Transcritical bifurcation

For any \(p \) there are two equilibria: one stable and one unstable. The two equilibria collide at \(\bar{p} \) where they exchange stability.

Ex. 1 Prey–predator model (see Ex. 8 Lecture 1)

\[
\begin{align*}
\dot{x}_1 &= r x_1 \left(1 - \frac{x_1}{K}\right) - a \frac{x_1}{b+x_1} x_2 \\
\dot{x}_2 &= e a \frac{x_1}{b+x_1} x_2 - m x_2
\end{align*}
\]

prey

predator

\(e \) (efficiency)

transcritical bifurcation

\(e < e_{tc} \)

\(e > e_{tc} \)
Transcritical bifurcation

Transcritical bifurcations (of equilibria) can occur in systems of any order: even in first order systems.

The simplest form of a bifurcation is called normal form.

The normal form of the transcritical bifurcation is the following first order system:

\[
\dot{x} = p x - x^2
\]

Equilibria: \(\dot{x} = 0 \) \(\Rightarrow \) \(\begin{cases} \bar{x} = 0 \\ \bar{x} = p \end{cases} \)

Stability: \(J = \frac{\partial f}{\partial x} \bigg|_{\bar{x}} = p - 2x \bigg|_{\bar{x}} = \begin{cases} P \text{ stable} & \Rightarrow p < 0 \\ -P \text{ stable} & \Rightarrow p > 0 \end{cases} \)

- For \(p = 0 \) we have only one equilibrium, while for \(p \neq 0 \) we have two equilibria \(\Rightarrow \) for \(p = 0 \) the system is not structurally stable \(\Rightarrow p = 0 \) is a bifurcation.
- For \(p = 0 \) we have a collision of equilibria \(\Rightarrow \) bifurcation.
- For \(p = 0 \) here are eigenvalues on the stability boundary.
The node can be either stable or unstable: in the first case we have a catastrophic transition.

When \(p = \bar{p} \) the Jacobian matrices of the two equilibria must have the same eigenvalues, while for \(p < \bar{p} \) the node has eigenvalues of the same sign, and the saddle has positive and negative eigenvalues. This implies that for \(p = \bar{p} \) one eigenvalue of the node and one eigenvalue of the saddle hits the stability boundary.

Examples: avalanches, earthquakes

Terminology: the saddle-node bifurcation is also called **fold** or **tangent bifurcation**

Normal form (first order system):

\[
\dot{x} = p + x^2
\]
Pitchfork bifurcation

non catastrophic

Example

Normal forms

\[\dot{x} = px - x^3 \]

non catastrophic supercritical

\[\dot{x} = px + x^3 \]

catastrophic subcritical
From equilibria to cycles

Transcritical in \(\mathbb{R}^3 \)

Saddle-node in \(\mathbb{R}^2 \)

Pitchfork in \(\mathbb{R}^2 \)

The two cycles exchange their stability.

The two cycles disappear.

before

after
Problems

P. 1
Verify (using the normal form) that the saddle-node bifurcation is characterized by two zero eigenvalues (one associated with one equilibrium and one with the other equilibrium) coming from opposite sides of the imaginary axis, i.e.

\[3 \mathrm{i} \quad \text{1-st equil.} \quad 0 \quad \text{Re} \quad 1 \mathrm{i} \quad \text{2-nd equil.} \]

P. 2
Consider the following 1-st order system
\[\dot{x} = r x \left(1 - \frac{x}{K} \right) - h \]
where \(x \) is the amount of resource and \(h \) is the harvest rate. Assume that \(h \) is constant in time and discuss the behavior of the system for all \(h \geq 0 \).
Show that the system has two types of behavior depending upon the value of \(h \). Find the critical value of \(h \) and determine the kind of bifurcation involved.

P. 3
Show that the mechanical system described in the figure is described by
\[
\begin{cases}
\dot{x}_1 = x_2 \\
\dot{x}_2 = \frac{1}{J} \left(P \cos x_1 - K x_1 - H \dot{x}_2 \right)
\end{cases}
\]
where \(K x_1 \) is the momentum of the spring and \(H \) is a friction coefficient. Study the equilibria of the system for small values of \(P \) and then consider higher and higher values of \(P \). Prove that a pitchfork bifurcation occurs.