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ABSTRACT

Several computer vision tasks exploit a succinct representation of the
visual content in the form of sets of local features. Given an input
image, feature extraction algorithms identify keypoints and assign
to each of them a descriptor, based on the characteristics of the sur-
rounding visual content. Several tasks might require local features
to be extracted from a video sequence, on a frame-by-frame basis.
Although temporal downsampling has been proven to be an effective
solution for mobile augmented reality and visual search, high tempo-
ral resolution is a key requirement for time-critical applications such
as object tracking, event recognition, pedestrian detection, surveil-
lance. In recent years, more and more computationally efficient vi-
sual feature detectors and descriptors have been proposed. Nonethe-
less, such approaches are tailored to still images. In this paper we
propose a fast keypoint detection algorithm for video sequences, that
exploits the temporal coherence of the sequence of keypoints. Ac-
cording to the proposed method, each frame is preprocessed so as
to identify the parts of the input frame for which keypoint detection
and description need to be performed. Our experiments show that
it is possible to achieve a reduction in computational time of up to
40%, without significantly affecting the task accuracy.

Index Terms— Local features, keypoint detection, video.

1. INTRODUCTION

In recent years, ubiquitous computer vision applications are pervad-
ing our lives. Smartphones, self-driving terrestrial and aerial vehi-
cles, Visual Sensor Networks (VSNs) are capable of acquiring visual
data and performing complex analysis tasks. In particular, VSNs are
expected to play a major role in the advent of the Internet-of-Things
paradigm. Such computer vision tasks usually exploit a concise yet
effective representation of the acquired visual content, rather than
being based on the pixel-level content. In this context, local features
represent an effective solution that is being successfully exploited for
a number of tasks such as content-based retrieval, object tracking,
image registration, etc. Local feature extraction algorithms usually
consist of two distinct components. First, a keypoint detector aims at
identifying salient regions (e.g. corners, blobs) within a given image.
Second, a descriptor assigns each identified keypoint a descriptor, in
the form of a set of values, based on the local characteristics of the
image patch surrounding such keypoint. Such information is further
processed in order to extract a semantic representation of the ac-
quired content, e.g., by identifying and tracking objects, recognizing
faces, monitoring the environment and recognizing events.

As regards visual feature extraction algorithms, SIFT [1] is
widely considered as the state-of-the-art for a large number of
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tasks. It consists in a keypoint detector based on the Difference-of-
Gaussians (DoG) algorithm, and in a scale- and rotation-invariant
real-valued descriptor, based on local intensity gradients. Besides,
SURF [2] is partially inspired by SIFT and aims at achieving a sim-
ilar level of accuracy at a lower computational cost. More recently,
several low-complexity algorithms have been proposed, with the ob-
jective of alleviating the computational burden required by both tra-
ditional keypoint detectors and descriptors. For example, FAST [3]
and AGAST [4] are computationally efficient detectors capable of
identifying stable corners. As for descriptors, binary-valued features
are emerging as an efficient alternative to traditional real-valued
features. BRIEF [5], BRISK [6], FREAK [7] and BAMBOO [8] are
instances of such category. For each identified keypoint, they com-
pute a descriptor vector in the form of a sequence of binary values,
each of which is obtained by comparing the (smoothed) intensities
of a pair of pixels sampled around the keypoint. In some cases,
ad-hoc software-based implementations are available for specific
hardware architectures [9].

Local feature detection in video sequences has been addressed in
the past literature, with the goal of identifying keypoints that are sta-
ble across time. For example, Shi and Tomasi [10] propose a widely
adopted detector suitable for tracking applications. Zhang et. al
propose a complex video-retrieval system based on color, shape and
texture features extracted from the key-frames of a video [11]. More
recently, Zha et al. propose a method to extract spatio-temporal fea-
tures from video content [12]. Besides being a key to tasks such
as object tracking, event identification and video calibration, tempo-
rally stable features improve the efficiency of coding architectures
tailored to features extracted from video content [13, 14, 15]. More
recently, Girod et al. [16] propose a feature detection and coding
algorithm inspired by traditional motion estimation methods. Such
algorithm selects a set of features corresponding to canonical image
patches whose content is stable across frames, leading to a signif-
icant reduction of the transmission bitrate thanks to ad-hoc coding
primitives. Although such algorithm represents a good solution for
applications that require the efficient transmission of local features
for further processing, it might not be the best in terms of com-
putational complexity. Considering low-power devices, computa-
tionally intensive operations might significantly reduce the detection
frame rate, possibly impairing performance of time-critical tasks or
introducing undue delay. In this paper, we introduce a fast detec-
tion algorithm based on BRISK [6] and tailored to the context of
video sequences, aimed at reducing the computational complexity
and thus enabling high frame rates, without significantly affecting
performance in terms of accuracy.

The rest of this paper is organized as follows. Section 2 intro-
duces the main concepts behind BRISK. Section 3 illustrates the pro-
posed fast detection architecture. Section 4 defines the experimental
setup and presents results. Finally, conclusions are drawn in Sec-
tion 5.



2. BINARY ROBUST INVARIANT SCALABLE
KEYPOINTS (BRISK)

Leutenegger et al. [6] propose the Binary Robust Invariant Scalable
Keypoints (BRISK) algorithm as a computationally efficient alterna-
tive to traditional local feature detectors and descriptors. The algo-
rithm consists in two main steps: i) a keypoint detector, that identi-
fies salient points in a scale-space and ii) a keypoint descriptor, that
assigns each keypoint a rotation- and scale- invariant binary descrip-
tor. Each element of such descriptor is obtained by comparing the
intensities of a given pair of pixels sampled within the neighborhood
of the keypoint at hand.

The BRISK detector is a scale-invariant version of the lightweight
FAST [3] corner detector, based on the Accelerated Segment Test
(AST). Such a test classifies a candidate point p (with intensity Ip)
as a keypoint if n contiguous pixels in the Bresenham circle of ra-
dius 3 around p are all brighter than Ip + t, or all darker than Ip− t,
with t a predefined threshold. Thus, the highest the threshold, the
lowest the number of keypoints which are detected and vice-versa.

Scale-invariance is achieved in BRISK by building a scale-space
pyramid consisting of a pre-determined number of octaves and intra-
octaves, obtained by progressively downsampling the original im-
age. The FAST detector is applied separately to each layer of the
scale-space pyramid, in order to identify potential regions of interest
having different sizes. Then, non-maxima suppression is applied in
a 3x3 scale-space neighborhood, retaining only features correspond-
ing to local maxima. Finally, a three-step interpolation process is
applied in order to refine the correct position of the keypoint with
sub-pixel and sub-scale precision.

3. FAST VIDEO FEATURE EXTRACTION

Let In denote the n-th frame of a video sequence of size Nx ×Ny ,
which is processed to extract a set of local features Dn. First, a key-
point detector is applied to identify a set of interest points. Then,
a descriptor is applied on the (rotated) patches surrounding each
keypoint. Hence, each element of dn,i ∈ Dn is a visual feature,
which consists of two components: i) a 4-dimensional vector pn,i =
[x, y, σ, θ]T , indicating the position (x, y), the scale σ of the de-
tected keypoint, and the orientation angle θ of the image patch; ii) a
P -dimensional binary vector dn,i ∈ {0, 1}P , which represents the
descriptor associated to the keypoint pn,i.

Traditionally, local feature extraction algorithms have been de-
signed to efficiently extract and describe salient points within a sin-
gle frame. Considering video sequences, a straightforward approach
consists in applying a feature extraction algorithm separately to each
frame of the video sequence at hand. However, such a method is
inefficient from a computational point of view, as the temporal re-
dundancy between contiguous frame is not taken into consideration.
The main idea behind our approach is to apply a keypoint detection
algorithm only on some regions of each frame. To this end, for each
frame In, a binary Detection MaskMn ∈ {0, 1}Nx×Ny having the
same size of the input image is computed, exploiting the informa-
tion extracted from previous frames. Such mask defines the regions
of the frame where a keypoint detector has to be applied. That is,
considering an image pixel In(x, y), a keypoint detector is applied
to such a pixel if the corresponding mask elementMn(x, y) is equal
to 1. Furthermore, we assume that if a region of the n-th frame is not
subject to keypoint detection , the keypoints that are present in such
an area in the previous frame, i.e. In−1, are still valid. Hence, such
keypoints are propagated to the current set of features. That is,

Dn = {dn,i :Mn(pn,i) = 1 ∪ dn−1,j :Mn(pn−1,j) = 0} (1)

Note that the algorithm used to compute the Detection Mask
needs to be computationally efficient, so that the savings achievable
by skipping detection in some parts of the frame are not offset by this
extra cost. In the following, two efficient algorithms for obtaining a
Detection Mask are proposed: Intensity Difference Detection Mask
and Keypoint Binning Detection Mask.

3.1. Intensity Difference Detection Mask

The key tenet is to apply the detector only to those regions that
change significantly across the frames of the video. In order to iden-
tify such regions and build the Detection Mask, we exploit the scale-
space pyramid built by the BRISK detector, thus incurring in no ex-
tra cost. Considering frame In and O detection octaves, pyramid
layers Ln,o, o = 1, . . . ,O are obtained by progressively smooth-
ing and half-sampling the original image, as explained in Section 2.
Then, considering two contiguous frames In−1 and In and octave o,
a subsampled version of the Detection Mask is obtained as follows:

M′n,o(k, l) =

{
1 if |Ln,o(k, l)− Ln−1,o(k, l)| ≤ TI
0 if |Ln,o(k, l)− Ln−1,o(k, l)| > TI ,

(2)

where TI is an arbitrarily chosen threshold and (k, l) the coordi-
nates of the pixels in the intermediate representationM′n,o. Finally,
the intermediate representation M′n,o resulting from the previous
operation needs to be upsampled in order to obtain the final mask
Mn ∈ {0, 1}Nx×Ny . Masks can then be applied to detection in
different fashions: i) exploiting the mask obtained resorting to each
scale-space layer o = 1, . . . ,O in order to detect keypoint at the
corresponding layer o; ii) use a single detection mask for all the
scale-space layers.

3.2. Keypoint Binning Detection Mask

Considering two contiguous frames of a video sequence, the amount
of features identified in a given area are often correlated [17]. To ex-
ploit such information, the detector is applied to a region of the input
image only if the number of features extracted in the co-located re-
gion in the previous frame is greater than a threshold. Specifically, in
order to obtain a Detection Mask for the n−th frame, a spatial bin-
ning process is applied to the features extracted from frame In−1.
To this end, we define a grid consisting of Nr × Nc spatial bins
Bi,j , i = 0, . . . ,Nr, j = 0, . . . ,Nc. Thus, each bin refers to a rect-
angular area of Sx×Sy pixels, where Sx = Nx/Nc and Sy = Ny/Nr.
Then, a two-dimensional spatial histogram of keypoints is created by
assigning each feature to the corresponding bin as follows:

M′′n(k, l) = |dn−1,i ∈ Dn−1| : bxn−1,i/Sxc = k, byn−1,i/Syc = l,
(3)

where (xn−1,i, yn−1,i) represents the location of feature dn−1,i

and | · | the number of elements in a set. Then, a binary subsam-
pled version of the Detection Mask is obtained by thresholding such
histogram, employing a tunable threshold TH :

M′n(k, l) =

{
1 ifM′′n(k, l) ≥ TH
0 ifM′′n(k, l) < TH ,

(4)

Finally, the Detection MaskMn having size Nx ×Ny pixels is
obtained by upsampling the intermediate representationM′n. Such
a detection mask is applied to all scale-space octaves.



4. EXPERIMENTS

Dataset: We evaluated the proposed algorithms with respect to
three different test scenarios. First, we exploited the Stanford MAR
dataset [15], containing the four VGA size, 200 frames long video
sequences Alicia Keys, Fogelberg, Anne Murray and Reba. Each
sequence contains a CD cover recorded with a hand-held mobile
phone, under different imaging conditions such as illumination,
zoom, perspective, rotation, glare, etc. Furthermore, for each se-
quence, the dataset contains the ground truth information, in the
form of a still image of the corresponding CD cover, having a size
of 500× 500 pixels.

As a second test, we evaluated the approaches resorting to the
Rome Landmark Dataset. Such dataset includes a set of 10 query
video sequences, each capturing a different landmark in the city
of Rome with a camera embedded in a mobile device [18]. The
frame rate of such sequences is equal to 24fps, whereas the resolu-
tion ranges from 480x360 pixels (4:3) to 640x360 pixels (16:9). The
first 50 frames of each video were used as query. On average, each
query video corresponds to 9 relevant images representing the same
physical object under different conditions and with heterogeneous
qualities and resolutions. Then, distractor images randomly sampled
from the MIRFLICKR-1M dataset [19], so that the final database
contains 10k images.

Finally, we tested our method on the Stanford MAR multiple ob-
ject video set [15]. Such a set is made up of 4 video sequences,
each consisting of 200 frames at 640x480 resolution. Each video
is recorded with a handheld camera and portrays three different ob-
jects, one at a time.

Methods: We tested the two detection methods presented in
Section 3, that is, Intensity Difference Detecion Mask and Keypoint
Binning Detection Mask. In both cases, we employed the original
BRISK implementation from the authors1, setting the number of oc-
taves to 4 and the detection threshold to 55 and 70 for the Stanford
MAR dataset and the Rome landmark dataset, respectively. As re-
gards Intensity Difference Detection Mask, we built the mask testing
several different configurations. We tested our algorithm with the 4
layers corresponding to each scale-space octaves. Since the perfor-
mance was similar when using different layers, we resorted to the
top-layer, i.e., the one with the lowest spatial resolution and process-
ing cost. Both Intensity Difference Detection Mask and Keypoint
Binning Detection Mask require a threshold to be set in order to ob-
tain the final detection mask. We tested several different configura-
tions, each representing a tradeoff between computational efficiency
and task accuracy.

We compared our algorithms with a Temporally Coherent Detec-
tor based on non-canonical patch matching [15], which also exploits
temporal redundancy in the detected keypoints. Such algorithm aims
at propagating stable keypoints across frames, exploiting a pixel-
level representation of local features. In details, a traditional key-
point detector is applied to the first frame of a Group Of Pictures of
size ∆. Given an identified keypoint, a non-canonical square image
patch is extracted from the neighborhood of such a point. Then, con-
sidering the following frame, we searched for a matching patch in a
window surrounding such a keypoint. Two patches are assumed to be
a match if the Sum of Absolute Differences (SAD) between their pix-
els is below a given threshold TBM . Finally, keypoints for which a
match is found are propagated to the next frame, and their position is
determined by the aforementioned block matching procedure. In our
tests, according to the prescriptions of [15], we employed patches

1http://www.asl.ethz.ch/people/lestefan/personal/BRISK
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Fig. 1. Accuracy, measured as the number of matches post-
RANSAC (MPR), and computational time for each frame of the Ali-
cia Keys test sequence.

of 16 × 16 pixels and we set ∆ = 10 and TBM = 1800. Further-
more, to make the procedure faster, we implemented a coarse-to-fine
matching algorithm, where the first step consists in a spiral search al-
gorithm with a precision of 2 in a search window of 24× 24 pixels,
whereas the second step in a spiral search algorithm with quarter-
pixel precision in a search window of 1.75 × 1.75 pixels. Finally,
to further speed-up the process, we set an early termination SAD
threshold TET = 1000. This detector was originally proposed with
the goal of maximizing coding efficiency, when patches around the
detected keypoints need to be compressed and transmitted. To this
end, this method can also adopt more sophisticated matching strate-
gies, e.g., based on affine warping. However, in this paper we con-
sider an implementation based on block matching to minimize the
computational complexity.

Evaluation methods and measures: In the case of the Stanford
MAR dataset, for a given video sequence, we extracted a set of fea-
tures for each frame. Then, the set of features extracted from a frame
is matched with the ones extracted from the ground truth frame. A
radius match algorithm is used, where the matching threshold is set
to TM = 0.18∗512 ' 102. Finally, geometric coherence of matches
is enforced resorting to the RANSAC algorithm. Finally, the number
of Matches-Post-Ransac (MPR) is employed as the accuracy mea-
sure.

In the case of the Rome Landmark dataset, the accuracy of the
task was evaluated according to the Mean Average Precision (MAP).
Given an input query sequence q, for each frame Iq,n it is possible
to define the Average Precision as

APq,n =

∑Z
k=1 Pq,n(k)rq,n(k)

Rq,n
, (5)

where Pq,n(k) is the precision (i.e., the fraction of relevant docu-
ments retrieved) considering the top-k results in the ranked list of
database images; rq,n(k) is an indicator function, which is equal to
1 if the item at rank k is relevant for the query, and zero otherwise;
Rq,n is the total number of relevant document for frame Iq,n of the
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Fig. 2. Energy-Accuracy curves for Stanford MAR dataset.

query sequence q and Z is the total number of documents in the list.
The overall accuracy for the query sequence q is evaluated according
to

APq =

∑N
n=1APq,n

N
, (6)

where N is the total number of frames of the query video q.
Finally, the Mean Average Precision is obtained as

MAP =

∑Q
q=1APq

Q
, (7)

that is, the mean of theMAPq measure over all the query sequences.
In the case of the Stanford MAR multiple object video set, the ac-

curacy is measured according to a combined detection and tracking
precision metric. In particular, for each frame, the goal is to cor-
rectly detect the portrayed database object and to identify its posi-
tion within the frame. Each frame of the video sequences is matched
against all the database object. Radius match and geometric verifi-
cation steps are performed as in the case of Stanford MAR dataset
scenario. The matching object is the one with the highest number of
matches-post-RANSAC. The bounding box for the identified object
is obtained by projecting the database object corners according to
the homography computed with the RANSAC algorithm at the pre-
vious step. Each frame is deemed as correct if the correct object is
detected, and if the estimated position is consistent with the ground-
truth information. As to the latter, the estimated object position is
deemed correct if the displacement between the estimated centroid
and the ground truth one is lower than a threshold. We set the value
of such a threshold to 10 pixels.

We evaluated the complexity of the feature extraction methods
by means of the required CPU time. We performed our tests on a
laptop equipped with a 2.5GHz Intel Core i5 processor and 10 GB
of RAM.

Results: As an illustrative example, Figure 1 shows the re-
sults obtained for the Alicia Keys sequence. The charts also report
the results obtained when detection is performed independently on a
frame-by-frame basis (full detection) to serve as a comparison with
the baseline. We observe that the method using the Intensity Dif-
ference Detection Mask (threshold 20) achieves an accuracy level
similar to that of full detection (MPR = 55 vs. 56), at a reduced
computational time (20.5 ms vs. 24.5 ms). As for Temporally Co-
herent Detector, it leads to a significant loss in terms of accuracy
(MPR = 41), while being quite computationally intensive (72 ms
on average). While accuracy could be further improved by resort-
ing to matching based on affine warping, this would further increase
its complexity. This confirms the fact that this detector was origi-
nally designed with the goal of maximizing coding efficiency rather

0 10 20 30 40 50 60
0.44

0.46

0.48

0.5

0.52

0.54

computational time [ms]

M
A

P

 

 

full detection
ID detection mask
KB detection mask

Fig. 3. Energy-Accuracy curve for the Rome Landmark dataset,
when using the Intensity Difference Detection Mask in order to re-
duce the detection area and with different values for the thresholding
parameter. The computational time for each frame can be reduced
from 28ms to 18ms, without significantly affecting the accuracy of
the task.

10 12 14 16 18 20 22
0.65

0.7

0.75

0.8

0.85

0.9

0.95

feature extraction time/frame [ms]

av
er

ag
e 

tr
ac

ki
ng

 p
re

ci
si

on
 [p

ix
el

]
 

 

full detection
ID detection mask
KB detection mask

Fig. 4. Energy-Accuracy curves for the Stanford MAR multiple ob-
ject sequences.

than computational cost. Since this is confirmed also on other test
sequences, we do not report additional results for this detector.

It is interesting to observe the energy-accuracy trade-off that can
be achieved by varying the threshold used by the algorithms based on
detection masks. To this end, Figure 2 compares the performance of
Intensity Difference Detection Mask and Keypoint Binning Detection
Mask with that of full detection, averaging the results on the Stanford
MAR dataset. The two methods based on a detection mask performs
on a par, reducing the required computational time by 30% while
losing as few as 4 matches.

Furthermore, we tested our approach based on a Detection Mask
on the Rome Landmark Dataset. Figure 3 compares the results of In-
tensity Difference Detection Mask with that of full detection, show-
ing that computational time can be reduced by about 35% without
affecting task accuracy. Furthermore, the feature extraction process
can be speeded un by 3 times at the cost of 0.03% lower Mean Aver-
age Precision.

Finally, the results of our fast detection algorithms on the Stan-
ford MAR multiple object video set are reported in Figure 4. The
computational time can be be reduced up to 40% without signifi-
cantly impairing object detection and tracking performance.

5. CONCLUSIONS

In this paper we presented a method for fast keypoint detection in
video sequences based on Detection Masks. Results show that the
proposed approach allows for a reduction in terms of computational
complexity of up to 35% without significantly impair task perfor-
mance. In our future investigation we plan to further improve the
Detection Mask building process, by introducing more sophisticated
yet computationally efficient solutions.
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