Politecnico di Milano
Facoltà di Ingegneria dell’Informazione

WI-4 – Multiple Access

Wireless Internet
Prof. Antonio Capone
Packet access

- At logical layer multiple access can be managed in a dynamic and distributed way using multiple access protocols
- First multiple access protocols have been designed for LANs
- Nowadays multiple access protocols are mainly used in wireless networks (no more shared medium wired LANs)
Packet access: Classification

- **Scheduled access**
 - Transmissions on the channel are sequential with no conflicts
 - Polling schemes
 - Centralized scheduling schemes

- **Random access**
 - Transmission are partially uncoordinated and can overlap (collision)
 - Conflicts are resolved using distributed procedures based on random retransmission delay
Packet access: Local and global queues

- In the case of multiplexing (single station) we have a single queue that is managed according to a scheduling algorithm.
- In case of multiple access with M stations with local queues we still have the opportunity to use a single “virtual” queue at a central decision point that schedule access to the channel.
Packet access: Local and global queues

- However, to inform the scheduler of the status of the local queues and provide access grants we have to use the channel (coordination signaling)
- The centralized scheduling approach is quite flexible but complex
- It is adopted in several wireless technologies like e.g. WiMax
Assumptions and notation

- In the following we drop the assumption of global coordination and analyze distributed mechanisms.
- Let us assume that arrival times in the M local queues are described by a Poisson process with rate λ/M (λ global rate).
- The system status is described by vector $\mathbf{n} = (n_1, n_2, \ldots, n_M)$.
- Where n_i is the number of packets in queue i.
- The system evolution is described by the process $N(t)$.
Polling

- Polling schemes are scheduled access schemes where stations access the channel according to a cyclic order.
- The polling message, or *token*, is the grant for access the channel.
- The token can be distributed by a central station (roll-call polling) or passed from station to station (hub polling or token system).
- Let us assume that packet transmission time is T and that token passing time is h, both constant.
- Polling schemes differentiate based on the service policy (exhaustive, gated, limited).
Exhaustive Polling

- With exhaustive polling, stations when receive the token transmit all packets in the queue before releasing it
- Let us analyze the behavior of this system
- The probability that the channel is transmitting a packet at a random time t is given by

$$\rho = \lambda T$$
The average waiting time $E[W]$ in the queue can be calculated considering three components:

$$E[W] = W_1 + W_2 + W_3$$
Exhaustive Polling

\[W_1 = E[N_c]T \]

- E\[N_c\] is the average number of packets transmitted before considered packet
- Using Little’s result is can be expressed as:

\[E[N_c] = \lambda E[W] \]

Therefore:

\[W_1 = \lambda TE[W] = \rho E[W] \]
Exhaustive Polling

\[W_2 = \rho \frac{T}{2} + (1 - \rho) \frac{h}{2} \]

\[W_3 = \frac{M - 1}{2} h \]

□ The total average waiting time is given by:

\[E[W] = \rho E[W] + \rho \frac{T}{2} + (1 - \rho) \frac{h}{2} + \frac{(M - 1)}{2} h \]
Exhaustive Polling

- Solving by $E[W]$ we get:

$$E[W] = \frac{\rho}{2(1-\rho)} T + \frac{M - \rho}{2(1-\rho)} h$$

- Waiting time of a single queue (M/D/1)
- Additional waiting time due to token passing time

- Note that:

$$\rho_{\text{max}} = 1$$
Exhaustive Polling

- The average token cycle time is given by the transmission time of all packets that arrive during a cycle plus the token passing time

\[
E[C] = \lambda E[C]T + Mh
\]

\[
E[C] = \frac{Mh}{1 - \rho}
\]
Gated Polling

- With gated polling, stations when receive the token can transmit all packets that are in queue at the time when the token arrives.
- The expression of the average waiting time is similar to previous case with an additional term.
- This is the additional cycle the packet has to wait when it arrives when the token is already at the station.

\[W_4 = \frac{\rho}{M} Mh = h\rho \]
Gated Polling

Therefore we get:

\[E[W] = \frac{\rho}{2(1-\rho)} T + \frac{M + \rho}{2(1-\rho)} h \]

Again \(\rho_{\text{max}} = 1 \)
With limited polling, stations when receive the token can transmit only up to k packets.

The special case of $k=1$ is called Round-Robin.

Here we have one more additional term which are the additional cycles the packet has to wait, one per each packet in the queue at the arrival moment.

$$W_5 = \frac{E[N_c]}{M} Mh = \lambda E[W]h$$
Limited Polling

Therefore we get:

\[E[W] = \frac{\rho}{2(1 - \rho \frac{h+T}{T})} T + \frac{M + \rho}{2(1 - \rho \frac{h+T}{T})} h \]

Now we have:

\[\rho_{\text{max}} = \frac{T}{T + h} \]
Polling in real networks

- There are several examples where polling is used for regulating access to a channel in wireless technologies:
 - WiFi (Point Coordination Function – PCF or HCF – Hybrid Coordination Function)
 - Bluetooth

- The main difference with simple schemes we considered so far is that the station sequence can be dynamically changed.
Polling in Bluetooth

- Master
- Slave 1
- Slave 2
- Slave 3

- SCO (Synchronous Connection Oriented)
- ACL (Asynchronous ConnectionLess)
Polling in Bluetooth

- Some key characteristics of Bluetooth multiple access mechanism make the direct application of previously derived formulas not possible:
 - Queues are not visited in a sequential order (master queue is always visited in odd slots)
 - Token passing time is always one slot, but the slot is used for data transmission if the queue is not empty
 - Exhaustive service makes no sense for Bluetooth since after each packet transmission by the master/slave at least a slot is used by the slave/master
 - Bluetooth makes use of packets with different lengths (1, 3, or 5 slots)

- We derive expressions for the waiting time in two special cases
Polling in Bluetooth

Let us assume the master has one separate queue per slave and all queues are visited according to a fixed sequence.

Arrival in the queues are independent Poisson processes.

- m: number of BT devices
- $m-1$: slaves
- $M = 2(m-1)$: total queues
- γ: arrival rate in each queue
- λ: total arrival rate
- T: slot duration
Polling in Bluetooth

Case 1)
- 1-limited service (round-robin)
- 1-slot packets only

We observe that
- Cycle length is fixed and equal to $2(m-1)$ slots
- System is equivalent to a TDMA with $2(m-1)$ slots per frame
- There are several equivalent ways of calculating the waiting time
- We use the same approach adopted for the general polling schemes
Polling in Bluetooth

Case 1)

\[W_1 = \gamma TE[W] \]

\[W_2 = \frac{2(m-1)T}{2} = (m-1)T \]

\[W_3 = 0 \]

\[W_4 = 0 \]

\[W_5 = \gamma TE[W]2(m-1) - 1 \]

\[E[W] = \frac{(m-1)T}{1 - \gamma T - 2(m-1)\gamma T + \gamma T} = \frac{(m-1)T}{1 - 2(m-1)\gamma T} \]
Polling in Bluetooth

Case 2)
- 1-limited service (round-robin)
- 1, 3, and 5-slots packets

We observe that:
- The system is equivalent to a polling system with:
 - Token passing time equal to 1 slot
 - Service time equal to packet length minus one slot
Polling in Bluetooth

Case 2)
- 1-limited service (round-robin)
- 1, 3, and 5-slots packets
Polling in Bluetooth

Case 2)

- generalized formula for round robin for packet transmission time X arbitrary distributed:

$$E[W] = \frac{\rho}{T+h} E[z] + \frac{M + \rho}{T+h} \frac{h}{2}$$

where $E[z] = \frac{\overline{X}^2}{2\overline{X}}$
Polling in Bluetooth

Case 2)

Notation:

- p_1: prob. of 1-slot packets
- p_3: prob. of 3-slot packets
- p_5: prob. of 5-slot packets
- L: packet length

\[\bar{L} = p_1 + 3p_3 + 5p_5 \]

- X: service duration in the equiv. system

\[\bar{X} = 2p_3 + 4p_5 \]

\[\bar{X}^2 = 4p_3 + 16p_5 \]

\[E[z] = \frac{\bar{X}^2}{2\bar{X}} \]
Polling in Bluetooth

Case 2)
- Waiting time:

\[
E[W] = \frac{\rho}{1 - \frac{(L-1+1)T}{LT}} E[z] + \frac{M + \rho}{2 \left(1 - \frac{(L-1+1)T}{LT}\right) \rho} T = \\
= \frac{\rho}{1 - \frac{L}{L-1} \rho} E[z] + \frac{2(m-1)+\rho}{2 \left(1 - \frac{L}{L-1} \rho\right)} T = \\
= \frac{2(m-1)\gamma(L-1)T}{1 - 2(m-1)\gamma LT} \frac{\bar{X}^2}{2(L-1)} + \frac{2(m-1)+2(m-1)\gamma(L-1)T}{2(1 - 2(m-1)\gamma LT)} T = \\
= \frac{(m-1)\gamma}{1 - 2(m-1)\gamma L} \bar{X}^2 + \frac{(m-1) + (m-1)\gamma(L-1)T}{1 - 2(m-1)\gamma LT} T =
\]
Polling in WiFi (IEEE 802.11e)
Random access

- With random access there are possible conflicts on the channel (collisions)
- Conflicts are resolved using the channel feedback and some procedure to select a random waiting time
- The minimum channel feedback a station need to have is the information if its transmission was successful or not
- The first and simplest random access protocol is **Aloha** which uses just this minimum feedback
AlohaNet

- The ALOHA network was created at the University of Hawaii in 1970 under the leadership of Prof. Norman Abramson
- It was the first wireless network!
Aloha

☐ The access mechanism is very simple:
 ■ When there is a packet to be transmitted, just transmit it.
 ■ If transmission fails, wait for a random time and retransmit
Aloha

- Let us assume the transmission starting times on channel are a Poisson process with rate λ.
- Let us consider the normalized rate $G = \lambda T$.
- The success probability is given by the probability that there is no other transmission in a $2T$ interval:
 \[P_s = e^{-2G} \]
- The normalized throughput S is therefore given by:
 \[S = Ge^{-2G} \]
If transmissions are somehow synchronized (slotted Aloha) the vulnerability period reduces to T and therefore

$$S = Ge^{-G}$$

Infinite population model
Unfortunately, the traffic on the channel is the combination of new transmissions and retransmissions and it can increase if throughput reduces.

To evaluate the dynamic behavior of Aloha let us consider an enhanced model.

Let us assume we have M stations with a single transmission buffer (max 1 packet).

Channel is slotted.

If buffer is empty a new packet arrive and is immediately transmitted in the slot with probability α.

If buffer is full, packet is retransmitted with probability β.

Aloha: Single buffer
Aloha: Single buffer

- The system status is given by \(n(t) \), the number of full buffers at time \(t \)
- \(n(t) \) is a discrete Markov chain
- The probability that in a slot there are \(i \) arrivals given \(n \) buffers are full is:

\[
a(i, n) = \binom{M-n}{i} \alpha^i (1-\alpha)^{M-n-i}
\]

- While the probability that there are \(i \) retransmission is:

\[
b(i, n) = \binom{n}{i} \beta^i (1-\beta)^{n-i}
\]
Aloha: Single buffer

\[a(1,n)b(0,n) + a(0,n)[1-b(1,n)] \]

\[a(0,n)b(1,n) \]

\[a(1,n)[1-b(0,n)] \]

\[a(i,n) \]
Aloha: Single buffer

- We can solve (numerically) the chain and get the stationary state probability π_n
- The throughput S is given by

$$S = E[s(n)] = \sum_{n=0}^{M} \pi_n s(n)$$

$$s(n) = a(1,n)b(0,n) + a(0,n)b(1,n)$$
Aloha: Single buffer

- The traffic on the channel is:
 \[g(n) = (M - n)\alpha + n\beta \]

- and the new arrivals:
 \[a(n) = (M - n)\alpha \]

- We can express \(n \) as a function of \(g \):
 \[n = \frac{g - M\alpha}{\beta - \alpha} \]

- And calculate:
 \[a(g) = M\alpha - (g - M\alpha)\frac{\alpha}{\beta - \alpha} \]
Aloha: Single buffer

- Similarly, we can also get $s(g)$ using stationary probabilities (the curve is very close to that of the infinite population model).

- We can consider points where $s(g) = a(g)$ as equilibrium points of the process.

- Equilibrium points can be “stable” or “unstable”.
Aloha: Single buffer

\[
\alpha = 0.0037 \\
\beta = 0.05
\]
Aloha: Single buffer

- What are really equilibrium points?

![Graph showing s(n), a(n), and pi(n) with parameters M=102, alfa=0.00353, beta=0.05]
Aloha: Single buffer

\[a(g) \quad \text{and} \quad s(g) \]

- \(\beta = 0.05 \)
- \(M = 100 \)
- \(\alpha = 0.005 \)
- \(\alpha = 0.0037 \)
- \(\alpha = 0.002 \)
Aloha: Single buffer

\[\begin{align*}
\text{beta} &= 0.05 \\
M \times \alpha &= 0.34
\end{align*} \]
Aloha stability

- If more than one equilibrium point exists, we cannot guarantee the system has a stable throughput.
- If traffic is low (number of stations), throughput is stable.
- To stabilize Aloha, the only way is to limit traffic on the channel (keeping it out of the system if necessary).
- With the minimum feedback considered so far, stabilizing the system is not possible.
Stabilized Aloha

- Let’s assume a richer feedback from the channel: stations know at the end of each transmission interval if it was empty (E), if there was a successful transmission (S), or a collision (C).
- Let’s also assume the slotted Aloha case for simplicity and the single buffer model.
- In order to control traffic on the channel we need to use transmission probability.
- Let’s assume the same probability β for new transmissions and retransmissions.
Stabilized Aloha

- The traffic on the channel is given by $G = n\beta$.
- Assuming we know the number n of busy buffers, the best strategy to limit traffic is to set dynamically $\beta = 1/n$ so that $G = 1$ and throughput is maximized.
- However, the number n of busy buffers cannot be known directly by stations and needs to be estimated at each slot k.
- Let’s denote with \hat{n}_k the estimated value and with $\beta_k = 1/\hat{n}_k$ the probability value at slot k.
Stabilized Aloha

- Let’s assume \(n_k \) is distributed according to a Poisson distribution and let’s set its average value to \(\hat{n}_k \)

\[
P(n_k = i) = \frac{\hat{n}_k^i}{i!} e^{-\hat{n}_k}
\]

- This is the ‘a priori’ distribution of \(n_k \)

- Due to channel feedback, after a slot, the distribution ‘a posteriori’ is modified

- This is obviously different depending on the observed feedback
Stabilized Aloha

- If we observe a successful transmission (S) the obvious update rule is:

\[\hat{n}_{k+1} = \hat{n}_k - 1 + S \]

- Since 1 packet leaved the system and, on average, S new arrivals increased the number of busy buffers
Stabilized Aloha

- If we observe an empty slot (E), we have:

\[
P(n_k = i / E) = \frac{P(n_k = i; E)}{P(E)} = \frac{(1 - \beta)^i \hat{n}_k^i e^{-\hat{n}_k}}{i! e^{-G}}
\]

- Since the mechanism keeps \(G = 1 \) with \(\beta_k = 1 / \hat{n}_k \)

\[
P(n_k = i / E) = \frac{(\hat{n}_k - 1)^i}{i!} e^{-(\hat{n}_k - 1)}
\]

- which is equal to the ‘a priori’ distribution with an average value of \(\hat{n}_k - 1 \)

- So the update rule is again: \(\hat{n}_{k+1} = \hat{n}_k - 1 + S \)
Stabilized Aloha

- Since the update rule is the same we can consider a single event type, we can call no-collision (NC)
- Therefore the feedback we have is just
 \[[C; NC] \]
- This is usually called binary channel feedback
Stabilized Aloha

- If we observe a collision (C), we could calculate the ‘a posteriori’ distribution as in previous case.
- However, since the system need to be in equilibrium we can simply write that:
 \[P(E)x_e + P(S)x_s + P(C)x_c = -1/e \]
- Where \(x \) are the variation in the estimated \(n_k \) (without including new arrivals)
Stabilized Aloha

- We have
 \[x_e = x_s = -1 \]
 \[P(E) = e^{-G} \bigg|_{G=1} = e^{-1} \]
 \[P(S) = Ge^{-G} \bigg|_{G=1} = e^{-1} \]
 \[P(C) = 1 - e^{-G} - Ge^{-G} \bigg|_{G=1} = 1 - 2e^{-1} \]

 therefore: \[x_c = \frac{1}{e - 2} \]

- and the updated rule is
 \[\hat{n}_{k+1} = \hat{n}_k + \frac{1}{e - 2} + S \]
Stabilized Aloha

It is possible to show that the system is stable and that the most convenient value for S is

$$S = e^{-1}$$
Another very popular way of stabilizing Aloha that provides a performance (throughput) much higher than in previous case is based on the so called stack algorithms.

The idea is to solve the collision among a group of stations (all packets successfully transmitted) before moving on with the access mechanism.

The simplest version of CRA is based on binary trees.

After a collision stations are divided in two groups randomly.

The first group retransmits while the other waits until all the packets of the first group are successfully transmitted.
Collision Resolution
Algorithms

Antonio Capone: Wireless Internet
Aloha in real networks

- There are several technologies where Aloha is still adopted including:
 - Random access signaling channel of cellular systems (like e.g. GSM)
 - Reservation channel of WiMax
 - RFID
Carrier Sense Multiple Access (CSMA)

- If the channel feedback is richer, more efficient random access mechanisms can be adopted.
- If the propagation time is short wrt to transmission time we can sense the channel status.
- CSMA: like Aloha but transmit only when you sense the channel free.

\[a = \frac{\tau}{T} \]
Carrier Sense Multiple Access (CSMA)

- On the channel we have cycles of Busy (at least one station sense the channel as busy) and Idle (all stations sense the channel free) periods.
- The throughput S can be given by:

$$S = \frac{\alpha}{B + I}$$

- where B and I are the average busy and idle periods and α is the probability that there is a success transmission in a busy period.
Carrier Sense Multiple Access (CSMA)

- Making the same assumptions of the aloha infinite population model we have:

\[\alpha = e^{-aG} \]

\[I = \frac{1}{G} \]

\[B = e^{-aG} (1 + a) + (1 - e^{-aG})(1 + a + Z) \]

- where Z is the time when colliding transmission partially overlap
Carrier Sense Multiple Access (CSMA)

- It can be shown that:

\[Z = a + \frac{ae^{-aG}}{1-e^{-aG}} - \frac{1}{G} \]

- Therefore we get:

\[S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG}} \]
Carrier Sense Multiple Access (CSMA)
There are several technologies that are based on variants of the CSMA protocol.

Including Ethernet.

Today the most famous and widely used one is WiFi.
IEEE 802.11 random access

- **source**: Source sends an RTS (Request To Send) frame.
- **destination**: After receiving the RTS, the destination sends a CTS (Clear To Send) frame to indicate it is ready to receive data.
- **neighbors**: During this time, other nodes in the vicinity, such as neighbors, are placed in a non-contention state (NAV) for the duration of the data frame transmission.

The diagram illustrates the timing of these frames and the use of DIFS (DCF Inter-Frame Space), SIFS (Short Inter-Frame Space), and NAV (contention avoidance period) to manage access to the wireless medium.
IEEE 802.11 random access

- Similarly to the general model we can derive a model for WiFi

\[\alpha = e^{-aG} \]

\[I = \frac{1}{G} \]

\[B = e^{-aG}(1 + 3a + 2b) + (1 - e^{-aG})(b + a + Z) \]

\[S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG} - G(1-b)(1-e^{-aG}) + (2a+2b)Ge^{-aG}} \]

- \(a \) = interframe space
- \(b \) = duration of RTS and CTS
Centralized scheduled access
Centralized scheduling

- In the case of centralized access in which the central station can control the access to the channel the single virtual queue scheme can be used.

- This requires the use of signaling:
 - To inform central station on the status of the local queues
 - To grant transmission permits to stations
 - Example: bandwidth requests and uplink/downlink maps of IEEE 802.16

- Based on the global information available the central controller can implement several different scheduling schemes
Wireless fair queuing

- There are however some additional issues that make the implementation of scheduling scheme in wireless networks different from other networks.
- This is mainly due to the unreliability of the wireless channel.
- In the case of **fair queuing** scheme, the available resources should be assigned fairly to all stations.
- With the **weighed fair queuing** scheme, the concept of fairness is extended to the case the assignment proportional to a set of weights w_i.
Wireless fair queuing

- The resource assignment is fair is in any interval of time \((t_1,t_2)\) the bandwidth (fraction of channel usage) \(B(t_1,t_2)\) is such that:

\[
\left| \frac{B_i(t_1,t_2)}{w_i} - \frac{B_j(t_1,t_2)}{w_j} \right| \approx 0 \quad \forall i, j
\]

- Where \(i\) and \(j\) are backlogged flows (flows with packets waiting to be transmitted in the queue).

- However, due to channel status the assigned resources may not be used for correct transmissions and the actual resource distribution may be different.
Wireless fair queuing

- Let’s consider an example with 3 backlogged flows
- In the interval (0,1) the channel of station 3 is bad and transmissions are not successful while that of stations 1 and 2 is good
- In interval (1,2) all channels are good
- If we simply apply the scheme as it is, we get the following resource usage:

\[
B_1(0,1) = B_2(0,1) = \frac{1}{3}; B_3(0,1) = 0 \\
B_1(1,2) = B_2(1,2) = B_3(1,2) = \frac{1}{3}
\]

then:

\[
B_1(0,2) = B_2(0,2) = \frac{2}{3}; B_3(0,2) = \frac{1}{3}
\]
Wireless fair queuing

If the status of the channel is known in advance we could avoid resource wastage with the following assignment:

\[B_1(0,1) = B_2(0,1) = 1/2; B_3(0,1) = 0 \]
\[B_1(1,2) = B_2(1,2) = B_3(1,2) = 1/3 \]
then:
\[B_1(0,2) = B_2(0,2) = 5/6; B_3(0,2) = 1/3 \]

Which is still unfair but at least uses the whole channel capacity
Another possibility is that of compensating the missed assignment when the channel is bad once channel becomes good again:

\[B_1(0,1) = B_2(0,1) = \frac{1}{2}; B_3(0,1) = 0 \]

\[B_1(1,2) = B_2(1,2) = \frac{1}{6}; B_3(1,2) = \frac{2}{3} \]

then:

\[B_1(0,2) = B_2(0,2) = B_3(0,2) = \frac{2}{3} \]

Which is a fair approach over a period long enough for compensating channel effect.

There are a number of compensation schemes that can be adopted (lead and lag models).
Wireless fair queuing

- If the channel is not just either good or bad but we have adaptive modulation and coding schemes that allows a smooth performance degradation, things are more complicated.
- Even the definition of channel capacity is difficult (capacity at maximum rate?)
- And the actual capacity used depends on the scheduling scheme:
 - Example 1: schedule only stations with maximum rate
 - Example 2: schedule transmission such that the average rate over a long period is the same for all
 - Example 3: schedule transmission such that the average rate is proportional to the average channel rate
Centralized scheduling: download rate and time

- In the case of fair scheduling with multiple modulation and coding schemes, we can assume that the average channel rate C_i (bit/s) observed by each user can be measured.

- An interesting question is then how to calculate the average time $d(X)$ necessary to download a file of X bits and the corresponding average download rate v (bit/s).

- This is would be the rate we could measure using a test application (like “speedtest”) or during the download of any file of our mobile applications.
Centralized scheduling: download rate and time

- Let’s consider first the case where all users experience the same channel quality C.
- The system can be modeled with an infinite queue and a processor sharing service quality (the capacity of the server is equally shared by all active downloads, corresponding to ideal fair scheduling).
- The model belongs to the class of symmetric queues in which, whatever is the distribution of the random variable X, the occupancy of the process and the service time (transmission time) is the same, and in particular equal to the easy case of X exponentially distributed.
Centralized scheduling: download rate and time

The system is equivalent to the M/M/1 for the workload and the main performance figures (average values)

- Arrival rate [files/s] \(\lambda \)
- File size [bits], average \(m_x \) \(X \)
- Channel capacity [bit/s] \(C \)

Number of parallel downloads
Centralized scheduling: download rate and time

- The average download time D is then given by:
 \[
 D = \frac{m_x / C}{1 - \rho}
 \]

- where:
 \[
 \rho = \frac{\lambda m_x}{C}
 \]
Centralized scheduling: download rate and time

- Because the queue is symmetrical, the average download time for a given file length of x is:

$$d(x) = \frac{x}{C} \cdot \frac{1}{1 - \rho}$$

- and the average download rate is given by:

$$v = \frac{x}{d(x)} = (1 - \rho)C$$
Let’s now consider the case of multiple channel qualities (different modulation and coding schemes).

Let C_i be the channel capacity (bit/s) of traffic class i and λ_i its arrival rate.

We assume an ideal fair scheduling such that given the instantaneous rate of class i, c_i, and that of class j, c_j, we have:

\[
\frac{c_i}{c_j} = \frac{C_i}{C_j}
\]

and also:

\[
\frac{c_i}{C_i} = \frac{c_j}{C_j} = \alpha
\]
The total capacity can be written as

\[
C' = \sum_{i=1}^{n} c_i = \sum_{i=1}^{n} \alpha C_i
\]

Assuming the schedule equally share time among the \(n \) active flows, instantaneously each flow \(i \) transmit at rate \(C_i \), so

\[
C' = \frac{\sum_{i=1}^{n} C_i}{n}
\]

and therefore:

\[
\alpha = \frac{c_i}{C_i} = \frac{1}{n}
\]
Centralized scheduling: download rate and time

- It’s easy to observe that the download time in this case is the same of the case with equal capacity C where the amount of bits to be transmitted is increased by the capacity ratio:

$$x' = x \cdot \frac{C}{C_i}$$

- Indeed we have:

$$\Delta T_i = \frac{n \cdot \Delta x}{C}$$

for equal rates

$$\Delta T_i = \frac{\Delta x}{c_i} = \frac{n \cdot \Delta x}{C_i} = \frac{n \cdot \Delta x'}{C}$$

for different rates

- With:

$$\Delta x' = \Delta x \cdot \frac{C}{C_i}$$
Centralized scheduling: download rate and time

- We can then use the same formulas using the augmented file size.
- We have:

\[\rho = \sum_{i=1}^{n} \frac{\lambda_i m_x}{C_i} = \sum_{i=1}^{n} \frac{\lambda_i \lambda m_x}{\lambda C_i} = \sum_{i=1}^{n} \frac{\lambda_i}{\lambda} \rho_i \]

- and:

\[d_i(x) = \frac{x/C_i}{1-\rho} \]

- with:

\[v_i = x / d_i(x) = (1-\rho) C_i \]