
Bio-inspired Self-organization Methods and
Models for Software Development

Daniel Joseph Dubois

Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

dubois@elet.polimi.it

Abstract. The current research trends in Software Engineering are fo-
cusing on the development of new techniques to deal intelligently and
efficiently with the design of systems that are able to evolve overtime and
adapt to rapid changes of their requirements. In particular, the field of
Autonomic Computing has been created to study these types of systems
with the ultimate aim to create systems that are able to self-configure,
self-optimize, self-heal and self-protect without any external intervention.
What we analyze in this thesis is a set of the most common bio-inspired
principles, methods, and models that may be applied to these systems. In
particular we want to propose a way to apply them to develop or adapt
self-organization algorithms to real evolving systems and a methodol-
ogy to validate them using either formal proofs or extensive simulations.
The final outcome of the work will include a real application of such
methodologies in different scenarios.

1 Introduction

The current research trends in Software Engineering are focusing on the devel-
opment of new techniques to deal intelligently and efficiently with the design of
systems that are able to evolve overtime and adapt to rapid changes of their re-
quirements. In particular, the field of Autonomic Computing [1] has been created
to study these types of systems with the ultimate aim to create systems that are
able to self-configure, self-optimize, self-heal and self-protect without any exter-
nal intervention. More recently the Autonomic Computing area has started very
strong interactions with different related fields such as Pervasive Computing [2],
Situational Computing [3], etc: all these fields have in common the fact that they
need to be open in order to follow the changes that may happen in the external
world [4].

The purpose of this thesis is to focus on bio-inspired self-organization algo-
rithms and to present our experience in exploiting them in the development of
distributed software architectures. These types of algorithms often need to be
tailored to the real system in which they are executed. Finding the correct tai-
loring is not always trivial since it requires extensive modeling and simulations
in the presence of an execution context that may be continuously changing.



After an initial analysis of the state of the art in developing self-adaptive
and self-organizing systems we discuss the most common principles that may be
encountered in bio-inspired self-organization, we then want to propose innovative
techniques that can be used to apply these principles and algorithms to real
systems, with a particular emphasis on the methodology that may be use to
validate them. One of the future outcomes is to provide methods to analyze these
approaches both in a formal way, using model checking and other mathematical
validation techniques, and an experimental way using extensive simulations and
other statistical techniques that may be applied to the simulation results.

The organization of this paper is as follows. Section 2 presents a state of
the art analysis of self-organization in software engineering, a classification of
the most recurring bio-inspired self-organization principles, and examples of al-
gorithms that use them. In Section 3 we discuss our existing ongoing study on
the issues that arise when adapting bio-inspired self-organization algorithms to
real software systems and the current approaches we are using to validate them.
Finally, Section 4 shows the plan to develop the research discussed so far.

2 Background information and related work

In this section we discuss the existing background and ongoing work in the area
of system self-organization in software engineering with particular emphasis on
the case of bio-inspired self-organization.

2.1 Self-organizing systems

To reduce the dependency on manual interventions many different software ar-
chitectures have been proposed. IBM proposed a generic architecture [5] of an
autonomic system composed by two entities: a manager and some managed re-
sources. In this approach the manager communicates with the resources through
a sensor/actuator mechanism and the decision is elaborated using the so-called
MAPE cycle in which the manager Monitors the sensors, Analyzes the collected
data, Plans an action, and then Executes it using the actuators.

In addition to this preliminary research there are other different approaches
such as the model-based adaptation of Garlan [6] in which the architecture of
the system may change at runtime depending on what is being monitored, and
a more recent work from Kramer&Magee [7], where they try to exploit the
analogies between robotic systems and self-managed systems.

Other self-adapting architectures that use different approaches are: Autono-
mia [8], which uses a two layer approach, where the first contains the execution
environment and the other manages the resources; AutoMate [9] which has a
multi-layered architecture optimized for scalable environments such as decen-
tralized middleware and peer-to-peer applications; SelfLet [10] and CASCADAS
[11] approaches, which have both been designed to have runtime changing goals,
plans, rules, services and a behavior modeled as a final state machine that may
change overtime.



While the above approaches work at the level of the application by suggesting
a way to offer it some self-* properties, in literature there are other types of
approaches that are specifically focusing on the middleware-level: they show self-
adapting capabilities for optimizing some of middleware properties/metrics. For
instance, in distributed-dispatcher publish-subscribe systems some approaches
are presented that enable the reconfiguration of the underlying topology of the
distributed dispatcher to minimize some cost metrics such as the network traffic
[12–14], while in peer-to-peer networks based on unstructured overlays other
approaches are mainly focusing on mechanisms to search/share some information
[15–17].

All the described architectures are supported at run-time by an algorithmic
self-organizing logic. These algorithms may be used into different levels of ex-
isting systems. An example is the distributed monitoring mechanism presented
in [18]: special architectural components called supervisors collect status data
from the underlying components and decide whether to trigger or not corrective
reactions.

Finally another class of self-organization algorithms, which will be the cen-
tral topic of this thesis work, is composed of bio-inspired algorithms. The main
characteristic of these algorithms is the fact that they are based upon a set of
principles inspired by the natural world and that they provide simple solutions
to solve problems that would be much harder using classical approaches. Char-
acteristics of these algorithms are discussed in detail in the following subsection.

2.2 Bio-inspired Self-organization

Self-organization is defined as “The spontaneous evolution of a system into an or-
ganized form in the absence of external pressures” [19]. Forms of self-organization
that come from observed phenomena of the natural world are called bio-inspired
self-organization.

In this subsection we propose a list of the most important principles of bio-
inspired self-organization and some algorithms that are based upon them.

Principles Bio-inspired Self-organization is usually based upon common prin-
ciples [20] taken from the natural world that may be composed and translated
into algorithms. The following is a list of some of these principles.

Noise. This principle [21] is defined as the use of some kind of perturbations
that move the system away from its expected goal in the short term, but makes
it possible with a certain probability to reach a better goal in the long term. In
other words if the system goal is measured by a goal function that should be
maximized, then the use of noise makes it possible to increase the probability
to move away from the local optima of that function and then to move to the
global optimum. This principle works in a similar way to what we see in genetic
algorithms [22] in which the noise is added by using the mutation/crossover
operations. Noise is usually present in most bio-inspired systems regardless their



design and it is particularly useful in improving the solution in optimization
problems.

Emergence. This principle [23] is defined as the capability of a system composed
by multiple components to reach, with a certain probability, a global goal by
achieving local goals at component level that may be apparently unrelated to
the global goal. Examples of emergent behaviors are very common in nature, like
the phenomenon of fireflies synchronization, in which the local goal of a firefly is
to modify its blinking frequency to synchronize with another firefly in its sight
range, while the global goal that emerges is having a community of fireflies that
blink at the same time. Creating an emergent property in a software system is not
always obvious: a possible simple method may be to decompose, in a top-down
way, the global problem into smaller subproblems translated into simple rules to
be run by system components, however in most of the cases components rules
cannot be easily derived from the global goal and, vice-versa, global goals are
gradually discovered in a bottom up way from the analysis of the characteristics
of local goals.

Diffusion. This principle [24] is defined as a method for communicating infor-
mation among many interconnected components. According to this principle the
information produced or received by a node is sent to some other nodes regard-
less the destination of the message. The destination nodes may be any neighbor
of the sending node (flooding) or some random nodes (gossiping). The final aim
of this mechanism is to increase the probability that nodes interested to that
message actually receive it. Diffusion is usually used in peer-to-peer networks;
possible uses are the search or synchronization of information. This communica-
tion method usually gives self-healing/fault-tolerance properties to the system
since messages are usually redundant and thus the removal (or malfunction) of
some system components does not prevent the correct destinations to receive
the messages.

Stigmergy. This principle [25] is defined as another method of communicat-
ing information among different moving components of a system. According to
this principle the information is not sent to other nodes, but it is stored in
the environment. Since components are capable of moving, when they change
their location (context) they may read in the new environment the information
previously left from another component, use it, and possibly update it. Envi-
ronmental information may be persistent or it may expire after a timeout. This
phenomenon in nature may be noticed under the form of pheromone evapora-
tion. Since this principle relies on leaving information on the environment, the
failure of some components does not compromise the communication (assuming
that the probability of an environment failure is negligible).

Evolution. This principle [26] is defined as the capability of the system to im-
prove itself using a natural selection process among its components: the best



components tend to survive, the worst components tend to die. During this pro-
cess best components may be replicated, partially mutated, and recombined with
other components. A well-known class of algorithms that use this principle are
the genetic algorithms [22].

Algorithms In this subsection we explain some examples of bio-inspired algo-
rithms and frameworks presented in literature that are related to the principles
discussed above.

Genetic algorithms [22] are examples of application of the evolution principle.
These type of algorithms consider an initial population of preliminary solutions
to a problem and then, using a fitness function, they quantify the quality of each
solution. Then the worst solution are discarded and the best ones are left. To
avoid local optima in the solution the best solutions are combined together and
changed slightly using the crossover and mutation operations. This last operation
is an application of the noise principle.

A different class of algorithms is the epidemic algorithms class. These al-
gorithms resemble the spread of a contagious disease and rely heavily on the
diffusion principle. They have been proved to work in the following classes of
problems: failure detection, data aggregation among internal knowledge of sys-
tem components, creation of groups, etc. An example of application of such
algorithms in distributed system has been proposed by Guerraoui et al [27].

An example of emergence is provided also in a work from Saffre et al [28].
In this work each system component starts as a generic worker and then, if
certain conditions are met after an interaction among components, components
may decide to differentiate themselves and become more efficient in performing
specific tasks, with the cost of being no longer able to execute generic tasks.

Another very popular class of bio-inspired algorithms was proposed by Dorigo
[29]: the Ant Colony Optimization algorithm. This algorithm has been used
to solve combinatorial optimization problems by reducing them to the generic
problem of ants looking for the optimal path from their anthill to the food source.
This is a typical example in which we can see all the principles applied to the
same problem.

A bio-inspired study in which our research group was involved in the last
years includes the solution of the components aggregation problem in dynamic
networks [30, 31], in which each component, using simple interactions, is able to
efficiently rewire the network to increase the probability that each component
will eventually increase the number of similar components in its neighborhood.

Some of other popular examples of bio-inspired self-organization focus on the
problem of reorganizing the topology of the nodes in a communication network
[32, 33, 17, 34]. These approaches have in common the fact that they are able to
make emergent properties appear in the network topology using different metrics
to decide whether to add/remove links among nodes, moreover they rely often
on the concept of noise (such as what happens in Cyclon [17] when performing
the periodical shuffling of neighbors nodes).



AntHill [35] is another bio-inspired algorithm-based framework that focuses
on the design of self-organizing systems that are built on top of peer-to-peer
applications. In this approach each network component is called nest and each
nest may host a society of simple autonomic agents called ants. In AntHill system
requests are handled by nests: after they receive a request a population of ants
is generated. Ants may communicate using the stigmergy principle by modifying
their local environment that corresponds to the visited nests. These simple local
interactions permit at the end the emergence of complex system-wide goals.

Stochasticity A common characteristic of bio-inspired algorithms is their stochas-
ticity. This characteristic derives from the fact that bio-inspired principles are
able to apply self-organizing properties in a probabilistic way. This means that
they may be used to increase the probability to self-organize the system, but
do not assure that the system actually self-organize. This may be confusing at
the beginning since in classical software engineering any algorithm whose pre-
conditions are satisfied may either work (correct behavior) or not work (wrong
behavior). When we use bio-inspired algorithms our question is no longer when
they actually work, but what the probability that they work is. Therefore, as long
as the correct-behavior probability is respected, the fact that an algorithm does
not work or that the system stays in a wrong status in presence of verified precon-
ditions is not considered a wrong behavior, but the expected behavior. The result
is that all the properties of the system (both functional and non-functional) are
expressed in stochastic terms. Some of the advantages of stochasticity are the
fact that the system tends to keep working in presence of temporary unexpected
behavior of its components. A possible drawback is the absence of guarantees
on when a specific goal is reached: this may make bio-inspired approaches less
suitable in solving time-constrained problems.

3 Research Hypotheses and Directions

This research aims at finding a classification of possible bio-inspired self-organization
techniques and at finding a way to systematically apply them to real system.
To support this we propose a preliminary tentative of methodology, various val-
idation techniques that according to our experience may be used to validate the
effectiveness and/or the efficiency of the approach, and an example of applica-
tion.

3.1 Using Bio-inspired Self-organization in Real Systems

So far, bio-inspired approaches have been studied in theory and, in some cases,
developed in toy examples. In this research we are currently trying to apply
them in some real systems and therefore we are trying to understand if there is
any repeatable approach that we can adopt to reach this goal.

According to our experience, in some cases, the self-organization algorithms
that we have presented in Section 2.2 can be simply adopted to address a specific



problem. In some other cases none of the identified algorithms can be applied as
they are, but, indeed, we can rely on the adoption of some of the self-organization
principles. A general idea for matching bio-inspired principles to the problems
we want to solve is to classify the problems into classes that may be reduced to
the typical situations in which each principle has proven to be useful. For exam-
ple difficult optimization problems may take advantage of perturbations/noise,
communication in presence of uncertainty and hundreds/thousands of entities
requires diffusion, and so on. A more systematic approach for doing this will
be part of the outcome of this thesis, however we will show in Section 3.3 how
some of the principles we have identified so far can be applied to the case of the
reconfiguration of a publish/subscribe architecture.

As soon as we have identified the algorithms or the principles that are most
suitable to a specific case, according to any well-defined software engineering
approach, we need to build a model for our system to check that it behaves
as expected. This step is particularly important here because of the inherent
complexity and distribution of the systems we consider, and on the consequent
difficulty of building them directly without any design level check on the feasi-
bility of the approach.

As soon as we are convinced that our model works, we can start implement-
ing it. Even in this phase we should not be limited to a simple model-to-code
approach since we have to face with non-trivial problems that are not usually
faced in the theoretical definition of the algorithms and principles, and therefore
could have not been captured in our model. These problems often concern syn-
chronization among components, management of race conditions, the driving of
the system toward some initial state that is suitable for the algorithm to start,
the identification of the conditions under which the self-organization algorithm
could start and end, and when to actually repeat an iteration of the algorithm
without using too much computational time, but still achieving a good level
of responsiveness. In fact, it is very common that bio-inspired self-organization
algorithms are proposed and studied only as a set of rules to be executed for
every iterations by abstracting away from all the details that cause the issues
that we have listed above. A summary of the steps discussed above can be seen
in Figure 1.

The solution to these problems depends not only on the problem/solution
model itself, but also on the deployment scenario: a wrong implementation choice
at this level may nullify the effectiveness of the algorithm at all. Thus, even in this
phase, the role of models and analysis and simulation approaches is prominent in
order to provide some level of guarantees on the quality of the implementation.

The last aspect to be taken into account has to do with the stochasticity of the
self-organization approaches. We need to be aware of this and, in case we cannot
tolerate it, we have to structure the system in such a way that, when it is not
able to converge to the expected state in a time interval that is acceptable for the
specific application we are developing, some other more predictable mechanisms
take the lead and guarantee the expected convergence.



Fig. 1. General steps to develop a bio-inspired self-organization algorithm for a real
system.

In the following paragraph we describe one example in which we try to show
what we did to address the aforementioned issues.

3.2 Modeling and Validating Approaches

This subsection discusses the modeling and validating aspects of this research.
In particular we discuss two different classes of approaches that are able to
model and validate the typical systems that may take advantage of bio-inspired
self-organization.

All the following approaches require that each component of the system and
the interaction among different components are clearly specified. The question
we want to answer after validation is whether the algorithm works or not, if it is
close to the (global) optimum, and if it is resistant to unpredictable situations.

Experimental Approaches This class of approaches use the specification of
the system, the constraints on its evolution, and the proposed algorithm to
implement them directly on a simulation (or real) testbed in order to see how
the algorithms behave in practice.

The system is usually initialized using data that makes it more similar to
a real deployment scenario and let it run for tens or ever hundreds of times.
This method, called Monte Carlo simulation method, uses an aggregation of the
results of all these runs to perform some statistical analysis. The result of the
analysis usually gives information about the confidence that the algorithm is
able to reach its goal. The stability of the algorithm is usually tested by adding
artificial perturbations to the system, or by using deployment environments that



are intrinsically characterized by uncertainty (such as the PlanetLab network for
heavily distributed applications).

The problem of the experimental approaches is that they tend to be biased
towards the initial assumptions and that they are characterized by a prediction
error. Results achieved using experimental approaches are usually used to gen-
eralize the validity of an algorithm from a particular case to a more general case,
however this is not true all the times and a more formal approach is needed.

Formal Approaches Formal methods to analyze this type of algorithms in-
clude the following approaches:

– Temporal Logic models: the system and its evolution are formally modeled
using temporal logic and, using a satisfiability checker, it is possible to check
some generic system properties that are general and independent of the
deployment scenario.

– System Theory and Game Theory models: the system and its evolution are
modeled mathematically using differential equations. The mathematical sys-
tem can then be used to find equilibria, attractors, and other information
on the evolution of the system in the long term.

– Operations research models: the system is expressed using a series of con-
straints and an objective function to be maximized. The advantage of this
method is that it is easier to prove the possibility to reach the global opti-
mum.

A disadvantage of the models above is that some stochastic information is lost
since it is usually not practical to mathematically (or logically) express them.

In our research we are currently focusing on the logic models, however, due
to the long runs that are required by the satisfiability checker, current models
are limited to just a few components. The purpose of future research is to extend
the possibility to formally analyze the system with much more components using
a compositional modeling approach.

3.3 Example: Overlay Self-organization in Publish-subscribe
Systems

This example shows how it is possible to use bio-inspired self-organization and
the validation approaches discussed in the previous section to reduce the traffic
in a distributed-broker publish-subscribe system.

Let us assume a system composed of interconnected entities called brokers.
Each of these entities may have zero or more components connected. Each com-
ponent may be connected only to one broker and it may publish messages and
subscribe to messages produced by some other component. Each broker is in
charge of collecting the subscriptions from its components and of forwarding
them to all the other brokers. This way every broker can maintain a routing ta-
ble that is used to route every published messages only to components that have
previously subscribed to them (subscription-forwarding approach [36]). Another



assumption is that the publish-subscribe system allows a broker to change its
neighbors at runtime.

In this setting the final goal is to minimize the number of messages that
traverse the brokers network by rewiring the connections among the brokers. To
achieve this goal we could not use any of the algorithms that we have identified
in Section 2.2 as the problem to be tackled depends on very specific information,
that is, the subscriptions that are known by each broker and the expected pattern
of traffic in the network. Instead, we could adopt the emergence principle to build
a utility-function based algorithm in which the maximization of such function
at local level moves the whole system toward the global goal. Moreover, we have
also shown that the usage of the noise principle further improves the solution.

The preliminary results are reported in [34] where we define the utility func-
tion that, given a generic node N0 and two of its neighbors called N1 and N2, is
able to estimate the number of saved messages after removing the link between
N0 and N1 and adding a link between N1 and N2. Therefore a generic broker
N0 decides to perform the rewiring using the two neighbors that are able to
maximize the utility function.

As we have said in Section 3.1, implementing just the algorithm that evaluates
this utility function is not enough, but we need to choose an interval between
iterations and a proper locking mechanism. A possible implementation of an
algorithm iteration that maximized the utility function is shown in the sequence
diagram of Figure 2.

Fig. 2. Sequence diagram of a rewiring iteration that maximizes the utility function.

Validation In this example we used an experimental validation approach con-
sisting in extensive simulations. The simulations have been carried out using a



custom simulator written in Java. A simulation is run at least 20 times to pro-
vide some statistical validity to the obtained results. The simulation parameters
that have been considered are related to the characteristics of the environment
on which a distributed pub/sub middleware is deployed.

The experiments have been executed in the following way: first of all we have
performed several experiments to see if the algorithm was really able to reduce
the network traffic using different simulation parameters, then we have selected
the most significative experiments (called from now on reference experiments)
and we varied one parameter at the time to see their impact on the algorithm
results.

Reference experiments. The chart in Figure 3a shows the reference experiment of
our algorithm and a competing approach called OCBR [14]. The lines represent
the average values of the network traffic. The simulation parameters we have used
are: 500 brokers, 100% of the brokers have subscribing components, 10% of the
brokers have subscribing publishers, 10 publications per publisher, 1 subscription
per subscriber, scale-free topology, 10 types of messages, subscriptions match 3
types of messages, 10% of algorithm noise (in terms of iterations that may not
contribute to the algorithm convergence).

From the comparison in Figure 3a we can see that the heuristic of our algo-
rithm is able to reduce the traffic with a much lower number of rewirings than
the other approach in the same amount of time steps.

Experiments on scalability. In Figure 3b we can see that if we double the total
number of brokers, we have a strong increase in network traffic due to the more
complex routing of the messages, however both algorithms show to scale well and
therefore to be able to reduce the traffic with a similar percentage with respect
to the reference case (see Fig 3a).

Experiments on robustness. Figure 3c shows that if before every algorithm iter-
ation 5% of the nodes is replaced by new nodes, then the proposed algorithm is
still able to reduce the traffic (even if in a slower way compared to the reference
experiment), while the OCBR algorithm does not have the time to reach its
convergence and therefore shows during all the simulation its initial behavior of
increasing the traffic. This is the typical situation in which fast (although sub-
optimal) convergence is fundamental in presence of uncertainty and dynamism.

Using noise to refine the utility function. The easiest way to find a refinement
for our solution is to try to add noise to the evaluation of the utility function:
instead of choosing neighbors that maximize it, we relax this constraint by allow-
ing possible rewirings that increase slightly the total number of messages that
traverse that broker. Using this approach the initial iterations of the algorithm
are slowed down, but, after a while, we escape the local optima and the global
solution becomes better than the one obtained using the approach without noise.
The results of this experiment are shown in Figure 3d. What we have learned
from this last experiment is that the best solution is to have a tradeoff between



(a) Reference experiment.

(b) Varying network size (scalability).

(c) Effects of node churn (robustness).

(d) Effects of different percentages of algorithm noise.

Fig. 3. Experiments. x -axis contains the number of rewirings, y-axis contains the num-
ber of exchanged messages.



convergence rate (high with a lower noise) and effectiveness in terms of saved
messages (high with a higher noise).

4 Development and Evaluation Plan

In the research activity we have carried out till know we have studied the
problem of applying bio-inspired self-organization techniques to real systems.
We have started this study surveying different principles that describe natural
self-organizing phenomena and we have presented some existing self-organizing
classes of algorithms that exploit the above principles. We have also seen that
existing bio-inspired algorithms tend to be presented through toy-models that
are often difficult to bring as part of a real system implementation.

The current plan to develop the preliminary research ideas presented in the
previous section is to understand whether it is possible to find a common ap-
proach to actually use these types of algorithms and to deal with some of the
implementation issues that may arise. So far we have learned that the process of
solving a problem with a self-organization algorithm is not trivial and requires
extensive reasoning about which algorithms/principles to use and especially how
to apply them. Differences in the real execution environments have a heavy im-
pact on how the algorithms should be calibrated.

The planned development direction of this work is to extend the proposed
idea to a more complete methodology consisting in a complete list of steps and
design patterns that may be used to apply bio-inspired principles to real systems
in a more systematic way. For simplicity we divide this plan into four distinct
phases.

4.1 Propose new algorithms and improve existing ones

In this part of the research plan we want to extend and improve the algorithms
that have been found so far. A possible future outcome in this direction is – for
example – to find a heuristic to eliminate completely the need for self-adapting
the algorithm parameters (such as the interval between different iterations in
the overlay self-organization example) without relying on extensive simulations
on the real environment in which the algorithms would be used.

4.2 Definition of problem classes and of the appropriate solutions

The bio-inspired principles that have been discussed previously have been ac-
companied with some examples of existing algorithms that take advantage of
that. However, as far as we know, there are not works that associate principles
to their problem class in a more concrete way. For concrete we mean that the
association is not limited to an abstract and generic statement such as “noise
is used to improve the solution of optimization problems”, but it also considers
the noise type and the amount of noise that should be added. This last point



is generally stricly problem-dependent. The effort here is to consider some spe-
cial cases that are enough representative of entire problem-classes, and finally to
perform an extensive study just on them.

4.3 Mapping problems/solutions to real case studies

This third point of the research plan aims at moving to an additional level of
concreteness. Until now it was not easy to exploit these techniques in existing
case studies, especially because architectures characterized by centralization,
replication and monitoring are easier to formalize, they are more predictable,
and less affected by stochasticity. However, as we have said in the introduction
section, these architectures are more difficult to be maintained once the system
complexity (in term of heterogeneity and number of components) increases. The
goal of this part of the research plan is to map at least each defined problem class
to a case study/running example in which we provide a bio-inspired solution to
the problem.

4.4 Comparing the results to traditional approaches

This last point of the research plan aims to investigate whether a software en-
gineer should prefer using a bio-inspired approach or not. This problem can be
reduced by discussing advantages and disadvantages of using our approaches
and more traditional approaches to the same problems. This discussion can be
carried out for example by making a direct comparison of the simulation results
where we show how some different metrics change. We expect from this research
that there will be problem classes and situations that are best managed by a
bio-inspired self-organization algorithm and others that would continue to work
better using existing techniques.

Acknowledgements

This research has been partially funded by the European Commission, Pro-
gramme IDEAS-ERC (Project 227977-SMScom), FET (Project CASCADAS
IST-027807), and FP7 (NoE S-Cube).

I would like to thank my thesis advisor Elisabetta Di Nitto for her support
in this thesis work and also Raffaela Mirandola for insightful discussions on the
topic.

References

1. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

2. Waldrop, M.: Pervasive computing - an overview of the concept and exploration
of the public policy implications (March 2003)



3. C B Anagnostopoulos, Y Ntarladimas, S.H.: Situational computing: An innovative
architecture with imprecise reasoning. Journal of Systems and Software 80(12)
(2007) 1993–2014

4. Baresi, L., Nitto, E.D., Ghezzi, C.: Toward open-world software: Issue and chal-
lenges. Computer 39(10) (2006) 36–43

5. : IBM Autonomic Computing Toolkit - User’s Guide.
http://download.boulder.ibm.com/ibmdl/pub

/software/dw/autonomic/books/fpu3mst.pdf
6. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In:

WOSS ’02: Proceedings of the first workshop on Self-healing systems, New York,
NY, USA, ACM (2002) 27–32

7. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. Future
of Software Engineering 0 (2007) 259–268

8. Hariri, X.D., Xue, S.L., Chen, H., Zhang, M., Pavuluri, S., Rao, S.: Autonomia:
an autonomic computing environment. In: IEEE International Performance, Com-
puting, and Communications Conference, 2003. (2003)

9. Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.:
Automate: Enabling autonomic applications on the grid. Cluster Computing 9(2)
(2006) 161–174

10. Devescovi, D., Di Nitto, E., Dubois, D.J., Mirandola, R.: Self-Organization Al-
gorithms for Autonomic Systems in the SelfLet Approach. In: Autonomics, ICST
(2007)

11. Hoefig, E., Wuest, B., Benko, B.K., Mannella, A., Mamei, M., Di Nitto, E.: On
concepts for autonomic communication elements. In: International Workshop on
Modelling Autonomic Communications. (2006)

12. Baldoni, R., Beraldi, R., Querzoni, L., Virgillito, A.: Efficient publish/subscribe
through a self-organizing broker overlay and its application to siena. Comput. J.
50(4) (2007) 444–459

13. Jaeger, M.A., Parzyjegla, H., Mühl, G., Herrmann, K.: Self-organizing broker
topologies for publish/subscribe systems. In: SAC ’07: Proceedings of the 2007
ACM symposium on Applied computing, New York, NY, USA, ACM (2007) 543–
550

14. Migliavacca, M., Cugola, G.: Adapting publish-subscribe routing to traffic de-
mands. In: DEBS ’07: Proceedings of the 2007 inaugural International conference
on Distributed event-based systems, New York, NY, USA, ACM (2007) 91–96

15. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, New York, NY, USA, ACM (2001)
149–160

16. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Lecture Notes in Computer Sci-
ence. (2001) 329–350

17. Voulgaris, S., Gavidia, D., van Steen, M.: Cyclon: Inexpensive membership man-
agement for unstructured p2p overlays. J. Network Syst. Manage. 13(2) (2005)

18. Baresi, L., Guinea, S., Tamburrelli, G.: Towards decentralized self-adaptive
component-based systems. In: SEAMS ’08: Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, New
York, NY, USA, ACM (2008) 57–64

19. Heylighen, F., Gershenson, C.: Information systems, may/june 2003. the meaning
of self-organization in computing



20. Babaoglu, Ö., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gam-
bardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes,
T.: Design patterns from biology for distributed computing. ACM Trans. Auton.
Adapt. Syst. 1(1) (2006) 26–66

21. Nicolis, S., al.: Optimality of collective choices: a stochastic approach. Bulletin of
Mathematical Biology (2003) 65, 795–808

22. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press (1975)

23. Holland, J.H.: Emergence: from chaos to order. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (1998)

24. Datta, A., Quarteroni, S., Aberer, K., eds.: Autonomous Gossiping: A Self-
Organizing Epidemic Algorithm for Selective Information Dissemination in Wire-
less Mobile Ad-Hoc Networks. In Datta, A., Quarteroni, S., Aberer, K., eds.: Se-
mantics of a Networked World. Volume 3226 of LNCS., Boston, MA, USA, Springer
Berlin / Heidelberg (2004)

25. Beckers, R., Holland, O., Deneubourg, J.: From local actions to global tasks:
stigmergy and collective robotics. In: ALIFE IV, Brooks & P. Maes, MIT Press,
Cambridge (Mass) (1994)

26. Fogel, D.B.: What is evolutionary computation? IEEE Spectr. 37(2) (2000) 26–32
27. Eugster, P.T., Guerraoui, R., Kermarrec, A.M., Massoulieacute;, L.: Epidemic

information dissemination in distributed systems. Computer 37(5) (2004) 60–67
28. Saffre, F., Halloy, J., Shackleton, M., Deneubourg, J.L.: Self-organized service

orchestration through collective differentiation. IEEE Trans Syst Man Cybern B
Cybern 36(6) (2006) 1237–46

29. Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Book (2004)
30. Di Nitto, E., Dubois, D.J., Mirandola, R.: Self-aggregation algorithms for au-

tonomic systems. Bio-Inspired Models of Network, Information and Computing
Systems, 2007. Bionetics 2007. 2nd (Dec. 2007) 120–128

31. Saffre, F., Tateson, R., Halloy, J., Shackleton, M., Deneubourg, J.L.: Aggrega-
tion Dynamics in Overlay Networks and Their Implications for Self-Organized
Distributed Applications. The Computer Journal (2008)

32. Nakano, T., Suda, T.: Applying biological principles to designs of network services.
Appl. Soft Comput. 7(3) (2007) 870–878

33. Prenhofer, C., Bettstetter, C.: Self-organization in communication net-
works:principles and design paradigms. IEEE communication magazine (2005)

34. Di Nitto, E., Dubois, D.J., Mirandola, R.: Overlay self-organization for traffic
reduction in multi-broker publish-subscribe systems. In: submitted for publication.
(2009)

35. Babaoglu, Ö., Meling, H., Montresor, A.: Anthill: A framework for the development
of agent-based peer-to-peer systems. In: ICDCS. (2002) 15–22

36. Cugola, G., Nitto, E.D., Fuggetta, A.: The jedi event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software
Engineering 27(9) (2001) 827–850


