithm, and a static solution. In the static
solution, at the beginning, we assign channels by the minimum
interference greedy channel assignment algorithm [44], which is
a static channel assignment to minimize total network interfer-
ence, then, route flows using the minimum hop count routing. In
the following figures, ‘‘MGO-0.82,’’ ‘‘MGO-1.00,’’ ‘‘JQRCA,’’ and
‘‘Static’’ are the results of MOSTGREEYONLINE with c = 0.826,
MOSTGREEYONLINE with c = 1.0, the JQRCA algorithm with k = 2, and
the static solution, respectively.

In the following results, we report the incoming traffic in terms
of demand arrival rate. The incoming traffic can also be easily mea-
sured in terms of bandwidth as follows. The average holding time
of demands is l�1 minutes and k new demands arrive in each min-
ute; thus, using the Little’s law, there are kl�1 traffic demands on
average. Since the bandwidth requirement of demands is a uniform
random variable in [1,Bmax] Mb/s, its average value is Bmaxþ1

2 Mb/s.
Therefore, the total traffic offered to the network in terms of band-
width is 0.5kl�1(Bmax + 1) Mb/s. Table 9 shows the correspondence
between demand arrival rate and incoming traffic. Moreover, this
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(a) T-15 Topology
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(b) T-25 Topology
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(c) T-50 Topology

Fig. 5. Acceptance rate versus demand arrival rate. The parameters of the
topologies and the simulation traffic are shown in Tables 6 and 8, respectively;
and Bmax = 20.
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table shows the overload percentage of each topology per arrival
rate. The overload percentage is the percentage of the incoming
traffic over the maximum throughput of the network. The maxi-
mum throughput of the network is measured as follows. We load
the network very heavily, e.g., k = 1000 demand/min, use the
MGO-1.00 to route the demands, and take the moving average of
the bandwidth of the accepted demands over the time. The
maximum throughput of the T-15, T-25, and T-50 topologies are
995 Mb/s, 1170 Mb/s, and 1394 Mb/s, respectively.

To measure the performance of QoS routing algorithms, we use
the demand acceptance rate metric [11,45]. Demand acceptance
rate is the number accepted demands divided by the total number
of demands. We discuss the relation between bandwidth of
accepted demand and this metric, which depends on the fairness
of the algorithm, in Section 8.6.

8.2. Effect of demand arrival rate

Arrival rate of demands is the first parameter we investigated.
The acceptance rates of the solutions versus the demand arrival
rate are shown in Fig. 5. These figures show that the JQRCA algo-
rithm is an efficient algorithm, it significantly outperforms the sta-
tic solution and has a comparable performance to the bound
obtained by the MOSTGREEDYONLINE algorithm independent of the
size of the network. As we see, in the worst case, the solution ob-
tained by JQRCA is not far from the solution of MGO-0.82 more
than 6–8%.

In Fig. 6, we depict the average solution time per SUBUB2 sub-
problem to show the efficiency of the MOSTGREEDYONLINE algorithm.
This problem is solved by the algorithm at the arrival time of each
demand. This figure shows that the algorithm is not time-consum-
ing as the solution time is less than 0.6 s, 1.2 s, 12 s in the T-15, T-
25, and T-50 topologies, respectively.

8.3. Effect of maximum required bandwidth

The maximum required bandwidth, Bmax, is a parameter influ-
encing the offered load; hence, the performance of the algorithms
depends on it. The acceptance rates of the algorithms versus the
maximum required bandwidth are depicted in Fig. 7. These results
show that acceptance rate is a decreasing function of Bmax but the
rate of reduction for JQRCA is much less than the Static solution
and is comparable to the rate of MGO-0.82. As seen in the figures,
the gap between the acceptance rates of JQRCA and MGO-0.82 en-
larges as Bmax increases; this is due to the flow-splitting and mul-
tipath routing. A flows that needs large amount of bandwidth is
split into multiple sub-flows by the MOSTGREEDYONLINE algorithm,
which are routed through multiple paths; however, the JQRCA
algorithm is not allowed to split flows and cannot find a feasible
path for the bandwidth intensive flows.

8.4. Effect of number of available channels

An efficient joint QoS routing and channel assignment algo-
rithm should be able to exploit available channels. We conducted
simulations with different numbers of channels in order to com-
pare the algorithms from this point of view. In these simulations,
k is 4 demands per minute that leads to 420 Mb/s offered load.
Fig. 8 shows the performance of the algorithms versus the number
of available channels. In all topologies, JQRCA exploits the available
channels as well as the MOSTGREEDYONLINE algorithm since the rate of
increasing of acceptance rate is almost the same for both algo-
rithms. In the T-15 topology, Fig. 8(a), JQRCA outperforms MGO-
0.82, this confirms our previous results in Section 7.1.3 that
showed the scale 0.826 is too conservative in small topologies.
8.5. Effect of number of radios per node

Radios in each node are scarce resources. An efficient algorithm
should be capable of providing good performance even using a lim-
ited number of radios. We show the performance of the algorithm
versus the numbers of radios per node in Fig. 9. These figures show
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Fig. 6. Average solution time of SUBUB2 versus demand arrival rate. The parameters
of the topologies and the simulation traffic are shown in Tables 6 and 8,
respectively; and Bmax = 20.
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Fig. 7. Acceptance rate versus the maximum required bandwidth. The parameters
of the topologies and the simulation traffic are shown in Tables 6 and 8,
respectively; and k = 4 demands per minutes.
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that JQRCA does not need many radios per node to achieve high
network performance.

When there are two or three radios per node, there is a large gap
between JQRCA and MGO-0.82. This is due to the infeasibility of
the solutions of the SUBUB2 model, which is explained in Section
7.1.2. The unschedulability issue is more serious when ru is small;
so, in this case the MOSTGREEDYONLINE algorithm gives a bit loose
upper bound on the network performance.

Figs. 8 and 9 indicate the main factor limiting the network
performance is the number channel not the number of radios. In
real-life WMNs, in which each node has three/four radios, JQRCA
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Fig. 8. Acceptance rate versus the number of channels. The parameters of the
topologies and the simulation traffic are shown in Tables 6 and 8, respectively. k = 4
demands per minute and Bmax = 20.
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Fig. 9. Acceptance rate versus the number of radios per node. The parameters of the
topologies and the simulation traffic are shown in Tables 6 and 8, respectively. k = 4
demands per minute and Bmax = 20.
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can exploit the many existing channels, e.g., 12 orthogonal channels
in IEEE 802.11a, to obtain a near optimal network performance.

8.6. Fairness

As mentioned in Section 3.5, greedy CAC strategy is suitable to
achieve (absolute) fairness. In this subsection, we measure the fair-
ness of the JQRCA algorithm through the Jain’s fairness index [46].
Suppose there are N traffic classes and Ai demands are accepted
from class i. Fairness index is defined as

Fairness index ¼
PN

i¼1Ai

� �2

N
PN

i¼iA
2
i

:



1358 B. Bakhshi et al. / Computer Communications 34 (2011) 1342–1360
This parameter measures how fairly an algorithm accepts de-
mands from different classes. Absolute fairness is achieved when
the fairness index is equal to one, which implies the same number
of demands is accepted from all classes; absolute unfairness, when
all the accepted demands belong to only one class, is the case that
fairness index is 1

N.
Here, we define traffic classes based on the bandwidth require-

ments; we divide [1,Bmax] into 10 subintervals. Demand di is in
class j if ðbi � 1Þ 2 ðj� 1Þ Bmax

10 ; j Bmax
10

� �
Mb=s. The fairness index of

JQRCA in various settings of network and traffic parameters is
shown in Table 10. Note that these parameter settings are the val-
ues we used in the previous subsections. This table shows that
JQRCA is quite fair, fairness index is more than 0.90 in most cases
even when acceptance rate is about 0.6. These results confirm the
intuition; since JQRCA attempts to accept every demand regardless
of its bandwidth requirement, it achieves the absolute fairness in
lightly or moderately loaded networks.

These results can be used to compute network throughput in
terms of bandwidth. Let us denote the acceptance rate, average
bandwidth requirement of accepted demands, and fairness index
by a; �b and g, respectively. The rate of admitted demands is ak
demand per minute. According to the Little’s law, the average
number of demands active in the network is akl�1. Consequently,
the network throughput is akl�1�b Mb/s. If JQRCA was absolutely
fair, g = 1, it would accept exactly the same number of demands
from each class and thus �b ¼ Bmaxþ1

2 . However, JQRCA is a bit unfair
in some cases. In these cases, �b < Bmaxþ1

2 because the acceptance
probability of the demands with small bandwidth requirements
is more than the probability of demands that need large
bandwidth. We take this observation into account through scaling
down �b by the fairness index; we approximate the network
throughput as

Approximated Throughput ¼ 0:5akl�1grðBmax þ 1ÞMb=s;
Table 10
Fairness index of JQRCA and throughput approximation normalized error.

Configuration Throughput

Topology k Bmax j ru

T-50 4 20 12 Random 347.94
T-25 4 20 12 Random 347.97
T-15 10 20 12 Random 568.81
T-50 10 20 12 Random 537.80
T-25 4 10 12 Random 220.19
T-15 4 10 12 Random 220.31
T-50 4 30 12 Random 412.12
T-25 4 30 12 Random 400.42
T-15 4 20 4 Random 211.34
T-50 4 20 4 Random 166.01
T-50 4 20 12 3 346.41
T-25 4 20 12 3 360.64
T-15 4 20 12 6 403.52
T-50 4 20 12 6 377.06

Table 11
Average case computational complexity of the JQRCA algorithm. The parameters of the sim
k = 2.

k Violations per demand

Zero Non-zero

T-15 T-25 T-50 T-15 T-25

2 0.87 1.24 1.88 0.10 0.22
4 0.57 0.88 1.38 0.68 1.15
6 0.46 0.78 1.21 1.34 1.84
8 0.43 0.71 1.189 1.84 2.41

10 0.40 0.68 1.11 2.26 2.79
where r is a parameter to control the scaling. Our simulations show
that this approximation is very accurate. In Table 10, column
‘‘Throughput’’ is the actual network throughput measured from
the simulations. The last column in this table represents the
throughput approximation normalized error. It is obtained by com-
puting the difference between the actual network throughput and
the approximated throughput and then dividing the difference by
the actual throughput. We used r = 2 in our simulations and as seen
in the table, the error is almost less than 2.5%.

8.7. Complexity and overhead

In Sections 5.4 and 6.4, we analyzed the worst case complexity
of the QDDCA and JQRCA algorithms. In this section, we provide an
insight into the average case complexity and overhead of the algo-
rithms through simulations.

The computational complexity of JQRCA is proportional to the
number of violated links, which are generated during the
search for a feasible path, and the average number of calls of
LINKCHANNELCHANGE to resolve a violated link. These statistics are pre-
sented in Table 11. In this table, column ‘‘Zero’’ refers to the vio-
lated links that are assigned to the virtual channel 0 and column
‘‘Non-Zero’’ are the remaining. When demand arrival rate is low,
e.g., k = 2, a large percentage of the violated links, e.g., 89% in T-
15 or 91% in T-50, are the links on channel 0; because in this case,
there are very few flows in the network and consequently, many
links are assigned to the virtual channel since no load is on them.
On the other hand, in high demand arrival rates, e.g., k = 10, there
are many flows in the network and a large number of links are as-
signed to a non-zero channel; therefore, a small percentage of the
violated links, e.g., 19% in T-25 or 26% in T-50, are on channel 0. Ta-
ble 11 also shows that LINKCHANNELCHANGE is called more than one
time per violated link. This is because GROUPCHANNELCHANGE gener-
ates new violations that LINKCHANNELCHANGE is called for them too.
(Mb/s) Acceptance rate Fairness index Approx. error %

0.858 0.990 2.1
0.861 0.990 2.0
0.646 0.922 1.9
0.615 0.918 1.7
0.992 0.998 1.9
0.998 0.999 2.0
0.736 0.963 2.9
0.721 0.955 2.2
0.603 0.907 2.2
0.506 0.858 5.1
0.853 0.983 1.8
0.882 0.993 1.5
0.990 0.999 1.5
0.919 0.995 1.6

ulation topologies and traffic are shown in Tables 6 and 8, respectively. Bmax = 20 and

LINKCHANNELCHANGE call per violation

T-50 T-15 T-25 T-50

0.17 1.03 1.04 1.019
1.13 1.44 1.19 1.40
1.75 1.56 1.26 1.51
2.82 1.70 1.27 1.68
3.06 1.84 1.33 1.73



Table 12
Overhead of the JQRCA algorithm. The parameters of the simulation topologies and
traffic are shown in Tables 6 and 8, respectively. Bmax = 20 and k = 2.

k Channel updates per accepted demand Path hop count

T-15 T-25 T-50 T-15 T-25 T-50

2 0.882 1.303 1.990 2.096 2.871 4.090
4 0.828 1.106 1.850 2.053 2.814 4.023
6 0.848 1.086 1.942 2.021 2.832 3.952
8 0.891 1.108 2.040 2.001 2.747 3.871

10 0.882 1.072 1.933 1.922 2.696 3.840
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However, this extra complexity is not more than one additional
LINKCHANNELCHANGE call, which is much less than what we considered
in the worst case complexity analysis, bI.

After finding a feasible path, network is updated through mes-
sages sent from the call admission control server to the nodes in
the network; the update includes the path establishment and
updating channel assignment. The messaging overhead of the for-
mer and latter updates are respectively proportional to the average
path hop count and the number of channel updates per accepted
demand, which are reported in Table 12. It is seen that the number
channel updates depends on the topology and the path hop count
is much less than n. It is important to note that the overhead
caused by the dynamic channel reassignment is not significant in
comparison to the overhead of QoS routing; in fact, in the worst
case, k = 8 in T-50, the overhead of channel reassignment is less
than 53% of the overhead of routing.

Tables 11 and 12 show that the complexity and overhead of the
JQRCA algorithm in practice are much less than the worst case pre-
sented in Sections 5.4 and 6.4; we believe the algorithm is an effi-
cient solution for real-life WMNs.
9. Conclusions and future work

We studied the problem of performance optimization of multi-
channel multi-radio WMNs in presence of traffic with QoS con-
straints, which is measured in terms of acceptance rate of traffic
demands. To boost the network performance, we proposed an
on-line joint QoS routing and channel (re)assignment algorithm
that utilizes network resources efficiently by optimal routing and
adapts them through appropriate channel reassignments. The algo-
rithm does not require any prior information about the offered
load, and aims to keep the number of channel reassignments small.
At demand arrival times, the algorithm finds a path, if it is not fea-
sible, it detects the violated links and attempts to resolve them. If
all the violations are not resolved, another path is found, and so on.
The algorithm examines up to k paths.

We approached the problem of finding an upper bound on the
maximum number of admissible demands by formulating it as a
MILP model and developing a decomposition algorithm for the
model. It is important to note that the decomposition technique
can be used for other similar problems e.g., performance bound
of dynamic QoS routing in wired networks. Comparing the JQRCA
algorithm to the bound obtained by the decomposition algorithm
shows that in spite of the fact that JQRCA is not allowed to reroute
existing flows, cannot use the flow splitting and multipath routing
mechanisms, and is restricted to change only the channels in range
2IR of flow routes, its performance is near to the bound in different
network and traffic parameter settings. It can efficiently exploit
available channels even with very few radios per node.

In this paper, we considered greedy CAC strategy, assumed per-
fect orthogonal channels, and proposed a centralized algorithm.
We plan to develop a distributed version of JQRCA and extend it
to consider non-greedy CAC mechanisms and adjacent channel
interferences in the future. Moreover, routing metrics other than
jI(u,v)j, e.g., hop-count bounded widest path, can be considered in
the future work.
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Appendix A. Proof of Propositions 1 and 2

In the DYNAMICUB2 model, let Xtj
be a set contains demand dj and

active demands at time tj, demands that ai;tj�1
¼ 1 and bi;tj

–0. Let
Ytj

# Xtj
be the set of demands that satisfy CONSSET0(tj), and let

Ztj
� Ytj

be the set of demands that leave the network before tj+1.
We prove Proposition 1 as follows.

Proof. If ai;ti
¼ 0, constraint (22) enforces that ai;tj

¼ ai;ti
¼

0 8ti 6 tj 6 ei. In the case of ai;ti
¼ 1, we prove it by induction.

Base case: If j = i + 1, then we have Xtj ¼ Yti [ dj n Ztj . For the sake
of simplicity of presentation, we assume Ztj ¼ ;, the proof is in a
similar way when Ztj –;. If there is a feasible network configuration
to accept all demands belong to Xtj , we have ai;tj

¼ 1, thus
ai;ti
¼ ai;tj

¼ 1. Otherwise, if all the demands cannot be accepted,
dj must be rejected because qj;tj

< qi;tj
8di 2 Xtj n dj. Rejecting dj is

sufficient since there is a feasible configuration for Xtj n dj ¼ Ytj ,
thus in this case, also, ai;ti

¼ ai;tj
¼ 1.

Induction step: Suppose j > i + 1. If ei > tj, demand di is an active
demand, di 2 Xtj . According to the induction assumption, we have
ai;tj�1

¼ 1. Similar to the discussion about the base case, if all
demands belong Xtj are accepted, Xtj ¼ Ytj , we have ai;tj

¼ ai;tj�1
¼

ai;ti
¼ 1; otherwise, again dj must be rejected, and it is sufficient

since there is a feasible configuration for Ytj�1 ; therefore, again we
have ai;tj

¼ ai;tj�1
¼ ai;ti

¼ 1 that completes the proof. h

The proof of Proposition 2 is as follows.

Proof. We prove it by induction which is based on the number of
demands, h.

Base case: When h = 1, D = {d1}, both DYNAMICUB1 and DYNAM-

ICUB2 models are the same and if there is a feasible path for the
demand, it is accepted, a1 ¼ a1;t1 ¼ 1, otherwise it is rejected,
a1 ¼ a1;t1 ¼ 0.

Induction step: Suppose ai ¼ ai;ti
for i = 1, . . . ,h when h = j � 1.

Increasing the number of demands to h = j has two effects:

� It adds new constraint (18) corresponds to each dj to CONSSET(ti)
and CONSSET0(ti) where i = 1, . . . , j � 1.
� It adds a new set of variables and constraints to both models,

which are denoted by CONSSET(tj) and CONSSET0(tj) in DYNAMICUB1
and DYNAMICUB2, respectively.

We make the following observations.

1. We neglect the first effect because for i = 1, . . . , j � 1, we have
bj;ti
¼ 0 and therefore, the right-hand side of (18) is 0 and the

constraint is don’t-care.
2. Adding CONSSET(tj) to DYNAMICUB1 does not affect the optimal

value of ai for i = 1, . . . , j � 1 since qi > qj.
3. Adding CONSSET0(tj) to DYNAMICUB2 does not affect the optimal

value of ai;ti
for i = 1, . . . , j � 1 since the variable does not appear

in CONSSET0(tj).

The first and second observations imply that the optimal value
of ai for i = 1, . . . , j � 1 obtained in the case of h = j is equal to the
values when h = j � 1. The first and third observation imply the
same conclusion for ai;ti

. Therefore, when h = j, we have ai ¼ ai;ti
for
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i = 1, . . . , j � 1; we only need to show aj ¼ aj;tj
to complete the proof.

It is straightforward because the optimal value of aj and aj;tj
are

determined by satisfaction of constraints CONSSET(tj) and
CONSSET0(tj), respectively. These satisfactions are influenced by the
optimal values of ai and ai;tj

for i = 1, . . . , j � 1 and we know that
ai ¼ ai;ti

¼ ai;tj
, where the last equality is due to Proposition 1.

Therefore, since ai ¼ ai;tj
and CONSSET(tj) and CONSSET0(tj) are iden-

tical set of constraints, we have aj ¼ aj;tj
that completes the

proof. h
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