Millimeter-wave Evolution for 5G Cellular Networks

Kei SAKAGUCHI†††, Gia Khanh TRAN††, Members, Hidekazu SHIMODAIRA††, Student Member, Shinobu NANBA†∗††, Member, Toshiaki SAKURAI††††, Nonmember, Koji TAKINAMI††††, Member, Isabelle SIAUD†∗, Emilio Calvanese STRINATI††, Antonio CAPONE†∗∗, Ingolf KARLS†∗∗∗, Reza AREFI†∗∗∗∗, and Thomas HAUSTEIN†∗∗∗∗, Nonmembers

SUMMARY Triggered by the explosion of mobile traffic, 5G cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, this paper studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. This paper provides comprehensive architecture of 5G cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. To prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation by using expected future traffic model and measurement based mm-wave propagation model is conducted. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

key words: Millimeter-wave, 5G cellular network, small cell, C-RAN, system rate gain

1. Introduction

Due to the popularization of smart phones and tablets in recent years, the traffic load on conventional cellular networks is predicted to be increased by 1000 times in the next 10 years [1]. To face the severe issue of system capacity shortage due to the increasing data traffic in cellular networks, standardization on heterogeneous networks (HetNet) with overlay deployment of low-power basestations (BSs) in the service area of conventional ones is being done by the 3GPP – an international standardization body of cellular networks [2]. Another significant contributor to increase capacity is spectrum extension, e.g. 3.5 GHz band, which was prepared by ITU-R in WRC-07 (World Radiocommunication Conference) [3] as a common band in the world, provides 100 MHZ bandwidth for both downlink and uplink to achieve 10 times higher data rate than the current 3GPP LTE.

With the objective of bandwidth expansion, mm-wave band is much attractive since ultrawide bandwidth is available as shown in Sect. 5.3 in this paper, e.g. up to 7 GHz of continuous spectrum is available worldwide at the 60 GHz ISM band. It is also noted that the mm-wave band provides preferable propagation characteristics of high path loss and high oxygen absorption which helps in reducing interference between neighboring connections. Besides, applying more bandwidth per communication link is a significant contributor for improved energy efficiency measured in Joules-per-transmitted-bit which contributes to the birth of green ICT networks. Additionally, monolithic integrated circuits are already available on a large scale basis with the advent of the 60 GHz extension of Wi-Fi in IEEE 802.11ad standard [4, 5]. Despite such advantages of mm-wave, current standardized mm-wave communication systems such as WiGig and 802.11ad, are not integrated into cellular networks yet. Their applications are still restricted to only performing data transfer between AV equipment or working as a bridge for internet connection across buildings.

Regarding the evolution of 4G LTE to its future generation to solve the problem of capacity shortage, some researchers and industrial experts have started to investigate the potential of mm-wave cellular networks [6, 7]. R. Heath and his research team provided initial theoretical results on the capacity and coverage of homogeneous cellular networks using only mm-wave in [8]. Theoretical study in [9] suggested the optimal precoders for multi-user mm-wave MIMO system. Mm-wave beamforming for both access and backhaul links in cellular networks was proposed in [10]. Beside theoretical works, T. Rappaport leaded his research team to conduct mm-wave propagation measurements at 28 GHz and 38 GHz [6] in both indoor and outdoor

Manuscript received June 01, 2014.
Manuscript revised March xx, 20xx.
†The author is with Osaka University, Osaka, 565-0871 Japan
††The authors are with Tokyo Institute of Technology, Tokyo, 152-8552 Japan
†††The authors are with KDDI R&D Labs., Inc., Saitama, 356-8502 Japan
††††The author is with R&D Division, AVC Networks Company, Panasonic Corporation, Kanagawa, 224-8539 Japan
†††††The author is with Device Solutions Center, R&D Division, Panasonic, Kanagawa, 224-8539 Japan
*The author is with Orange Labs, Rennes, France
**The author is with Commissariat à l’Energie Atomique, Grenoble, France
***The author is with Politecnico di Milano, Milano, Italy
****The authors are with Intel Mobile Communications GmbH, Munich, Germany
*****The author is with Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Heinrich-Hertz-Institut, Berlin, Germany
a) E-mail: sakaguchi@comm.eng.osaka-u.ac.jp
environments. The experimental results showed significant potential of introducing mm-wave into cellular networks with the coverage up to 200 m in some specific scenarios. Based on the experimental results, channel modeling for mm-wave communications was also proposed [11]. Despite these theoretical and experimental works showed high potential of the stand-alone mm-link, they lacked a systematic point of view of how to integrate mm-wave into cellular networks efficiently.

This paper presents our pioneering works [12] in evolving mm-wave into future 5G cellular networks and aims to extend the network capacity by 1000 times. We propose a novel architecture of mm-wave overlay HetNet in which mm-wave ultra-wideband BSs employing recent state-of-the-art technologies of mm-wave devices are introduced and integrated into conventional cellular networks such as LTE. As in other similar proposals [13] for 5G systems, we introduced the concept of C-RAN (Centralized RAN) [14, 15, 16] and U/C (User-plane/Control-plane) splitting [17] in our architecture [18, 19]. Since the coverage of mm-wave access is limited, cloud cooperation by the C-RAN using C-plane via legacy cellular networks is indispensable to effectively operate HetNet with mm-wave access. More precisely, this architecture enables centralized resource control, e.g. centralized cell association, efficient cell discovery and cooperative beamforming, that boosts the performance of mm-wave access employing ultra-wideband high gain direction antennas. To show the performance of 5G system with mm-wave access, this paper conducts system level simulation, which employs a future traffic model estimated from current traffic data and a mm-wave propagation model derived from measurement campaign. Numerical simulation reveals interesting results that the proposed system with mm-wave access realizes 1000 times system rate in the next 10 years, which cannot be realized by other schemes such as using 3.5 GHz access. Moreover, to show the feasibility of the proposed system, this paper also presents the latest state-of-the-art mm-wave devices.

The paper is organized as follows. Section 2 explains the necessity of introducing high frequency and small cell in future 5G cellular networks. Core technologies in millimeter-wave access for 5G cellular networks are introduced in Section 3. Prospective of system performance together with resource optimization algorithm is presented in Sect. 4. To show the feasibility of the proposed system, Sect. 5 presents current status of millimeter-wave devices and regulations. Finally, Sect. 6 concludes the paper and suggests future directions.

2. Why High Frequency and Small Cell

Let us go back to Shannon’s capacity theorem to explain why high frequency and small cell are effective to increase data rate.

### 2.1 Frequency and Data Rate

Assuming a data transmission system with its bandwidth of $B$ [Hz] and received SNR (signal-to-noise ratio) of $\gamma$, the Shannon’s capacity theorem gives achievable upper bound of data rate $C$ [bps] with error free as

$$C = B \log_2(1 + \gamma). \quad (1)$$

In this equation, the received SNR $\gamma$ is the ratio between the received signal’s power $P_r$ [W] and the receiver noise $P_n$ [W], and is given as follows

$$\gamma = \frac{P_r}{P_n} = \frac{P_t}{BN_0}, \quad (2)$$

where $N_0$ [W/Hz] is the power spectral density of the noise.

In the case of radio communication systems, the bandwidth is a function of its center frequency $f_0$ [Hz] i.e. $B = \alpha f_0$ due to radio regulations and limitation of RF (radio frequency) circuits, where $\alpha$ is called fractional bandwidth and its typical value is $\alpha = 1\%$ in recent radio systems. In wireless communication systems, coverage of the system is defined or controlled by a minimum required SNR $\gamma_0$. To keep $\gamma_0$ constant, the corresponding received power $P_{o0}$ should be a function of $f_0$ as follows,

$$P_{o0} = \gamma_0 \alpha f_0 N_0. \quad (3)$$

If the condition on $\gamma_0$ is satisfied at the coverage edge, Equation (1) indicates that the achievable data rate $C$ is a linear function of the center frequency $f_0$. Therefore the higher the frequency is the higher data rate can be realized.

Figure 1 shows current frequency spectrum allocation in Japan [20]. Since it is drawn in logarithmic scale, it is obvious that the available bandwidth is wider in higher frequency. This paper prefers to utilize these higher frequencies to boost the system capacity of cellular networks.
2.2 Frequency and Coverage

Next, let us discuss about coverage of radio systems in terms of frequency. Based on the basic Friis equation, the received power of the system in a free space can be modeled by using \( f_0 \) as

\[
P_t = \left( \frac{c}{4\pi df_0} \right)^2 G_t G_r P_t,
\]

(4)

where \( P_t [W] \) is the transmit power, \( G_t \) and \( G_r \) are gains of the transmit and receive antennas respectively, \( d [m] \) is the distance between the transmitter and the receiver, and \( c \) [m/s] is the speed of light. The coverage \( d_o \) can be defined as the distance which realizes the minimum SNR \( \gamma_0 \). By substituting Eq. (3) into Eq. (4), the coverage of the system is calculated as follows

\[
d_o = \frac{c^2}{\gamma_0 \alpha N_0 (4\pi)^2} G_t G_r P_t \frac{1}{f_0^3} = \chi \frac{1}{f_0^3}
\]

(5)

where \( \chi \) is a constant related to the minimum SNR.

This equation implies that in free space or in a propagation environment with pathloss exponent \( \beta = 2 \) like mm-wave band, the coverage becomes

\[
d_o = \chi_0 \frac{1}{\beta}
\]

(6)

and in a general case with the parameter \( \beta \) it becomes

\[
d_o = \chi_0 \frac{1}{\beta}
\]

(7)

For example with \( \beta = 3 \) as in typical urban environment, the coverage is inversely proportional to the frequency. So that there is a tradeoff between data rate and coverage with respect to the frequency. The data rate is proportional to the frequency while the coverage is inversely proportional.

In the case of mm-wave, for a fixed antenna aperture, higher antenna gain can be achieved at higher frequency. For example, if a linear array antenna is employed at the transmitter, the gain of the transmit antenna becomes a function of \( f_0 \) as well,

\[
G_t = \delta_0 \chi_0
\]

(8)

where \( \delta^\chi \) is a constant value. By substituting Eq. (8) into Eq. (5), the coverage becomes inversely proportional to the frequency in this case as well. Therefore, the equation of \( d_o = \chi_0 / f_0^3 \) is general for both current microwave band, and future mm-wave band employing beamforming antennas.

### Table 1: Examples of multi-band HetNet.

<table>
<thead>
<tr>
<th>BS Type</th>
<th>Center Frequency</th>
<th>Bandwidth</th>
<th>Tx Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro BS</td>
<td>10 GHz</td>
<td>10 MHz</td>
<td>46 dBm</td>
</tr>
<tr>
<td>Smallcell BS  (3.5 GHz)</td>
<td>3.5 GHz</td>
<td>100 MHz</td>
<td>30 dBm</td>
</tr>
<tr>
<td>Smallcell BS  (60 GHz)</td>
<td>60 GHz</td>
<td>2.16 GHz</td>
<td>10 dBm</td>
</tr>
</tbody>
</table>

The number of users \( N_{UE} \), the user data rate \( C_{UE} \) [bps/user] is calculated as follows assuming orthogonal multiple access.

\[
C_{UE} = \frac{B \log_2(1+\gamma)}{N_{UE}}
\]

(9)

The number of users \( N_{UE} \) can be calculated using \( d_o \) as follows,

\[
N_{UE} = \pi d_o^2 \eta,
\]

(10)

where \( \eta \) [user/m²] is the user density. Finally, substituting \( B = \alpha f_0 \) and \( d_o = \chi / f_0 \) into Eq. (9) and Eq. (10), we achieve

\[
C_{UE} = \frac{\alpha \log_2(1+\gamma)}{\pi \eta \chi^2} f_0^3 = \mathcal{O}(f_0^3)
\]

(11)

This equation leads us to the era of high frequency and small cell. For example, this equation indicates that 10 times frequency achieves 1000 times system rate. It is also noted that the density of small coverage BSs should be increased with the order of \( \mathcal{O}(f_0^3) \) to achieve system rate gain with the same order of Eq. (11).

Summarizing these discussions, the following proposition can be stated. In 5G cellular systems, 1000 times system rate is achieved by at least 10 times bandwidth and 100 times small coverage BSs.

### 3. Millimeter-wave Access for 5G Cellular Networks

Based on the discussions in the previous section, we will develop a system with high frequency and small cell for future 5G cellular networks.

#### 3.1 Multi-band HetNet

HetNet, which is a new type of cellular network topology constructed by mixture of the conventional large coverage macro BS and low power with small coverage BSs (smallcell BSs) was proposed to offload user traffic to small cells. Not only the user rates at the vicinity of smallcell BSs are increased, but also the overall system rate can be improved by decreasing the traffic load on the macro BS by offloading.
In the conventional single-band HetNet standardized in 3GPP Release 10 [2], the same band is used both for the macro BS and smallcell BSs. Therefore, the single-band HetNet requires macro-smallcell interference mitigation techniques such as ABS (almost blank subframe) in 3GPP standard. However, since the available bandwidth is split in time or frequency domain in interference control schemes, channelization loss occurs in the conventional HetNet.

In recent standard of 3GPP Release 12 [21], multi-band HetNet is studied where macro and smallcell BSs use different frequency bands. Therefore, macro-smallcell interference control schemes are not needed any more; however, development of new user equipment (UE) with dual connectivity for two different bands is needed. 3.5 GHz band, which is legislated by ITU-R, has high potential to be used for smallcell BSs with an available bandwidth of 100 MHz. Moreover in the future 5G systems, much higher frequency such as 60 GHz band should be included for access link. Table 1 lists up examples of multi-band HetNet. In this example, 2 GHz band is used for macro BS, while 3.5 GHz or/and 60 GHz bands are considered for smallcell BSs. 3.5 GHz band can offer a 10 times bandwidth compared to the current system, while 60 GHz band offers more than 100 times bandwidth, which is definitely attractive for the future 5G systems.

However, there are several drawbacks in the multi-band HetNet, since the coverage of small cells are not continuous and scattered in the macro cell and are operated at different frequency band from macro BS. From UE point of view, the UEs are required to support dual connectivity to realize multi-band HetNet. The first problem is power consumption of UE to find smallcell BS by running cell search all the time when the UE is connected to the macro BS. The second problem, from network perspective, is handover failure. Since coverage of small cell is limited, it is not effective to perform regular handover process as in the conventional scenario of e.g. two macro BSs. The third problem, from BS point of view especially in the case of 60 GHz smallcell BSs, is the mismatch between the coverage of small cells and location of UEs. Since the number of UEs in the coverage of small cell is relatively small compared to the conventional macro cell, dynamic cell structuring technology is necessary to operate multi-band HetNet effectively.

3.2 Proposed Architecture for 5G Cellular Networks

Figure 2 shows our proposed architecture for 5G cellular networks. In this architecture, not only the 3.5 GHz smallcell BSs but also 60 GHz mm-wave smallcell BSs are introduced and overlaid in the conventional macro cell to form a multi-band HetNet. To overcome the issues presented in Sect. 3.1, the concept of cloud cooperation is introduced. In the cloud cooperated HetNet, all smallcell BSs as well as macro BS are connected to C-RAN. If all macro and smallcell BSs are employing 3GPP LTE standard, it is easy to develop such kind of architecture by introducing RRHs (remote radio heads) for smallcell BSs and connecting them with C-RAN with CPRI (common public radio interface) [22]. On the other hand, if we employ WiGig standard for mm-wave smallcell BSs, there is no off-the-shelf interface between C-RAN and smallcell BSs. However, we believe that such kind of interface can be developed by extending existing protocols such as CAPWAP (the control and provisioning of wireless access point) [23] in the framework of 3GPP/Wi-Fi interworking. In this paper, we call this future interface including legacy CPRI and recent ETSI ORI (open radio equipment interface) standard [24] as enhanced CPRI. This kind of architecture is suitable for introducing even a large number of smallcell BSs into the macro cell as will be shown in Sect. 4, since C-RAN controls all smallcell BSs and UEs based on the measurement and report given from the macro BS. It is noted that the network topology is not necessarily star type but cluster tree type is also possible where the number of fronthaul links connected to C-RAN is reduced. Moreover, wireless fronthaul between C-RAN and smallcell BSs is almost ready at mm-wave band [25] that will reduce the cost of deployment of a large number of smallcell BSs.

Based on the C-RAN architecture, a concept of U/C splitting is introduced where macro BS manages C-plane of all users while U-plane can be connected to smallcell BSs opportunistically. This is heterogeneity on role where macro BS works on C-plane to guarantee connectivity while smallcell BS works on U-plane to provide high data rate. This strategy enables the macro BS to manage mobility and traffic of all users in the HetNet in a centralized manner. So that the macro BS can assist UEs for cell discovery, which is partially supported in current ANDSF (access network discovery and selection function) [26], and also assist seamless handover via C-RAN. As in the other proposals for 5G systems, the technology of U/C splitting is inevitable for operating multi-band HetNet. Especially in the case with mm-wave smallcell BSs, this technology is mandatory since the coverage of mm-wave cell is extremely limited.

The C-RAN architecture and mobility/traffic management using C-plane via macro BS enable centralized resource control such as cell association to maximize system
rate as explained in Sect. 4. Moreover, since the mobility information is available in C-RAN, dynamic cell structuring or virtual cell can be realized which is important to overcome the problem of limited coverage especially in the case of mm-wave smallcell BSs. In the dynamic cell structuring, cell structure of small cells are dynamically controlled to track high traffic users or hotspots by means of beamforming antenna and power control via C-RAN. Generally, beamforming technology is effective to compensate for distance dependent pathloss while it also creates hidden terminal problem that is not preferable for C-plane. On the other hand, since the C-plane is managed by macro BS in this architecture, the hidden terminal problem does not occur and dynamic cell structuring using beamforming technology can work effectively. Such dynamic cell structuring including the concept of smallcell BS dormancy (switch on/off) will also contribute to save power consumption if the high traffic user moves away from the vicinity of smallcell BSs. Moreover, cooperative transmission among multiple smallcell BSs can also be performed since all the smallcell BSs are connected with C-RAN. For example, cooperative scheduling/beamforming is very effective to combat shadowing problem typically occurred in mm-wave band. Furthermore, the cooperative transmission by a large number of smallcell BSs with beamforming is very effective to support hotspot users located in-between the smallcell BSs [27]. This kind of dynamic cell structuring is considered to transfer the wasted radio resources in sparse areas to congestion area via cooperative beamforming of smallcell BSs.

4. Performance Perspective

In this section, the performance of the proposed 5G cellular network with mm-wave access is evaluated via system level simulation. To predict the future trend, a new traffic model is created by using actual traffic data measured in a dense urban area in Japan, and future traffic is predicted based on the recent growth rate of mobile traffic. Moreover, as a first step of the centralized resource management by C-RAN, a new cell association scheme [28] proposed by the authors is also introduced for multi-band HetNet. Finally, the system rate gain are calculated and compared for two types of multi-band HetNet with 3.5 GHz and 60 GHz smallcell.

4.1 Traffic Model

In order to evaluate the system rate gain accurately, the model of traffic demand reflecting actual environment should be introduced. We employ Gamma distribution with certain bias to describe the instantaneous user traffic demand of the actual traffic data in a dense urban area. The Gamma distribution is defined as:

$$f(x) = x^{k-1} \frac{\exp(-x/\theta)}{\Gamma(k)\theta^k}$$

(12)

where $k$ is a shape parameter, $\theta$ is a scale parameter, and $\Gamma(\cdot)$ is a Gamma function. Based on the actual traffic data, the average packet generation interval is 8 seconds and CDF of packet size has long-tail characteristic. By dividing the packet size with average packet generation interval and fitting it with Gamma distribution, we obtain the distribution of the instantaneous traffic demand. Figure 3 shows the CDF of the measured and fitted distributions and Table 2 shows the derived shape parameter, scale parameter, and the traffic bias describing the minimum traffic load of the environment. By assuming that shape parameter will not change in the future, average traffic value can be changed by controlling the scale parameter. In this paper, we assume that the mobile traffic load grows about twice every year and three scenarios are evaluated at present, 5 years later (40 times higher traffic), and 10 years later (1000 times higher traffic).

4.2 Radio Resource Control

In this study, a new cell association algorithm specialized for multi-band HetNet is introduced. In order to maximize the system performance, system rate which expresses the total capacity of the system is introduced. The system rate is defined as:

$$R = \sum_{u \in M} \min \left( \frac{W_u C_{u,M}^e}{|M|}, L_u \right) + \sum_{s=1}^{N} \sum_{u \in s} \min \left( \frac{W_s C_{s,u}^e}{|s|}, L_u \right)$$

(13)

where $W_u$ [Hz] and $W_s$ [Hz] are the available bandwidth for macro and small cell respectively. $C_{u,M}^e$...
\[ R \approx \sum_{i=1}^{N_s} \sum_{u \in M} \min \left( \frac{W_{M, C_{u,M}}}{N_s |M_s|}, L_u \right) + \sum_{i=1}^{N_s} \sum_{u \in u} \min \left( \frac{W_{C_{u,s}}}{|u|}, L_u \right) \\
= \sum_{i=1}^{N_s} \sum_{u \in M} \min \left( \frac{W_{M, C_{u,M}}}{N_s |M_s|}, L_u \right) + \sum_{u \in u} \min \left( \frac{W_{C_{u,s}}}{|u|}, L_u \right) \\
= \sum_{i=1}^{N_s} R_i 
\] (15)

This sub-problem \( R_i \) is maximized by combinatorial optimization.

3) Beamforming: In the case of mm-wave bands, beamforming technique is introduced in smallcell BSs to compensate distance dependent pathloss. This study assumes that vertical tilt angle can be controlled from 0 deg to 180 deg and horizontal tilt angle in steps of 15 deg for beamforming antennas. The beamforming is performed after the index allocation, where the link spectral efficiency is calculated without beamforming because there is no significant difference of the partitioned area between with and without beamforming in the case of the employed beam pattern. This study assumes that all smallcell BSs know the locations of UE within the partitioned area perfectly, so that the BS is able to tune the beam direction towards the scheduled UE.

4) Combinatorial Optimization: The important thing in cell association problem in multi-band HetNet is which should be accommodated in the small cell? To maximize \( R_i \). Combinatorial optimization can answer this problem. There are several papers applying combinatorial optimization for cell association. However, these papers only consider homogeneous network [29, 30] or cannot obtain a strict solution for optimal user combination since problem relaxation is applied [31, 32, 33, 34]. On the other hand, our method can be applied to multi-band HetNet and also provides strict user combinations. By introducing a binary association index \( x_u = \{0,1\} \) and fixing the number of macro users temporally as \( |M_i| = k \sum_{u=1}^{U} x_u \), where \( U \) is the total number of users within the partitioned area, the sub-problem \( R_i \) can be formulated into combinatorial optimization problem as follows.

1) Macro and small cell index allocation
2) Problem partition
3) Beamforming (only for mm-wave case)
4) Combinatorial optimization

1) Macro and Small Cell Index Allocation: First, macro and small cell index are allocated to all UEs. These indices indicate the best macro BS and best smallcell BS which can provide larger link spectral efficiency than any other BSs of the same kind. This allocation can partition one macro cell area into many small cell areas overlapping with the macro area. These indices are determined based on the link spectral efficiency as follows.

\[ i_{u,m} = \arg \max_m C_{u,m} \]
\[ i_{u,s} = \arg \max_s C_{u,s} \] (14)

2) Problem partition: Based on the macro cell area partitioning, the objective function of Eq. (13) can be partitioned into sub-problems corresponding to all small cell areas. This paper assumes that there is no congestion area (hotspot) in terms of both user distribution and traffic as a worst case analysis for HetNet, and smallcell BSs are assumed to be distributed uniform randomly. Therefore \( |M| \) can be approximated as \( |M| \approx N_s |M_s| \) where \( |M_s| \) is the number of macro users within the area of \( s \)-th small cell. By using this approximation, Eq. (13) can be separated as
\begin{equation}
R_k = \sum_{u=1}^{U} \min \left( \frac{W_{i,M}C_{i,M}}{N_k k}, \frac{x_s}{1 - x_s} \right) + \sum_{u=1}^{U} \min \left( \frac{W_{i,k}C_{i,k}}{U - k}, \frac{x_s}{1 - x_s} \right) \geq \sum_{u=1}^{U} \min \left( \frac{W_{i,M}C_{i,M}}{N_k k}, x_s \right) + \sum_{u=1}^{U} \min \left( \frac{W_{i,k}C_{i,k}}{U - k}, x_s \right) + \sum_{u=1}^{U} \min \left( \frac{W_{i,M}C_{i,M}}{U - k}, x_s \right) + \sum_{u=1}^{U} \min \left( \frac{W_{i,k}C_{i,k}}{U - k}, x_s \right) \geq f_k^T x_k + A_k
\end{equation}

where $f_k, x_k$ are vectors whose elements are the objective function value and association index respectively, $A_k$ is a constant value, and $f^T$ denotes the transpose operation. Since the number of macro users is fixed, there is an implicit constraint

\begin{equation}
1^T x_k = k
\end{equation}

where $1$ is the vector that all elements are one. Therefore the optimization problem is formulated as follows

\begin{equation}
\begin{aligned}
& \text{maximize } f_k^T x_k \\
& \text{subject to } 1^T x_k = k
\end{aligned}
\end{equation}

This solution is for $k$ user case therefore the optimum solution should be found among $k = 0$ to $U$.

\begin{equation}
x^* = \arg \max_{x, u=0,1, \ldots, U} f_k^T x_k
\end{equation}

4.3 Performance Evaluation

By using the traffic model in Sect. 4.1 and the cell association scheme in Sect. 4.2, the performance of multiband HetNet with mm-wave access is evaluated via system level simulation. The evaluation metric is system rate gain which is defined as the gain of system rate compared with the homogeneous network, so that the goal of the analysis is to achieve the system rate gain of 1000 by introducing smallcell BSs. As for the propagation model, standard 3GPP model [35] is employed for macro and 3.5 GHz small cell links, while measurement based model [36] is employed for mm-wave small cell link. The performance is evaluated by changing the average traffic demands of 64 kbps, 2.6 Mbps, and 64 Mbps those are corresponding to present, 5 years, and 10 years from present respectively. The remaining simulation parameters are listed in Table 3.

Numerical results of the system rate gain are shown in Fig. 4 where the horizontal axis shows the number of deployed smallcell BSs and the vertical axis shows the system rate gain. The blue lines show the results with 3.5 GHz small cell BSs while red lines show those with mm-wave. Two different cell association schemes of the combinational optimization and the SINR based algorithm are shown by solid and dashed lines respectively.

First of all, the superiority of the novel cell association scheme with the combinational optimization is clear in all cases, where it can provide twice higher gain in all cases. These results show that proposed cell association method can achieve higher system rate gain in all the cases. As a next step, we will compare the performance of 3.5 GHz and 60 GHz. In the present traffic load, there is no significant difference in the system rate gain between two different bands, and about 4 times higher system rate is obtained by introducing HetNets. In the case of 5 years from now, HetNet with 60 GHz small cells achieves higher gain than 3.5 GHz because of the higher average traffic demand, in which the system rate gain reaches 100x. In 10 years later, the traffic is very busy, the performance of smallcell BSs is much higher. The system rate gain will reach 2000x in the case of 60 GHz smallcell BSs and 400x for the case of 3.5 GHz smallcell BSs respectively. These results show the feasibility of introducing mm-wave bands to 5G system to

<table>
<thead>
<tr>
<th>Table 3 Simulation parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Bandwidth</td>
</tr>
<tr>
<td>Number of macro cells</td>
</tr>
<tr>
<td>Number of small cells (per 1 macro cell)</td>
</tr>
<tr>
<td>Number of UEs (per 1 macro)</td>
</tr>
<tr>
<td>Macro ISD</td>
</tr>
<tr>
<td>Antenna beam pattern (Macro / 3.5 GHz / 60 GHz)</td>
</tr>
<tr>
<td>Antenna gain (Macro / 3.5 GHz / 60 GHz)</td>
</tr>
<tr>
<td>BS antenna height (Macro / 3.5 GHz / 60 GHz)</td>
</tr>
<tr>
<td>UE antenna height</td>
</tr>
<tr>
<td>Tx power (Macro / 3.5 GHz / 60 GHz)</td>
</tr>
<tr>
<td>Pathloss model (Macro / 3.5 GHz / 60 GHz)</td>
</tr>
<tr>
<td>Noise power density</td>
</tr>
<tr>
<td>Average traffic demand</td>
</tr>
</tbody>
</table>
increase the system rate by more than 1000 times.

5. Millimeter-wave Devices & Regulations

The new network architecture for 5G cellular networks with mm-wave access was proposed in Sect. 3 and Sect. 4 gave its feasibility via system level simulation by using expected future traffic demands. This section also studies about the feasibility of mm-wave access by giving the status of latest devices for mm-wave communications and mm-wave regulations.

5.1 Millimeter-wave Device for Low Power Consumption

This sub-section presents a state-of-the-art low power CMOS transceiver based on the WiGig/IEEE 802.11ad standard. Even though recent works have realized 60 GHz transceivers in a cost-effective CMOS process [37] [38] [39], achieving low power consumption as well as small form factor remains a difficult challenge. By employing sophisticated built-in self-calibrations, the developed chipset achieves MAC throughput of 1.8 Gbps while dissipating less than 1 W total power.

Figure 5 shows the block diagram of the transceiver [40]. The RFIC employs direct conversion architecture, supporting all four channels allocated at 60 GHz. The BBIC includes PHY and MAC layers as well as high speed interfaces. The chipset is developed for single-carrier (SC) modulation, which is suitable for reduced power consumption as compared to OFDM modulation. To overcome performance degradations due to in-band amplitude variations, which are primarily a result of gain variations of analog circuits and multipath delay spread, the chipset employs built-in Tx in-band calibration and an Rx frequency domain equalizer (FDE) [40]. These techniques relax the requirement of the gain flatness and process variations for high speed analog circuits, leading to less power consumption with minimum hardware overhead.

Figure 6 shows the photograph of an RF module and a system board. The RF module employs a cavity structure with the RFIC mounted by flip chip technology. Each Tx/Rx antenna consists of four patch elements, providing 6.5 dBi gain with 50 degree beam width. The RFIC and the BBIC are fabricated in 90 nm CMOS and 40 nm CMOS respectively.

In the Tx mode, the chipset consumes 347 mW in the RFIC and 441 mW in the BBIC with the output power of +8.5 dBm EIRP. In the Rx mode, it consumes 274 mW in the RFIC and 710 mW in the BBIC with 7.1 dB noise figure. Figures 7 shows the measured MAC throughput from one station to the other using different modulation and coding schemes (MCS). The chipset achieves 1.8 Gbps up to 40 cm and 1.5 Gbps up to 1 m.

For small cell or backhaul usage, longer communication distance will be required. This is achieved
by either increasing the output power or antenna gain. For instance, link margin can be increased by using $N_{TX}$ or $N_{RX}$ elements in a phased-array configuration, which can be installed in base stations where size and power constraints are less critical. Ignoring second order effects such as feeding loss from the RFIC to antenna elements, the link budget is increased by

$$10\log 10(N_{TX}^2 \cdot N_{RX})$$

(19)

due to the phased-array gain and the transmitted power increase. As a numerical example, $N_{TX}=32$ and $N_{RX}=4$ give 36.1 dB, which translate to 65 times improvement in the communication distance.

5.2 Millimeter-wave Device for High Gain Beamforming

Latest advances in the millimeter wave antenna and packaging technology [41] allow creating the phased antenna arrays but with limited number of elements, due to large losses in the feeding lines. Next evolution in mm-wave technology is modular antenna arrays (MAA) [42] [43], comprised of large number of sub-array modules. Each module has built-in sub-array phase control and coarse beam steering capability. MAA's flexible and scalable architecture accomplishes a wide range of antenna gain and apertures challenging today’s regulatory EIRP limits. For example, Fig. 8 left shows one module which may be used for constructing the MAA by any configuration or, as a single phased antenna array, for an UE. The 8-module MAA architecture (each sub-array module is an 8x2=16 elements, vertical x horizontal) and its 2D antenna pattern are shown in Fig. 8 right and Fig. 9 respectively.

Capable of realizing massive MIMO in baseband with independently phase-controlled antenna elements (totally 8x32=128) such MAA is going to increase range up to 400 m for LOS backhaul and mm-wave-capable small cell (MCSC) access range up to 100 m.

First downlink access link (BS 8-module MAA with 19 dBm Tx power, 24 dBi antenna gain, single carrier, $\pi$/2-16 QAM modulation, $1/2$ coding rate, and UE with Rx quasi-omni antenna with 5 dBi gain) budget estimates show that a small cell edge throughput of about 3 Gbps for ISD (inter-site distance) 100 m. First uplink access link (BS 32-module MAA with 30 dB antenna gain and UE with 10 dBm Tx power, quasi-omni antenna with 5 dBi gain, single carrier, $\pi$/2-64 QAM modulation, $1/2$ coding rate) budget estimates show that a small cell edge throughput of about 3 Gbps for ISD 100 m. First backhaul link (BS 8-module MAA with 19 dBm Tx power, 24 dBi antenna gain, single carrier, $\pi$/2-64 QAM modulation, $1/2$ coding rate at both sides) budget estimates show a highest data rate of 6.5 Gbps at 150 m range.

5.3 Millimeter-wave Regulations

In ITU-R Radio Regulations table of frequency allocations, the so-called 60 GHz band is allocated to a variety of services including Fixed, Mobile, Space Research, and Earth Exploration Satellite (passive) on co-primary basis. The co-primary Mobile allocation spans the entire 57 to 66 GHz range. While not every allocated service is in use around the world, several countries have already included in their regulations provisions for unlicensed use of all or part of 57 to 66 GHz frequency range for multi-gigabit wireless access systems, primarily those adhering to IEEE 802.11ad, or WiGig, standard. Figure 10 summarizes some of the existing regulations in key markets around the globe for 60 GHz band, followed by more detailed information about the United States and CEPT. References [44, 45, 46, 47, 48, 49, 50, 51, 52] contain detailed information on regulations some of which are reflected in Fig. 10.

In United States, the 60 GHz band is allocated on a co-primary basis to the Federal Mobile, Fixed, Inter-Satellite and Radiolocation services and to non-Federal Fixed, Mobile and Radiolocation services. Recently, the FCC modified its rules to allow operation at higher power levels by 60 GHz unlicensed devices that operate outdoors. Specifically, the FCC increased the average/peak EIRP limit to 82/85 dBm minus 2 dB for every dB that the antenna gain is below 51 dB. With the new rules, it is possible to use large antenna arrays and extend the reach of 60 GHz signals to levels that would sustain a reasonable link budget in distances appropriate for various types of applications including backhaul.

In CEPT, there are several European-wide documents that govern usage of the 60 GHz band for indoor and outdoor applications, including:

- ETSI EN 302 567: “60 GHz Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE directive”
ERC Recommendation 70-03, “Relating to use of Short Range Devices”

ECC Recommendation (09)01: “Use of the 57 - 64 GHz frequency band for point-to-point fixed wireless systems”

By summarizing above discussions, the 60 GHz band has potential to be used both for access with beamforming antenna and backhaul world widely. However, to use such a kind of high frequency band for cellular networks with harmonized manner, it is better to standardize such bands, e.g. above 6 GHz, as IMT (international mobile telecommunication) band in ITU-R.

6. Conclusion

This paper proposes mm-wave evolution for 5G cellular networks to solve the problem of explosion in mobile traffic by introducing mm-wave small cells over the current cellular systems. The overall architecture of 5G cellular networks with mm-wave access is provided, where newly introduced mm-wave smallcell BSs and a conventional macro BS are connected to C-RAN with enhanced CPRI to effectively operate the system via U/C splitting. The system level simulation of the proposed network by using expected future traffic model and measurement based mm-wave propagation model proved the effectiveness of mm-wave access to improve system rate 1000 times higher than the conventional cellular networks in 10 years. It is also found that the performance with mm-wave 60 GHz band is higher than the commonly considered 3.5 GHz band that motivates the engineers to integrate the mm-wave access into future cellular networks. This paper also provides latest mm-wave devices and regulations to prove the feasibility of mm-wave band for the 5G cellular networks.

However, there are several remaining problems of mm-wave to be solved for 5G cellular networks. First of all, the standardization in ITU-R to include higher frequency such as above 6 GHz as IMT bands is needed to spread the mm-wave band in cellular networks world widely. The second is waveform in mm-wave band. By extending the current situation, there are two options. The one is develop interface between 3GPP and Wi-Fi to utilize the current standard of WiGig, and the other is to use LTE waveform in the mm-wave band as unlicensed manner. We need to study about the pros and cons of these options and to make consensus. The third problem is CAPEX/OPEX (capital expeditor/operating expeditor) to introduce such high density small cells. We may need extra new concept such as virtual operator to reduce the cost by sharing the smallcell BSs to make the 5G cellular networks sustainable.

Acknowledgments

This research has been done as a project named “Millimeter-Wave Evolution for Backhaul and Access (MiWEBA)” under international cooperation program of ICT-2013 EU-Japan supported by FP7 in EU and MIC in Japan.

References


[26] 3GPP TS 24.312 V12.4.0, Access Network Discovery and Selection Function (ANDSF) Management Object (MO).
[45] ETSI EN 302 567, 60 GHz; Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE directive.
[46] ECC Recommendation (09/01). Use of the 57 - 64 GHz frequency band for point-to-point fixed wireless systems.
[51] Chinese Ministry of Industry and Information Technology (MIIT), Notification on issues of micro power (short range) radio technology applications in 60 GHz spectrum, Radio Administration Article, 2006.
[53] IEEE doc. 802.11-09/0334r8, Channel Models for 60 GHz; WLAN Systems.
Gia Khanh Tran  biography

Hidekazu Shimodaira  biography

Shinobu Nanba  biography

Toshiaki Sakurai  biography

Koji Takinami  biography

Isabelle Siaud  biography

Emilio Calvanese Strinati  biography

Antonio Capone  biography

Ingolf Karls  biography

Reza Arefi  biography

Thomas Haustein  biography