Metodologie di progetto HW
La verifica di circuiti digitali

Versione del 28/04/08

Equivalence checking Basics
ROBDD’s (The Canonical Side)

- Representation of a logic function as graph (DAG):
 - many logic functions can be represented compactly - usually better than SOP’s
- Can be made canonical !!
- Many logic operations can be performed efficiently on BDD’s:
 - usually linear in size of result - tautology and complement are constant time
- Size of BDD critically dependent on variable ordering

Onset is Given by all Paths to “1”

F = b’+a’c’ = ab’+a’cb’+a’c’ all paths to the 1 node

Notes:
- By tracing paths to the 1 node, we get a cover of pair wise disjoint cubes.
- The power of the BDD representation is that it does not explicitly enumerate all paths; rather it represents paths by a graph whose size is measures by its nodes and not paths.
- A DAG can represent an exponential number of paths with a linear number of nodes.
- BDDs can be used to efficiently represent sets
 - interpret elements of the onset as elements of the set
 - f is called the characteristic function of that set
ROBDD’s

- Directed acyclic graph (DAG)
- one root node, two terminals 0, 1
- each node, two children, and a variable
- Shannon co-factoring tree, except reduced and ordered (ROBDD)
 - Reduced:
 - any node with two identical children is removed
 - two nodes with isomorphic BDD’s are merged
 - Ordered:
 - Co-factoring variables (splitting variables) always follow the same order along all paths
 \[x_1 < x_2 < x_3 < \ldots < x_n \]

Example

Two different orderings, same function.
ROBDD

Ordered BDD (OBDD) Input variables are ordered - each path from root to sink visits nodes with labels (variables) in ascending order.

Reduced Ordered BDD (ROBDD) - reduction rules:
1. if the two children of a node are the same, the node is eliminated: \(f = v f + v' f \)
2. if two nodes have isomorphic graphs, they are replaced by one of them

These two rules make it so that each node represents a distinct logic function.

Efficient Implementation of BDD’s

Unique Table:
- avoids duplication of existing nodes
 - Hash-Table: hash-function(key) = value

Computed Table:
- avoids re-computation of existing results
Efficient Implementation of BDD’s

- BDDs is a compressed Shannon co-factoring tree:
 - \(f = v f_v + v' f_{v'} \)
 - leafs are constants “0” and “1”
- Three components make ROBDDs canonical (Proof: Bryant 1986):
 - unique nodes for constant “0” and “1”
 - identical order of case splitting variables along each paths
 - hash table that ensures:
 - \((\text{node}(f_v) = \text{node}(g_v)) \land (\text{node}(f_{v'}) = \text{node}(g_{v'})) \implies \text{node}(f) = \text{node}(g) \)
 - provides recursive argument that \(\text{node}(f) \) is unique when using the unique hash-table

Recursive Formulation of ITE

\(v \) = top-most variable among the three BDD’s \(f, g, h \)

\[
\text{ite}(f, g, h) = f g + f h \\
= v(f g + f h)_v + v(f g + f h)_{v'} \\
= v(f_v g_v + f_{v'} h_v) + v(f_v g_{v'} + f_{v'} h_v) \\
= \text{ite}(v, \text{ite}(f_v, g_v, h_v), \text{ite}(f_{v'}, g_{v'}, h_{v'})) \\
= (v, \text{ite}(f_v, g_v, h_v), \text{ite}(f_{v'}, g_{v'}, h_{v'}))
\]
Recursive Formulation of ITE

Algorithm $\text{ITE}(f, g, h)$

```plaintext
if (f == 1) return g
if (f == 0) return h
if (g == h) return g
if ((p = HASH_LOOKUP_COMPUTED_TABLE(f, g, h)) return p
v = TOP_VARIABLE(f, g, h) // top variable from f, g, h
fn = ITE(v, g, h, v) // recursive calls
gn = ITE(f, v, h, v)
if (fn == gn) return gn // reduction
if (!p = HASH_LOOKUP_UNIQUE_TABLE(v, fn, gn)) {
p = CREATE_NODE(v, fn, gn) // and insert into UNIQUE_TABLE
}
INSERT_COMPUTED_TABLE(p, HASH_KEY{f, g, h})
return p
```

ITE Operator

$\text{ite}(f, g, h) = fg + \bar{f}h$

ITE operator can implement any two variable logic function. There are 16 such functions corresponding to all subsets of vertices of B^2:

<table>
<thead>
<tr>
<th>Table</th>
<th>Subset</th>
<th>Expression</th>
<th>Equivalent Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>AND(f, g)</td>
<td>fg</td>
<td>ite(f, g, 0)</td>
</tr>
<tr>
<td>0010</td>
<td>f > g</td>
<td>f' + g</td>
<td>ite(f, g', 0)</td>
</tr>
<tr>
<td>0011</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>0100</td>
<td>f < g</td>
<td>f' + g</td>
<td>ite(f, 0, g)</td>
</tr>
<tr>
<td>0101</td>
<td>g</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>0110</td>
<td>XOR(f, g)</td>
<td>f ⊕ g</td>
<td>ite(f, g', g)</td>
</tr>
<tr>
<td>0111</td>
<td>OR(f, g)</td>
<td>f + g</td>
<td>ite(f, 1, g)</td>
</tr>
<tr>
<td>1000</td>
<td>NOR(f, g)</td>
<td>f + g'</td>
<td>ite(f, 0, g')</td>
</tr>
<tr>
<td>1001</td>
<td>XOR(f, g)</td>
<td>f ⊕ g</td>
<td>ite(f, g, g')</td>
</tr>
<tr>
<td>1010</td>
<td>NOT(g)</td>
<td>g'</td>
<td>ite(g, 0, 1)</td>
</tr>
<tr>
<td>1011</td>
<td>f ≥ g</td>
<td>f + g'</td>
<td>ite(f, 1, g')</td>
</tr>
<tr>
<td>1100</td>
<td>NOT(f)</td>
<td>f'</td>
<td>ite(f, 0, 1)</td>
</tr>
<tr>
<td>1101</td>
<td>f ≤ g</td>
<td>f' + g</td>
<td>ite(f, g, 1)</td>
</tr>
<tr>
<td>1110</td>
<td>NAND(f, g)</td>
<td>(fg)'</td>
<td>ite(f, g', 1)</td>
</tr>
<tr>
<td>1111</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Traversal Procedure: Boolean AND

```c
bdd AND(bdd A, bdd B)
{
  (1) if ( A == 0 ) return 0;    if ( B == 0 ) return 0;
      if ( A == 1 ) return B;    if ( B == 1 ) return A;
      if ( A == B ) return A;    if ( A == B' ) return 0;
  (2) cache lookup
  (3) (A0,A1)=Cofactors(A,x);  (B0,B1)=Cofactors(B,x);
  (4) R0 = AND( A0, B0 );        R1 = AND( A1, B1 );
  (5) R = ITE( x, R1, R0 );
  (6) cache insert
  (7) return R;
}
```

Extension - Complement Edges

Combine inverted functions by using complemented edge
- similar to circuit case
- reduces memory requirements
- BUT MORE IMPORTANT:
 - makes some operations more efficient (NOT, ITE)

![Diagram](two different DAGs)

![Diagram](only one DAG using complement pointer)
Extension - Complement Edges

To maintain strong canonical form, need to resolve 4 equivalences:

Solution: Always choose one on **left**, i.e. the “then” leg must have **no** complement edge.

Garbage Collection

- Very important to free and reuse memory of unused BDD nodes
 - explicitly free’d by an external `bdd_free` operation
 - BDD nodes that were temporary created during BDD operations

- Two mechanism to check whether a BDD is not referenced:
 - **Reference counter** at each node
 - increment whenever node gets one more reference (incl. External)
 - decrement when node gets de-references (bdd_free from external, de-reference from internal)
 - counter-overflow → freeze node
 - **Mark and Sweep** algorithm
 - does not need counter
 - first pass, mark all BDDs that are referenced
 - second pass, free the BDDs that are not marked
 - need additional handle layer for external references
Garbage Collection

- Timing is very crucial because garbage collection is expensive
 - immediately when node gets free’ed
 - bad because dead nodes get often reincarnated in next operation
 - regular garbage collections based on statistics collected during BDD operations
 - “death row” for nodes to keep them around for a bit longer

- Computed table must be cleared since not used in reference mechanism

- Improving memory locality and therefore cache behavior:
 - sort free’ed BDD nodes to

BDD Derivatives

- **MDD**: Multi-valued BDDs
 - natural extension, have more than two branches
 - can be implemented using a regular BDD package with binary encoding
 - advantage that binary BDD variables for one MV variable do not have to stay together -> potentially better ordering

- **ADDs**: (Analog BDDs) MTBDDs
 - multi-terminal BDDs
 - decision tree is binary
 - multiple leafs, including real numbers, sets or arbitrary objects
 - efficient for matrix computations and other non-integer applications

- **FDDs**: Free BDDs
 - variable ordering differs
 - not canonical anymore

- and many more
Zero Suppressed BDD’s - ZBDD’s

ZBDD’s were invented by Minato to efficiently represent sparse sets. They have turned out to be useful in implicit methods for representing primes (which usually are a sparse subset of all cubes).

Different reduction rules:
- **BDD**: eliminate all nodes where then edge and else edge point to the same node.
- **ZBDD**: eliminate all nodes where the then node points to 0. Connect incoming edges to else node.
- **For both**: share equivalent nodes.

Canonicity

Theorem: (Minato) ZBDD’s are canonical given a variable ordering and the support set.

Example:
- BDD
- ZBDD if support is \(x_1, x_2 \)
- ZBDD if support is \(x_1, x_2, x_3 \)

AND-INVERTER Circuits

- Base data structure uses two-input AND function for vertices and INVERTER attributes at the edges (individual bit)
 - use De'Morgan’s law to convert OR operation etc.
- Hash table to identify and reuse structurally isomorphic circuits

Data Representation

- Vertex:
 - pointers (integer indices) to left and right child and fanout vertices
 - collision chain pointer
 - other data

- Edge:
 - pointer or index into array
 - one bit to represent inversion

- Global hash table holds each vertex to identify isomorphic structures

- Garbage collection to regularly free un-referenced vertices
Data Representation

- Constant
 - One Vertex

<table>
<thead>
<tr>
<th>hash value</th>
<th>left pointer</th>
<th>right pointer</th>
<th>next in collision chain</th>
<th>array of fanout pointers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0456</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6423</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0455</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0456</td>
<td>1345</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7463</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hash Table

Algorithm **HASH_LOOKUP** (Edge p1, Edge p2) {

 index = **HASH_FUNCTION** (p1, p2)

 p = &hash_table[index]

 while (p != NULL) {
 if (p->left == p1 && p->right == p2) return p;
 p = p->next;
 }

 return NULL;
}

Tricks:
- keep collision chain sorted by the address (or index) of p
 - that reduces the search through the list by 1/2
- use memory locations (or array indices) in topological order of circuit
 - that results in better cache performance
Basic Construction Operations

Algorithm **AND**(Edge p1, Edge p2) {
 if (p1 == const1) return p2
 if (p2 == const1) return p1
 if (p1 == p2) return p1
 if (p1 == ^p2) return const0
 if (p1 == const0 || p2 == const0) return const0

 if (RANK(p1) > RANK(p2)) SWAP(p1, p2)

 if ((p = HASH_LOOKUP(p1, p2)) return p
 return CREATE_AND_VERTEX(p1, p2)
}

Basic Construction Operations

Algorithm **NOT**(Edge p) {
 return TOOGLE_COMPLEMENT_BIT(p)
}

Algorithm **OR**(Edge p1, Edge p2) {
 return (NOT(AND(NOT(p1), NOT(p2))))
}
SAT and Tautology

- **Tautology:**
 - Find an assignment to the inputs that evaluate a given vertex to “0”.

- **SAT:**
 - Find an assignment to the inputs that evaluate a given vertex to “1”.
 - Identical to Tautology on the inverted vertex

- **SAT on circuits** is identical to the justification part in ATPG
 - First half of ATPG: justify a particular circuit vertex to “1”
 - Second half of ATPG (propagate a potential change to an output) can be easily formulated as SAT (will be covered later)

- **Basic SAT algorithms:**
 - branch and bound algorithm as seen before
 - branching on the assignments of primary inputs only (Podem algorithm)
 - branching on the assignments of all vertices (more efficient)

General Davis-Putnam Procedure

- search for consistent assignment to entire cone of requested vertex by systematically trying all combinations (may be partial!!!)
- keep a queue of vertices that remain to be justified
 - pick decision vertex from the queue and case split on possible assignments
 - for each case
 - propagate as many implications as possible
 - generate more vertices to be justified
 - if conflicting assignment encountered
 - undo all implications and backtrack
 - recur to next vertex from queue

Algorithm SAT(Edge p) {
 queue = INIT_QUEUE()
 if(IMPLY(p) && QUEUE_EMPTY(queue)) return TRUE
 return JUSTIFY(queue)
}
Implication Procedure

- Fast implication procedure is key for efficient SAT solver!!!
 - don’t move into circuit parts that are not sensitized to current SAT problem
 - detect conflicts as early as possible
- Table lookup implementation (27 cases):
 - No implications:
 - Implications:
Algorithm `implies(Edge p)` {
 assign(p,1)
 next_state = lookup(p)
 switch(next_state) {
 case CONFLICT: return FALSE;
 case CASE_SPLIT:
 add_vertex_to_queue(p,justification_queue);
 return TRUE;
 case NO_IMPLICATION: return TRUE;
 case PROP_BACK_LEFT_RIGHT:
 Edge lvalue = get_value(p->left);
 Edge rvalue = get_value(p->right);
 return implies(lvalue) && implies(rvalue);
 ...
 }
}

General Davis-Putnam Procedure

Algorithm `JUSTIFY(queue)` {
 if(QUEUE_EMPTY(queue)) return TRUE
 mark = ASSIGNMENT_MARK()
 v = QUEUE_NEXT(queue) // decision vertex
 if(IMPLY(NOT(v->left))) {
 if(JUSTIFY(queue)) return TRUE
 } // conflict
 UNDO_ASSIGNMENTS(mark)
 if(IMPLY(v->left)) {
 if(JUSTIFY(queue)) return TRUE
 } // conflict
 UNDO_ASSIGNMENTS(mark)
 return FALSE
Example

SAT(NOT(9))??

First case for 9:

Conflict!!
- undo all assignments
- backtrack

Note:
- vertex 7 is justified by 8 -> 5 -> 7

Solution cube: 1 = x, 2 = 0, 3 = 0

Example

Second case for 9:

First case for 5:
Ordering of Case Splits

- various heuristics work differently well for particular problem classes
- often depth-first heuristic good because it generates conflicts quickly
- mixture of depth-first and breadth-first schedule
- other heuristics:
 - pick the vertex with the largest fanout
 - count the polarities of the fanout separately and pick the vertex with the highest count in either one
 - run a full implication phase on all outstanding case splits and count the number of implications one would get
 - some cases may already generate conflicts, the other case is immediately implied
- pick vertices that are involved in small cut of the circuit

Learning

- Learning is the process of adding "shortcuts" to the circuit structure that avoids case splits
 - static learning:
 - global implications are learned
 - dynamic learning:
 - learned implications only hold in current part of the search tree
- Learned implications are stored in additional network
- Back to example:
 - First case for vertex 9 lead to conflict
 - If we were to try the same assignment again (e.g. for the next SAT call), we would get the same conflict => merge vertex 7 with Zero-vertex

- if rehashing is invoked
 - vertex 9 is simplified and
 - merged with vertex 8
Static Learning

- Implications that can be learned structurally from the circuit
 - Example: \((x \land y) = 0 \land (x \land \bar{y}) = 0 \Rightarrow (x = 0)\)
 - Add learned structure as circuit

Use hash table to find structure in circuit:

Algorithm `CREATE_AND(p1,p2)` {
 . . . // create new vertex p
 if ((p' = HASH_LOOKUP(p1, NOT(p2)))
 LEARN((p = 0) && (p' = 0) \Rightarrow (p1 = 0))
)
 if ((p' = HASH_LOOKUP(NOT(p1), p2))
 LEARN((p = 0) && (p' = 0) \Rightarrow (p2 = 0))
)
}

Back to Example

Original second case for 9:

<table>
<thead>
<tr>
<th>Queue</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Second case for 9 with static learning:

Solution cube: 1 = x, 2 = x, 3 = 0
Static Learning

- Socrates algorithm: based on contra-positive:
 \[(x \Rightarrow y) \Rightarrow (\neg y \Rightarrow \neg x)\]

  ```
  foreach vertex v {
    mark = ASSIGNMENT_MARK()
    IMPLY(v)
    LEARN_IMPLICATIONS(v)
    UNDO_ASSIGNMENTS(mark)
    IMPLY(\neg(v))
    LEARN_IMPLICATIONS(\neg(v))
    UNDO_ASSIGNMENTS(mark)
  }
  ```

- Problem: learned implications are far too many
 - solution: restrict learning to non-trivial implications
 - mask redundant implications

Metodologie di progetto HW
La verifica di circuiti digitali

BDD Sweeping

Pag. 20
Combining Structural Hashing and BDDs

- How can we build a hybrid SAT solver that takes advantage of multiple approaches?
 - Structural methods such as the AND/INVERTER graph are very efficient in making structurally easy decisions
 - However, they often cannot decide a problem
 - BDDs are the “power engine”
 - If we can build them the problem can be decided because of canonicity
 - However, often we cannot and run into a memory blow-up
 - Ultimate solution: Combine multiple approaches (e.g. structural hashing, BDDs, SAT) to cover a larger application range

BDD Sweeping Algorithm

- Combines BDD and structural hashing
- Applied internal cutpoints for overlapped BDD propagation

- Basic ingredient:
 - AND/INVERTER graph
 - hashing of isomorphic structure
 - BDD propagation using a sorted heap (priority queue) controlled by the size of the BDDs
 - propagate smallest BDDs first, don’t waste time building large BDD, might not be needed
 - Propagation of multiple BDD layers
 - simulated multiple, independent cut layers
 - avoids to put all bets into one cutset
Heap Based BDD Propagation

BDD sweeping works on AND/INVERTER graph
• idea is to merge Miter from inputs to outputs

Algorithm SWEEP (Edge p) {
 if (p == const1) return SAT
 if (p == const0) return UNSAT

 forall input vertices i do {
 bdd_i = CREATE_BDD_VARIABLE()
 STORE_VERTEX_AT_BDD(bdd_i, i)
 PUT_ON_HEAP(heap, bdd_i)
 }
 return PROCESS_HEAP(heap, p)
}

Algorithm PROCESS_HEAP (heap, Edge p) {
 while (heap != empty) {
 bdd = GET_SMALLEST_BDD(heap)
 v = GET_VERTEX_FROM_BDD(bdd)
 forall fanout vertices v_out of v do {
 bdd_left = GET_BDD_FROM_VERTEX(v_out->left)
 bdd_right = GET_BDD_FROM_VERTEX(v_out->right)
 bdd_res = BDD_AND(bdd_left, bdd_right)
 v_res = GET_VERTEX_FROM_BDD(bdd_res)
 MERGE_VERTICES_AND_HASH(v_res, v_out)
 if (p == const1) return SAT
 if (p == const0) return UNSAT
 }
 else {
 STORE_VERTEX_AT_BDD(bdd_res, v_out)
 }
 PUT_ON_HEAP(heap, bdd_res)
 }
 return undecided;
}
Example

Original graph:

Graph after processing vertices 1,2,3,4,5

5 and 3 get merged

BDD frontier

Pag. 23
Example

Graph after processing vertices 1, 2, 3, 4, 5
5 and 3 get merged

Graph after processing additional vertex 6
6 and 2 get merged

Output equivalence is proven without building BDDs for it
• exponential savings
BDD Sweeping Algorithm

- BDD Sweeping works from the inputs toward the outputs until structural hashing kicks in

- **What if logic too deep and no structural equivalence at outputs?**
 - Propagate multiple layers of BDD by starting from cone intersection
 - Interleave with SAT solver running from the output
 - Combine with local rewriting to increase structural similarity

- **What can we do about false negatives when BDD arrive at output from intermediate cutset**
 - Apply BDD_compose to resubstitute cutpoint variables using a heap based scheme

Multiple Layer BDD Sweeping

- start new BDD layers at common cut-frontiers
- keep propagating them in parallel from the same heap
- multiple BDD per AND vertex

BDD Sweeping and SAT

- Interleave the application of BDD sweeping and SAT solver
 - control the resources by BDD size limit for the sweeping
 - backtrack limit for the SAT solver
 - do not free BDDs once above size limit, just “hide” them
 - when size limit increases, BDDs “appear” again and sweeping continues

- Effect:
 - Sweeping merges the Miter from the inputs toward the outputs
 - SAT attempts to solve it as early as possible

- Further, interleave with random simulation to find miscompares

Algorithm SWEEP_SAT(Edge p) {
 if(p == const1) return SAT
 if(p == const0) return UNSAT
 forall input vertices i do {
 bdd_i = CREATE_BDD_VARIABLE()
 STORE_VERTEX_AT_BDD(bdd_i,i)
 PUT_ON_HEAP(heap,bdd_i)
 }
 for(size=size_lower_bound,size<size_upper_bound;size++) {
 if((res=PROCESS_HEAP(heap,size,p))!=undecided)
 return res
 if((res=SAT(back_track_limit))!=undecided)
 return res
 }
 return SAT(max_back_track_limit)
}

BDD Sweeping + SAT Solver
Equivalence Checking Example

No Sweeping

BDD size limit: 2^9
Vertices left cover only: 87
Vertices right cover only: 139
Vertices shared: 170
Number of backtracks: 2407939

Sweeping Half-way

BDD size limit: 2^4
Vertices left cover only: 56
Vertices right cover only: 29
Vertices shared: 196
Number of backtracks: 87
Full Sweep

Metodologie di progetto HW
La verifica di circuiti digitali

Equivalence checking
Application of EC in μP Designs

Architectural Specification (informal)
- Cycle Simulation
- Test Programs
- Equivalence Checking
- Circuit Simulation

RTL Specification (Verilog, VHDL)

Circuit Implementation (Schematic)

Layout Implementation (GDS II)

Application of EC in ASIC Designs

RTL Specification
- Equivalence Checking

Cell-Based Synthesis

Standard Cell Implementation

Engineering Changes (ECOs)
- Equivalence Checking

Final Implementation
Basic Model Finite State Machines

\[
X = (x_1, x_2, \ldots, x_n) \quad \text{Y} = (y_1, y_2, \ldots, y_n) \\
S = (s_1, s_2, \ldots, s_n) \quad \text{S}' = (s'_1, s'_2, \ldots, s'_n)
\]

\[M(X, Y, S, S_0, \delta, \lambda) : \]
\[X: \text{Inputs} \quad Y: \text{Outputs} \quad S: \text{Current State} \quad S_0: \text{Initial State(s)} \]
\[\delta: X \times S \rightarrow S \text{ (next state function)} \quad \lambda: X \times S \rightarrow Y \text{ (output function)} \]

Delay element:
- Clocked: synchronous
 - single-phase clock, multiple-phase clocks
- Unclocked: asynchronous

Finite State Machines Equivalence

Build Product Machine \(M_1 \times M_2\):

\[
\{X^1, X^2, \ldots, X^n\} \quad \{0, 0, \ldots, 0\}
\]

Definition:
\(M_1\) and \(M_2\) are functionally equivalent iff the product machine \(M_1 \times M_2\) produces a constant 0 for all valid input sequences \(\{X_1, \ldots, X_n\}\).
General Approach to EC

State Space of $S = M_1 \times M_2$

Initial State S^0

R “Good half” $r(s) = 1$

(S-R) “Bad half” $r(s) = \lambda$

Inductive proof of equivalence:
Find subset $R \subseteq S$ with characteristic function $f: S \rightarrow \{0,1\}$ such that:
1. $r(s^0) = 1$ (initial state is in good half)
2. $r(s = 1) \Rightarrow r(\delta(x,s)) = 1$ (all states from good half lead go to states in good half)
3. $r(s = 1) \Rightarrow \lambda(x,s) = 0$ (all states in good half are comparing states)

How Do We Obtain R?

- Reachability analysis:
 - state traversal until no more states can be explored
 - forward
 - backward
 - explicit
 - symbolic
- Relying on the design methodology to provide R:
 - equivalent state encoding in both machines
 - synthesis tool provides hint for R from sequential optimization
 - manual register correspondence
 - automatic register correspondence
- Combination of them
Combinational EC

- Industrial EC checkers almost exclusively use a combinational EC paradigm
 - Sequential EC is too complex, can only be applied to designs with a few hundred state bits
 - Combinational methods scale linearly with the design size for a given fixed size and “functional complexity” of the individual cones
- Still, pure BDDs are plain SAT solver cannot handle all cones
 - BDDs can be built for about 80% of the cones of high-speed designs
 - Less for complex ASICs
 - Plain SAT blows up on a “Miter” structure
- Contemporary method highly exploit structural similarity of designs to be compared

Miter Structure for Combinational EC

Basic methods:
- Random simulation, good for finding miscompares
- BDD based and modifications
- Structural SAT based with modifications
History of Equivalence Checking

- **SAS (IBM 1978 - 1994):**
 - Standard equivalence checking tool running on mainframes
 - Based on the DBA algorithm (“BDDs in time”)
 - Verified manual cell-based designs against RTL spec
 - Handling of entire processor designs
 - Application of “proper cutpoints”
 - Application of synthesis routines to make circuits structurally similar
 - Special hacks for hard problems
- **BEC (IBM 1991 - 1996):**
 - Workstation based re-implementation of SAS
 - Mainly used in BooleDozer synthesis environment
- **Verity (IBM 1992 - today):**
 - Originally developed for switch-level designs
 - Today IBM’s standard EC tool for any combination of switch-, gate-, and RTL designs

History of Equivalence Checking

- **Chrysalis (1994 - now Avanti):**
 - Based on ATPG technology and cutpoint exploitation
 - Very weak if many cutpoints present
 - Did not adopt BDDs for a long time
- **Formality (1997 - Synopsys):**
 - Multi-engine technology including strong structural matching techniques
- **Verplex (1998):**
 - Strong multi-engine based tool
 - To our knowledge heavy SAT-based
 - Very fast front-end
Application of Pure BDDs

Statistics on a PowerPC processor design:

Time for identical set of circuits:

Pag. 34
Structural Similarity

Methods

Structure-independent techniques:
- exhaustive simulation
- decision diagrams (*DD*)

Structure-dependent techniques:
- graph hashing
- SAT solvers including learning techniques
Handling Constraints

Input constraints:
- non-occurring input values (don’t cares)
- non-reachable states
- candidate for R

1. Input Mapping:

2. Output Masking:

Characteristic function for constraint

Cutpoint-based EC

Cutpoints are used to partition the Miter

Cutpoint guessing:
- Compute net signature with random simulator
- Sort signatures + select cutpoints
- Iteratively verify and refine cutpoints
- Verify outputs
False Negatives

Outputs may miscompare for invalid cutpoint values:

\[c = (v \equiv y+z) \]

What can we do about false negatives:

- constrain input space to \(c = (v \equiv y+z) \)
- if \(v \) in \(\text{SUPPORT}(\text{out}) \) then \(\text{out} = \text{compose}(\text{out}, v, f_v) \)

Permissible Cutpoints

Testable for \(s-a-0 \) or \(s-a-1 \)?

Based in ATPG:

- test for \(s-a-0 \) at output
 - checks for permissible functions
- test for \(s-a-1 \) out output
 - checks for inverse permissible functions

Permissible functions:

- successively merge circuits from input to outputs
Sequential Equivalence Checking

- If combinational verification paradigm fails (e.g., we have no name matching)

- Two options:
 - run full sequential verification based on state traversal
 - very expensive but most general
 - try to match registers automatically
 - functional register correspondence
 - structural register correspondence

Register Correspondence

- Find registers in product machine that implement identical or complemented function
 - these are matching registers in the two machines under comparison
 - BUT: might be more, we may have redundant registers

Definition: A register correspondence $R C \subseteq s \times s$

is an equivalence relation in the set of registers s.

(This definition includes only identical functions, it can be extended to also include complemented functions)

A register correspondence can be used as a candidate for R:

$$ r(s) = \prod_{\forall (s', s'') \in R_C} (s' \equiv s'') $$
Functional Register Correspondence

Algorithm \textsc{register correspondence} \{
\begin{align*}
 \text{RC}' &= \{(s^i, s^j) \mid s^i_0 = s^j_0\} \quad \text{// start with registers with identical initial states} \\
 \text{do} \{ \\
 \text{RC} &= \text{RC}' \\
 r(s) &= \text{P}_{V_{(s^i, s^j)}}(s^i = s^j) \\
 \text{RC}' &= \{(s^i, s^j) \mid (s^i, s^j) \in \text{RC} \land \delta^i(x, s) = \delta^j(x, s) \land r(s)\} \\
 \} \text{while} (\text{RC}' \neq \text{RC}) \\
 \text{return} \ \text{RC}
\end{align*}
\}

In essence:

- the algorithm starts with an initial partitioning with two equivalence classes, one for each initial value
- the algorithm computes iteratively the next state function, assuming that the RC is correct
 - if yes, fixed point is reached and RC returned
 - if no, split equivalence classes along the miscompares

Example

Instead of using constraint, use fresh variable for each class

Result:
\{s^1, s^4\}
\{s^2, s^3, s^5\}

- In case of miscomparing designs
 - effect of miscomparing cone may ripple through entire algorithm and split all equivalence classes until they contain only single registers
 - difficult to debug since no hint of error location

- Solution:
 - relaxation of equivalence criteria
 - e.g. structural register correspondence algorithm based on support set of registers
 - combined techniques with name mapping, functional/structural criteria

Sequential Equivalence Checking

- In case that combinational equivalence checking model fails:
 - use generalized register correspondence to also consider retiming
 - in essence, use all internal nets as candidates for possible matches

- Worst case: full sequential verification
 - Prove that the output of the product machine is not satisfiable (sequentially)
 - special case of general property checking
State Traversal Techniques

Forward Traversal:
• start from initial state(s)
• traverse forward to check whether “bad” state(s) is reachable

Backward Traversal:
• start from bad state(s)
• traverse backward to check whether initial state(s) can reach them

Combines Forward/Backward traversal:
• compute over-approximation of reachable states by forward traversal
• for all bad states in over-approximation, start backward traversal to see whether initial state can reach them