Self-Aggregation Algorithms for Autonomic Systems

Elisabetta Di Nitto, Daniele J. Dubois, Raffaela Mirandola

Dipartimento di Elettronica e Informazione
Politecnico di Milano

Self-Aggregation Algorithms

A Self-Aggregation algorithm is defined as an algorithm capable of enabling a spontaneous formation of groups of *compatible* nodes.

- **Clustering:**
 - Nodes are compatible if they have the same type.

- **Reverse Clustering:**
 - Nodes are compatible if they have different types.
Possible Applications

• Load-balancing problems:
 – System nodes are specialized in executing particular tasks.
 – Jobs coming to an overloaded node should be passed to another node that is able to execute the same task.
 – Nodes should be able to self-reorganize their limited knowledge about the environment.

• Overlay Self-Organization in Publish-Subscribe middleware:
 – Rewire the broker connections in order to minimize network load.
 – Group together subscribers interested on the same topics.
Clustering Algorithm Idea (Saffre et al, 2006)

1. Initiator Self-Election;
2. Initiator chooses a Matchmaker node among its neighbors;
3. The matchmaker node connects the initiator to one of its neighbors that are compatible to the initiator and then removes its link to the chosen node.
Clustering Algorithm Idea (Saffre et al, 2006)

1. Initiator Self-Election;
2. Initiator chooses a Matchmaker node among its neighbors;
3. The matchmaker node connects the initiator to one of its neighbors that are compatible to the initiator and then removes its link to the chosen node.
Clustering Algorithm Idea (Saffre et al, 2006)

1. Initiator Self-Election;
2. Initiator chooses a Matchmaker node among its neighbors;
3. The matchmaker node connects the initiator to one of its neighbors that are compatible to the initiator and then removes its link to the chosen node.
The Concept of Algorithm “noise”

- The **noise** in clustering algorithms is defined as the number of algorithm iterations that do not increase the system homogeneity.
- An example of iteration that contributes to algorithm noise:

![Diagram showing an example of noise in clustering algorithms](image)
New Algorithms

- **Noise reduction:** **FAST ALGORITHM**
 - More constrained: removal of links between compatible nodes is not permitted.
 - Faster convergence, less messages, lower accuracy.

- **Noise increase:** **ACCURATE ALGORITHM**
 - Less constrained: addition of links between non-compatible nodes is permitted only if another link between non-compatible nodes is removed.
 - Slower convergence, more messages, higher accuracy.

- **ADAPTIVE ALGORITHM**
Performance Analysis: optimality and messages

Nodes=100, Links=4 per node, Types=5, Random topology, Clustering

Simulation time (ms) vs. Average of optimality

Simulation time (ms) vs. Average of the number of messages
Conclusions

• We have proposed self-aggregation algorithms
 – able to apply global properties to a distributed system …
 – using simple local rules without centralized control.

• The algorithms have been simulated in order to identify strengths and weaknesses in different situations.

• Future Work
 – Study how to tailor the adaptive approach.
 – Create self-similarity groups using a fuzzy compatibility function.
 – Improve the strategies used for algorithm initialization and distributed termination detection.