Thermal/Performance Trade-off in Network-on-Chip Architectures

Davide Zoni, Simone Corbetta and William Fornaciari

fornacia@elet.polimi.it

http://home.dei.polimi.it/fornacia

Politecnico di Milano
Dipartimento di Elettronica e Informazione
Via Ponzio 34/5, 20133, Milano, ITALY
Outline

• **Introduction**
 – From single-core to multi-core
 – ITRS projections

• **Key observations**
 – The ring-based organization
 – The proposed methodology

• **Results**
 • Simulation framework

• **Future perspective**
What’s next

• **Introduction**
 – From single-core to multi-core
 – ITRS projections

• **Key observations**
 – The ring-based organization
 – The proposed methodology

• **Results**
 • Simulation framework

• **Future perspective**
Power trend: The 2004 inflection point

- From single-core to multi-core processors

Multi-core architectures era

- Number of cores is expected to increase
 - Die area is not constant to 260mm^2
 - Higher MPU power density
What’s next

• **Introduction**
 – From single-core to multi-core
 – ITRS projections

• **Key observations**
 – The ring-based organization
 – The proposed methodology

• **Results**
 • Simulation framework

• Future perspective
Thermal management

• Design-time analysis and optimization
 – Provides thermal map analysis of a given scenario
 – Compile-directed optimization requires full knowledge of application
 – Do not consider dynamic operating conditions

• Run-time approaches
 – Adaptive to application requirements
 – Expensive
 – Often, requires monitor/sense/actuate

• Hybrid approach
 – Design-time suggested and run-time exploited
Temperature distribution in MPSoCs

• Questions
 – How multi-programmed workload impacts temperature profile in a 2D-mesh architecture?
 – Which is the impact of different workloads?
 – How to reduce hot-spot?

• Preliminary analysis can be carried out
 – Using simulation flows, providing temperature estimation beforehand
 – Formal models can be used to optimize temperature profile and assess validity
Temperature distribution in MPSoCs (cont’d)

- **Power consumption of different applications**
 - Low variability, due to microarchitecture design (in-order pipeline)

- **Implications**
 - Hot-spot is located at the center of the chip!

<table>
<thead>
<tr>
<th>Core #</th>
<th>Placement</th>
<th>Instructions</th>
<th>Power [W]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Row</td>
<td>Col</td>
<td>Int</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12.8%</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>34.6%</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>64.4%</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>40.8%</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>40.8%</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>64.4%</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>40.8%</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>67.7%</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>0</td>
<td>66.1%</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>80.7%</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>99.1%</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>3</td>
<td>68.0%</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>0</td>
<td>69.4%</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1</td>
<td>66.1%</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>2</td>
<td>34.6%</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>3</td>
<td>12.8%</td>
</tr>
</tbody>
</table>
Ring organization of NUCA architectures

- Tile-based architecture grouping tiles with similar thermal profiles and relative location

16-cores, 2D mesh and 2 rings

Basic idea: inner rings will receive fewer CPU time to reduce power consumption, hence temperature
What’s next

• Introduction
 – From single-core to multi-core
 – ITRS projections

• Key observations
 – The ring-based organization
 – The proposed methodology

• Results
 • Simulation framework

• Future perspective
Linear formal model

- **From clock-toggling to temperature**

 \[t_{i,j} := \sum_{d \in D} (\alpha_d \cdot r_d) \quad \forall \ (i, j) \in R \times C, \]

 - \(r_d \) is the duty-cycle for island \(d \)
 - \(\alpha_d \) is the coefficient to be determined
 - \(t_{i,j} \) is the temperature on tile \((i,j)\), determined as a linear function over all thermal islands

- **From clock-toggling to performance**

 \[p_{i,j} = r_{f(i,j)} \quad \forall \ (i, j) \in R \times C, \]

 \[f := (i, j) \rightarrow D, \]

 - \(P_{i,j} \) is the performance level of \((i,j)\) tile
 - \(r_{f(i,j)} \) is the duty-cycle for thermal island that owns tile \(i,j\)
 - \(f(i,j) \) is a mapping function from \(i,j\) to the thermal island
Optimization: LP formulation

- **Objective**
 - Maximize the lower tile performance (fairness)

 \[\text{max } q \]
 \[q \leq p_{i,j} \quad \forall \ (i, j) \in R \times C \]

- **Constraints**
 - Linear performance/duty-cycle relation

 \[p_{i,j} = r_f(i,j) \quad \forall \ (i, j) \in R \times C, \]
 \[f := (i, j) \to D, \]

 - Linear thermal/duty-cycle relation

 \[t_{i,j} := \sum_{d \in D} (\alpha_d \cdot r_d) \quad \forall \ (i, j) \in R \times C, \]

 - Thermal constraints on maximum allowed temperature

 \[t_{i,j} \leq T_{max} \quad \forall \ (i, j) \in C \times R \]

- **Variables**
 - The duty-cycle to each thermal island \(d \)

 \[r_f(i,j) \quad \forall \ (i, j) \in R \times C, \]
 \[f := (i, j) \to D, \]
What’s next

- **Introduction**
 - From single-core to multi-core
 - ITRS projections

- **Key observations**
 - The ring-based organization
 - The proposed methodology

- **Results**
 - Simulation framework

- **Future perspective**
Experimental results

- **HANDS estimation framework**
 - Design-time analysis on application performance and thermal impact

![Diagram showing the HANDS estimation framework](image)

- GEM5 (Simulation)
- Orion2.0 (Power models)
- HotFloorgen (Floorplan)
- HotSpot (MTTF, Thermal and reliability models)

Experimental settings

- **Multiple benchmarks configuration**
 - Different suites WCET, SPLASH2 and MIBENCH
 - Different instruction breakdown

- **Alpha-2136 like architecture**

<table>
<thead>
<tr>
<th>Processor core</th>
<th>3GHz, in-order based on Alpha21264 core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int-ALU</td>
<td>4 integer ALU functional units</td>
</tr>
<tr>
<td>Int-Mult/Div</td>
<td>4 integer multiply/divide functional units</td>
</tr>
<tr>
<td>FP-Mult/Div</td>
<td>4 floating-point multiply/divide functional units</td>
</tr>
<tr>
<td>L1 cache</td>
<td>64kB 2-way set assoc. split I/D, 2 cycles latency</td>
</tr>
<tr>
<td>L2 cache</td>
<td>1.75MB per bank, 8-way associative</td>
</tr>
<tr>
<td>Router</td>
<td>2-stage wormhole switched (Garnet network [1])</td>
</tr>
<tr>
<td>Topology</td>
<td>2D-mesh based on Alpha21364 network processor</td>
</tr>
<tr>
<td>Technology</td>
<td>45nm at 1.1V</td>
</tr>
</tbody>
</table>
Model validation

- Accuracy of predicted temperature
 - Very good accuracy irrespective of threshold temperature
 - Low variance, limited to 0.37K

16-cores

36-cores
Reliability improvement analysis

- Theoretical and modeled reliability analysis
 - Two major (FEOL and BEOL) fault mechanisms
 - Stress migration
 \[MTTF_{SM} \propto |T_0 - T|^{-n} \cdot e^{\frac{E_{SM}}{kT}} \]
 - Electromigration
 \[MTTF_{EM} \propto e^{\frac{E_{EM}}{kT}} \]

What’s next

• Introduction
 – From single-core to multi-core
 – ITRS projections

• Key observations
 – The ring-based organization
 – The proposed methodology

• Results
 • Simulation framework

• Future perspective
Conclusions and future works

- **We proposed a design-time thermal/performance optimization model**
 - Targeting 2D-mesh architectures and NoCs
 - Based on linear formal model suitable for LP formulation and design-time optimization
 - The proposed model can be jointly used with existing dynamic thermal management techniques

- **Future works**
 - Adoption of the proposed methodology to NoC routers
 - Greater degree of freedom: rings are partitioned in multiple area (e.g., cores on the edges or at the corners)
Kiitos!
Any questions?

Take a tour to my web site for more info and tools for:
- Thermal/power-related reliability (HANDS)
- Run-time resource management (BBQ)
- Analysis and optimization of Sw energy (SWAT)

Prof. William Fornaciari
Politecnico di Milano – DEI
fornacia@elet.polimi.it
http://home.dei.polimi.it/fornacia
Validation of the performance clock toggling relation

- We assess the linear relation using a 16-core architecture with 2 rings.
- The graph shows the quasi linear behavior of the proposed model, where theoretical (dash-line) and experimental (points) data are very close.
Validation of the thermal clock toggling relation

- We assess linear relation using 16-core architecture with 2 rings.
- We sampled a huge space domain (left figure).
- The data are distributed over a virtual plane on 3d space, following a linear function (right figure).