Self-Aggregation Algorithms for Autonomic Systems

Daniel J. Dubois
Politecnico di Milano
Piazza Leonardo da Vinci, 32
20133 Milano, Italy
dubois@elet.polimi.it

Abstract

One of the today issues in software engineering is to find new effective ways to deal intelligently with the increasing complexity of distributed computing systems. In particular, one of the aspects under study in the field of autonomic computing concerns the way such systems can autonomously reach a configuration that allows the entire system to work in a more efficient and effective way. In this paper we investigate how it is possible to obtain self-aggregation of distributed components. We have used existing self-aggregation algorithms as a starting point, and, after an analysis phase, we have discovered some aspects that could be improved. Finally we have derived new algorithms that showed improved self-aggregating performances in most of the situations.

This work has been done in cooperation with Prof. Elisabetta Di Nitto and Prof. Raffaela Mirandola in the context of the CASCADAS European project.

1 Introduction

One of the today issues in software engineering is to find new effective ways to deal intelligently with the increasing complexity of distributed computing systems. This is particularly important in a pervasive context where the environment is instrumented with devices of any kind that are able to communicate over a network in order to solve several types of problems and to offer various kinds of services to their final users.

Autonomic Computing applied to pervasive architectures is trying to show that adding autonomic reasoning to each computational element in the system could simplify its management and reduce costs [18]. In this field, researches are borrowing some ideas from the biological world [17]. In particular, they study the behavior of colonies of insects and their capability to self-organize [7]. The main goal is to apply similar capabilities to software systems of interconnected components that singularly, like ants for their anthill, have limited information and reasoning power, but, all together, contribute to the high-level goals for the whole system. Using this approach, many complex problems can be solved by executing simple rules locally to each component of the system, regardless system size and without the need of a centralized control [4]. In this context, self-aggregation algorithms aim at establishing and maintaining groups of components that cooperate more to reach a common goal. The applications of these algorithms include all cases in which there is a need for continuously reconfiguring those groups (think for instance at the case of a network of message brokers that need to be restructured because of a failure in one of its portions).

This paper aims at analyzing and understanding the “magic” that is beyond existing approaches to pervasive self-aggregation techniques, and at creating new techniques that are more efficient and effective in specific cases.

The organization of the paper is as follows. Section 2 describes the aggregation problem and presents some distributed algorithms that address it. Section 3 describes our improvements to the existing algorithms. Section 4 presents a performance analysis and highlights the advantages of the algorithms we have defined. Section 5 presents an overview of the state of the art. Finally, Section 6 concludes the paper.

2 Self-Aggregation Algorithms

A typical environment in which self-aggregation can happen is a network of interconnected entities called nodes. Each node is characterized by a type and by a list of nodes called neighbors. In this situation self-aggregation is the capability of each node to modify the connections with its neighbors in order to reach a more efficient and effective configuration. In a real network, a node can be any piece of software that is able to communicate with the others, its type can be defined in various ways all aiming at allowing a node to recognize its similarity with respect to a specific application. Thus, the type can correspond, in an object-oriented style, to the set of services the node can provide (i.e., to its interface), or, in an agent-oriented style, to the goal a node is able to achieve, or to any combination of them. Connections (links) between neighbor nodes correspond to the
ability of a node to know the others.

The final purpose of a self-aggregation algorithm is to reduce the number of links from incompatible nodes and to add new links to compatible nodes, where the notion of compatibility is related to the types of the nodes. Our analysis of distributed self-aggregation algorithms has started from those developed by Fabrice Saffre for the CASCADAS project [12], with the objective of improving, if possible, their effectiveness and performances.

It is important to notice that the compatibility can be defined in such a way to aggregate nodes with similar characteristics (for load-balancing problems) or with different characteristics (to execute complex tasks that require nodes with different capabilities).

2.1 Saffre Clustering Algorithm

The definition of Saffre Clustering is presented in Algorithm 1. The following is an explanation of each iteration: (1) a random node elects itself as the initiator node and elects a matchmaker node among its neighbors; (2) the matchmaker node chooses one neighbor that is compatible with the initiator and makes them establish a new link; (3) the matchmaker removes a link between itself and the chosen neighbor. The author in [12] proposes also a variant of this algorithm called Passive Saffre Algorithm in which the matchmaker is self-elected instead of being elected by an initiator node, however this method has the flowing side effect: it leads to the creation of super-nodes in the network that may become points of failures.

3 Proposed Algorithms

The performance of the Saffre algorithm has been evaluated in [12] and clearly shows that the system tends to reach a steady state. Starting from these results we have tried to understand why such simple and local laws are able to organize complex networks in order to investigate possible further optimizations. The most relevant thing we can note is that the previous algorithm not always perform operations that increase the number of links between compatible nodes. In this case it is said that the algorithm introduces some noise into the system. We will show that by trying to either limit or increase the level of noise within a network we can improve some aspects of the overall performances of the algorithm.

3.1 The Concept of Noise

The algorithm noise or randomness occurs when in the same algorithm iteration a new link is added between compatible nodes and then a link between compatible nodes is removed. In [8, 14] it is explained that in the biological world this noise is necessary to obtain an optimal solution, therefore it is reasonable to investigate the effects of an increase or a decrease of noise in the original self-aggregation algorithms.

3.2 Noise Reduction: Fast Algorithm

The first investigation we have done was to remove all the noise from the original algorithms: this resulted in a new algorithm (see Algorithm 2) that we call Fast Algorithm that is similar to the original one, but with the additional constraint that an algorithm iteration can never remove a link between compatible nodes. From the preliminary simulations we have seen that with respect to the original algorithm this one has a faster convergence rate because it avoids “noisy” iterations, another advantage is that it reduces the total number of link exchanges because of the lower number of neighbors that can be chosen. The disadvantage of this approach is that the increase in the number of links between compatible nodes is not as good as the original clustering. This means that the noise is a key factor for the accuracy of the algorithm.

3.3 Noise Increase: Accurate Algorithm

The second investigation we have done was to increase the algorithm noise in the following way (see Algorithm 3): the decision of adding and removing links for each algorithm step is fully unconstrained, except for the fact that the total number of links must remain the same and that a link between incompatible nodes can be added only if a link between incompatible nodes is removed in the same iteration. This constraint ensures that the aggregation of the system in the worst case remains constant and will never decrease. After the preliminary simulations we have seen a lower convergence rate and a larger number of exchanged messages with respect to the original algorithm, however the number of links between compatible nodes has been increased. This strategy is similar to what happens in genetic algorithms [11]: in a genetic algorithm each iteration has a mutation operation that randomly modifies the solutions that are computed until that moment. This prevents the ge-
3.4 Adaptive Algorithm

This algorithm is a self-adaptive version of the previous algorithms with the aim to modify its behavior according to some local rules. These local rules have been modeled as a Finite State Machine. The general logic is that the algorithm starts behaving as the most constrained algorithm (Fast Algorithm) and stays in that state until the constraints inhibit further iterations (this happens when a node gets stuck because it does not have neighbors to choose that satisfy the algorithm requirements). In such a case the algorithm switches to a medium constrained algorithm (Saffre Clustering) first and then to the less constrained algorithm (Accurate Clustering) if it gets stuck again. Finally, as soon as a new neighbor is added to a local node, it switches again to the most constrained algorithm.

The FSM in Figure 1 represents the current algorithms as states and the events as transitions. Failure transition is triggered when an algorithm is not able to complete an iteration because of its constraints: (1) the matchmaker node does not have neighbors that are compatible to each other in original clustering; (2) the matchmaker node does not have neighbors that are compatible to each other and whose one of them is not compatible with the matchmaker. Success transition is triggered when an iteration terminates successfully. New Neighbors transition is triggered when a new neighbor has been added to the local node.

4 Performance Analysis

In this section we will study the behavior of the proposed algorithms in different situations in order to identify their fields of applicability. We first describe the experiments set up and then present the results we have obtained.

4.1 Setting up the Experiments

This paragraph will discuss all the steps that are needed to study the performances of the self-aggregation algorithms that have been proposed in the previous section.

Methodology The performances of the algorithms have been evaluated using a simulation framework for self-organization algorithms written in Java that has been developed ad-hoc for this purpose. All the data that will be presented in this section have been obtained using Monte Carlo simulations. Each simulation has been repeated at least 20 times to provide some statistical validity, in addition, some preliminary simulations have been performed in order to identify which input parameters and performance indexes to consider when setting up the definitive thorough simulations. From the preliminary simulations we have also seen that the various algorithms do not show different behaviors if they run over 100 seconds, therefore we have chosen this number as the standard fixed duration for all the experiments. The most relevant parameters are described in the following paragraphs.

Input Parameters The input parameters are determined by the environment in which the algorithms are run and by the algorithm itself. The bound values for these parameters have been chosen by observing the minimum/maximum values that have produced significant changes in the algorithms results of the preliminary experiments. The following is a list of environment-dependent parameters.

Number of nodes of the network: this is the fixed number of nodes of the network. During the simulations we have considered networks of 100, 200 and 300 nodes in order to obtain results comparable to the results that can be found in [9].

Number of types for all the nodes: all the network nodes will be differentiated using a uniform distribution of types. The least mixed network we considered has only 2 types, that is the minimum. The most mixed one has 15 types, that, over a population of 300 individuals, represents an average variety of 20 individuals per type. We also considered some intermediate number of types (5 and 10) to show what happens between the two bounds.

Average number of links for each node: the average number of links is stated at the beginning of the simulation and remains constant during all the experiment. The values that have been chosen for this parameter are 3 links, 4 links, and 5 links. Values under 3 links are not interesting because they produce topologies that tend most of the time to have too many nodes without links, while with values greater than 5 there is a tendency of creating a few super-nodes that group in their neighbors all the others.

Initial topology: this is the strategy that states how the initial links are established. With this parameter we wanted to create an initial pattern of interconnections that is similar to what we can find in different types of real networks.
The topologies we have considered are: Random topology, where all the links are created in a totally random way; Torus topology, where all the nodes are connected to each other using a donut-like pattern; Scale-free topology, where all the nodes are connected to each other in such a way that the probability of a generic node to be connected to \(k \) nodes is \(P(k) = k^{-\gamma} \) where \(\gamma \) is a generic constant between 2 and 3 for most real networks [3].

Performance Indexes The performance indexes are the output parameters of the simulations we have done. Their purpose is to investigate which goals the algorithm is able to reach in different situations and how well they can be reached. The following is a list of performance indexes that have been calculated and presented after the simulation process.

Homogeneity. This performance index, defined in [12], represents the aggregation of the network. This index is a number between 0 and 1: lower values indicate a prevalence of links among nodes of different types, while higher values mean a prevalence of links among nodes of the same type. The definition of this index is the following:

\[
H = \frac{\sum_{i=1}^{N} v(node_i)}{L}
\]

Where \(N \) is the total number of nodes, \(v(x) \) is the total number of nodes of the same type linked to \(x \) and \(L \) is the total number of links in the system.

Optimality. This index aims to be algorithm-related and it is a number between 0 and 1 like homogeneity, with the difference that its upper bound is always theoretically reachable. Reaching a value of 1 for optimality means that a clustering algorithm reaches the upper bound for the homogeneity, given the structure of the network. The formula that calculates optimality is the following:

\[
\text{optimality} = \frac{H}{\text{max}H}
\]

Where \(H \) is the homogeneity, \(\text{max}H \) is the upper bound for homogeneity calculated by the simulator using a centralized optimal clustering algorithm.

Number of Messages. This index is directly computed by the simulator and gives an idea about how many messages are needed by an algorithm in order to achieve a goal. An example of goal can be the achievement of an 80% optimality in the case of normal clustering.

4.2 Results

What we are going to present now are the results of the experiments that have been run. For each experiment we will compare the various clustering approaches with a theoretical interpretation of each result.

Reference Experiment for Clustering In order to see how the algorithm performances are affected by changes of the input parameters, we have performed a particular experiment that has been used as reference. In this experiment we have run all the algorithms using values for the input parameters with the property of being the mean value between the bound values that have been chosen in section 4.1. The results in Figure 2 show how the noise can affect the convergence of the algorithms. In the fast algorithm a local maximum is reached quickly with less messages, but then the homogeneity does not improve beyond that value. In the accurate algorithm local convergence is slow and requires more messages because of the noisy iterations, but then the algorithm convergence goes close to the global maximum. In this situation the adaptive algorithm tries to get advantage of both local and global convergence of the previous algorithms, therefore it seems a good choice in the average case if we want to improve homogeneity. In all the experiments the variance remained very low, giving therefore some statistical validity to the averages values that are presented, however for a matter of space variance charts are not shown here.

Varying the Number of Types In Table 1 we can see that if we reduce the number of types all the algorithms perform better than if increasing it. A first explanation is that the initial optimality tends to be \(\text{opt}_{\text{init}} \approx \frac{1}{N_{\text{types}}} \) where \(N_{\text{types}} \) is the number of types, therefore if the initial optimality is lower, more iterations are needed to reach the global optimum. The second explanation is that if \(N_{\text{types}} \) is lower, then the probability to find equal neighbors after each iteration is higher because there are less different nodes. The fact that the algorithm requires a higher number of iterations to reach convergence when increasing the types results in a slight increase in the number of messages.

Varying the Number of Nodes This test has been performed to see how much scalable are the algorithms when changing the number of nodes. From Figure 1 we can see that this does not affect the optimality with respect to the experiment of reference in most of the cases. The slight reduction in the local convergence (optimality after 2s) is due to the fact that the network is slowed down by the additional messages sent by the new nodes.

Varying the Number of Links A modification in the number of links has the following effect: it makes node communication easier because it increases the probability that a given neighbor has a connection to a node of the required type. Thanks to this effect the highly-constrained algorithms (Saffre and Fast algorithms) can perform more link exchanges and increase the optimality. On the other hand, having more links may generate additional noise for the other algorithms that can slow down their convergence rate. This explains why when increasing the number of links per node the Saffre and the Fast algorithms become better while Accurate and Adaptive become worse (these results
Values in the table are optimalities after 2 and 100 seconds. Columns represent the input parameter that has been changed with respect to the reference experiments. Rows represent the different algorithms.

Figure 2. Reference Experiment.

4.3 Summary

In these experiments we have compared four clustering algorithms executed with different modes. What we have learned is that, if we need speed, the fast and the adaptive algorithms are good choices in almost all situations. If we want to reduce the number of messages, the fast algorithm is usually the best choice. If homogeneity or optimality are critical factors, then the accurate and the adaptive algorithms are preferable. In conclusion, the adaptive algorithm, due to its “adaptive” nature, performs well in most common situations, however in extreme situations it can be overcome by the others.

5 Related Work

Self-aggregation techniques are based on the principles of the cluster analysis that seeks to identify homogeneous subgroups of cases in a population. This is a widely known discipline applied in areas like economics, social sciences and also in software engineering [6]. Cluster analysis aims at identifying a set of groups which both minimize within-group variation and maximize between-group variation. However, these techniques are mainly applied using a centralized approach, where a dedicated entity is in charge of establishing the desired global property applying suitable techniques/algorithms. The paradigm of self-aggregation, instead, is to distribute the responsibilities among the individual entities: no single entity is in charge of the overall aggregation, but each contributes to a collective behavior. Following this philosophy, mainly inherited from natural adaptive systems, the local behavior rules applied in all entities lead (hopefully) to the desired global behavior. Examples of application of these rules can be found in the area of communication networks: for example for the control of topology in wireless multi-hop network [5], or the computation of a maximal independent set in radio networks [13]. Several kind of application of self-organization techniques in communication network are reviewed in [15].

Apart from self-aggregation approaches, bio-inspired techniques have recently be applied in several fields, spanning the robot self-organization [19], the behavior of autonomous network [2], the actions of swarms of autonomous vehicles performing dangerous tasks [20], and to organize...
the sensor network deployment [10]. Different lines of research apply methods based on the use of genetic algorithms or neural networks to define and to study the problems related to cluster formation, e.g., [1] or the multi-agent approach like in [16].

6 Conclusions
In this paper we have proposed some self-aggregation algorithms that, based on simple local rules, are able to determine some global properties to the whole system without any centralized control nor scaling issues. The study on these algorithm has been performed by simulating their execution through a distributed simulator. The results of this analysis have been used to identify strengths and weaknesses of each algorithm, and therefore to produce self-decision heuristics that can be used to choose the algorithm that best fits a particular situation.

References