Carlo Brandolese
William Fornaciari

Sistemi embedded
Sviluppo hardware e software
per sistemi dedicati

PEARSON
Prentice Hall
Sommario

Parte I Aspetti generali

1 Introduzione
 1.1 Caratteristiche di un sistema embedded
 1.2 Progettazione dei sistemi embedded
 1.3 Evoluzione
 1.3.1 Influenza dell'industria
 1.3.2 Electronic design automation
 1.3.3 Piattaforme di sviluppo
 1.4 Il mercato dei sistemi embedded
 1.4.1 Software
 1.4.2 Hardware
 1.5 Riepilogo

Parte II Realizzazione dei sistemi

2 Architettura e progettazione
 2.1 Printed Circuit Board
 2.1.1 Componenti
 2.1.2 Supporto
 2.1.3 Montaggio dei componenti
 2.1.4 Approccio alla progettazione
 2.2 System-on-Chip
 2.2.1 Approccio alla progettazione
 2.2.2 Design for testability
 2.3 Sistemi distribuiti
 2.3.1 Alcuni ambiti applicativi
 2.3.2 Wireless sensor network
 2.3.3 Approccio alla progettazione
vi Sommario

2.4 Piattaforme di prototipazione .. 63
 2.4.1 Tipologie di sistemi di sviluppo ... 64
 2.4.2 Approccio alla progettazione ... 65
 2.4.3 Esempi ... 67
2.5 Riepilogo .. 72

3 Flusso di progettazione .. 75
 3.1 Introduzione ... 75
 3.1.1 Modelli ... 76
 3.1.2 Metriche ... 83
 3.1.3 Strumenti ... 86
 3.2 Flusso di sviluppo a livello di sistema ... 94
 3.2.1 Aspetti generali ... 94
 3.2.2 Alcuni flussi specifici ... 96
 3.3 Flusso di sviluppo di PCB ... 99
 3.4 Flusso di sviluppo dell'hardware .. 101
 3.4.1 Front-end ... 102
 3.4.2 Back-end .. 106
 3.5 Flusso di sviluppo del software ... 109
 3.5.1 Flusso di sviluppo di sistemi operativi 110
 3.5.2 Flusso di sviluppo di software applicativo 112
 3.6 Riepilogo .. 116

4 Pianificazione e gestione .. 119
 4.1 Ciclo di sviluppo ... 120
 4.2 Modelli .. 122
 4.2.1 Cascata .. 123
 4.2.2 Ciclo a V ... 124
 4.2.3 Spirale ... 124
 4.2.4 Contratto ... 125
 4.2.5 Una visione più realistica ... 126
 4.3 Project management .. 127
 4.3.1 Problemi di gestione ... 128
 4.3.2 Organizzazione ... 129
 4.4 Costi di sviluppo .. 133
 4.4.1 Costo di sviluppo dell'hardware ... 134
 4.4.2 Costi di sviluppo del software ... 138
 4.4.3 Costi indotti dal mercato ... 146
 4.5 Riuso e proprietà intellettuali ... 148
 4.5.1 Productivity gap .. 148
 4.5.2 Metodologia ed economia di progetto 151
 4.5.3 Hardware libero ... 155
 4.6 Creazione di prodotti ... 156
 4.6.1 Gerarchie e ruoli nella progettazione 156
 4.6.2 Gestione del rischio ... 157
 4.7 Riepilogo .. 159
Parte III Elaborazione

5 Tecnologie hardware

5.1 Tecnologie ASIC ... 164
 5.1.1 Processo planare .. 164
 5.1.2 Standard cell .. 169
 5.1.3 Gate array ... 172
 5.1.4 Full custom ... 173

5.2 Tecnologie programmabili .. 173
 5.2.1 Classificazione .. 173
 5.2.2 PLA, PAL e GAL .. 176
 5.2.3 CPLD ... 178
 5.2.4 FPGA ... 178

5.3 Riepilogo .. 179

6 Microprocessori

6.1 Microprocessori general purpose ... 185
 6.1.1 Architetture CISC ... 186
 6.1.2 Architetture superscalari .. 189
 6.1.3 Architetture CISC/RISC .. 190
 6.1.4 Architetture RISC ... 191
 6.1.5 Architetture EPIC/VLIW ... 193
 6.1.6 Analisi comparata ... 195

6.2 Processori dedicati .. 195
 6.2.1 Digital Signal Processor ... 196
 6.2.2 Network processor .. 200
 6.2.3 Microcontrollori .. 202

6.3 Riepilogo .. 204

7 Memorie

7.1 Classificazione e parametri caratteristici 208

7.2 Memorie non volatili .. 211
 7.2.1 ROM ... 211
 7.2.2 EPROM, E²PROM ... 213
 7.2.3 Flash ... 215
 7.2.4 Memorie di massa embedded ... 218

7.3 Memorie volatili ... 219
 7.3.1 Organizzazione .. 219
 7.3.2 Memorie statiche .. 220
 7.3.3 Memorie dinamiche .. 222

7.4 Gerarchia di memoria .. 223

7.5 Prestazioni ... 232

7.6 Riepilogo ... 234
8 Software di base 235
8.1 Sistemi operativi .. 236
 8.1.1 Caratteristiche generali 236
 8.1.2 Sincronizzazione e comunicazione 240
8.2 Gestione del processore 243
 8.2.1 Stati di un processo 243
 8.2.2 Criteri di scheduling 245
8.3 Esigenze dei sistemi real-time 249
8.4 Schedulung per il real-time 251
 8.4.1 Tempi di risposta 251
 8.4.2 Classi di algoritmi 255
 8.4.3 RMS, EDF e quote proporzionali 256
8.5 Real-Time Operating System 258
 8.5.1 Linux/UNIX .. 260
 8.5.2 Windows ... 262
 8.5.3 VxWorks ... 263
 8.5.4 Windows CE ... 265
 8.5.5 Free software .. 269
 8.5.6 Patch real-time 271
8.6 Riepilogo ... 275

9 Software applicativo 277
9.1 Scelta del linguaggio 277
9.2 Qualità del codice ... 280
 9.2.1 Stile di scrittura 282
 9.2.2 Analisi e documentazione 287
 9.2.3 Metriche ... 290
9.3 Validazione .. 293
 9.3.1 Testing del software 294
 9.3.2 Verifica del sistema embedded 296
 9.3.3 Software per uso domestico 301
9.4 Riepilogo ... 306

Parte IV Comunicazione

10 Segnali 309
 10.1 Conversione analogico/digitale 311
 10.1.1 Campionamento 311
 10.1.2 Quantizzazione 312
 10.1.3 Dithering .. 314
 10.1.4 Convertitori A/D 315
 10.2 Conversione digitale/analologico 321
 10.2.1 Convertitori D/A 324
 10.3 Rappresentazione fisica dei livelli logici 327
 10.4 Esempio applicativo 329
11 Comunicazione .. 333
 11.1 Trasmissione seriale 333
 11.1.1 Trasmissione seriale sincrona 334
 11.1.2 Trasmissione seriale asincrona 337
 11.1.3 Protocolli e bus seriali standard 338
 11.2 Trasmissione parallela 342
 11.2.1 Meccanismi di comunicazione di base 343
 11.2.2 Protocolli paralleli standard 345
 11.3 Trasmissione wireless 346
 11.3.1 Modulazione analogica 346
 11.3.2 Modulazione digitale 349
 11.4 Codici a rilevamento e correzione di errore 353
 11.4.1 Codici a ripetizione 354
 11.4.2 Codici di Hamming 355
 11.4.3 Codici a ridondanza ciclica 357
 11.5 Riepilogo 358

12 Interfacciamento 361
 12.1 Indirizzamento 362
 12.1.1 Memory mapped I/O 362
 12.1.2 Standard I/O 364
 12.1.3 Port mapped I/O 364
 12.1.4 Extended I/O 366
 12.2 Polling .. 367
 12.3 Interrupt 368
 12.3.1 Architetture per la gestione di interrupt e arbitraggio . 370
 12.3.2 Identificazione della periferica 375
 12.3.3 Mascheramento 376
 12.4 Accesso diretto alla memoria 378
 12.5 Riepilogo 380

13 Sensori .. 383
 13.1 Caratteristiche 385
 13.2 Esempi ... 388
 13.2.1 Posizione 388
 13.2.2 Velocità 389
 13.2.3 Temperatura 389
 13.2.4 Tensione meccanica 391
 13.2.5 Umidità 391
 13.2.6 Luminosità 391
 13.2.7 MEMS 392
 13.3 Riepilogo 392
Appendici

A Studio di fattibilità di single-chip
A.1 Analisi del progetto 399
A.2 Soluzione ASIC ... 400
A.3 Flusso di progettazione 402
A.4 Selezione dei fornitori 404
A.5 Tradeoff ... 406
A.6 Considerazioni conclusive 410
A.7 Riepilogo .. 413

B Linguaggi di descrizione dell’hardware
B.1 Introduzione ... 415
B.2 VHDL ... 416
 B.2.1 Livelli di astrazione 416
 B.2.2 Design entities 417
 B.2.3 Statement .. 419
 B.2.4 Pipelining .. 427
 B.2.5 Librerie IEEE 428
B.3 Verilog ... 431
 B.3.1 Livelli di astrazione 431
 B.3.2 Costanti .. 432
 B.3.3 Segnali ... 433
 B.3.4 Operatori ... 435
 B.3.5 Moduli .. 437
 B.3.6 Blocchi dichiarativi 442
 B.3.7 Blocchi procedurali 448
B.4 Riepilogo .. 455

Glossario ... 457

Bibliografia .. 473

Indice analitico ... 479
Prefazione

Alzarsi la mattina, fare colazione e recarsi con calma in libreria per acquistare questo testo. È sabato o domenica, finalmente un giorno in cui non si interagisce con la tecnologia, in cui non si accende il computer.

Tale sogno non è prossimo alla realtà. Da qualche ora si è probabilmente già entrati in contatto con un centinaio di sistemi basati su microprocessori: decine sull’automobile, due o tre in ogni elettrodomestico o telefono cellulare, almeno uno in ogni apparato alimentato dalla rete elettrica o a pile: condizionatore, apricanello, pace-maker, calcolatore giardinaggio *evolute*, semafori per l’attraversamento pedonale, carte di credito per il pagamento elettronico, e così via.

La maggior parte dei sistemi di elaborazione non è costituita da personal computer, bensì da dispositivi in stretta relazione con l’ambiente in cui operano, che in genere hanno uno scopo prefissato e per tale motivo non richiedono di caricare programmi o, spesso, di avere interfacce con tastiera e monitor. Si parla di sistemi *invisibili*, *ubiqui* e *pervasivi*, per rappresentare la loro trasparente invasività nella vita quotidiana. Questi sistemi, detti *dedicati* o *embedded*, dominano pertanto numericamente il mercato, anche se in modo non connotato, rispetto ai sistemi *general purpose* come il PC.

Perché un libro sui sistemi embedded?

La loro architettura ricorda quella di un generico sistema di calcolo, con sezioni di elaborazione, comunicazione, memorizzazione e interfaccia, ma i requisiti operativi li rendono talmente peculiari da richiedere metodologie di progetto, e un approccio alla ricerca di soluzioni tecnologiche, tali da giustificare la nascita di una vera e propria nuova disciplina ingegneristica.

Fra le caratteristiche distinctive compare la necessità, dati i segmenti di mercato in genere di larga diffusione, di contenere i più possibili i costi del prodotto e i tempi di realizzazione. I sistemi sono fortemente specializzati e ottimizzati per svolgere un ristretto numero di compiti, con vincoli stringenti su consumo di potenza, prestazioni, dimensioni, affidabilità e così via. Le principali conseguenze di un così elevato numero di requisiti sono: la scelta di architetture miste hardware/software per bilanciare i
costi, le prestazioni e i tempi di sviluppo; il ricorso estensivo a strumenti CAD per supportare la simulazione e la sintesi dei sistemi; la messa a punto di metodologie di progetto che iniziano considerando l'applicazione a livello sistema, traducendo in seguito tali specifiche in un dispositivo reale sulla base dei vincoli e degli obiettivi, senza ricalcare necessariamente la struttura general purpose di un PC.
Per tali ragioni il progetto dei sistemi embedded non è convenzionale. Si devono avere presenti le opportunità offerte da ogni possibile tecnologia realizzativa, sia essa hardware o software, e adottare un approccio al design che ottimizzi in modo concorrente tutti i requisiti del progetto.
L'obiettivo del libro è fornire le basi metodologiche per applicare efficacemente un approccio trasversale nelle tecnologie e olstico nel risultato: progettare in modo flessibile sistemi dedicati a svolgere in modo ottimizzato compiti con un elevato grado di specializzazione.

A chi è rivolto il libro
Il libro è rivolto a studenti universitari e professionisti che si trovano a dover progettare e/o utilizzare sistemi, i cui requisiti funzionali e i vincoli di progetto portano a utilizzare architetture di calcolo specializzate. Si suppone che il lettore abbia conoscenze, almeno di base, relative alla struttura di un sistema di calcolo, al ruolo o all'organizzazione del sistema operativo e possieda i rudimenti della programmazione. La scelta degli argomenti di ciascuno dei capitoli riflette l'obiettivo di fornire una chiave di lettura per ogni aspetto della progettazione e analisi dei sistemi embedded, che racchiude sia gli aspetti di design dell'hardware e software, sia la gestione del progetto. Ogni capitolo è stato concepito per essere il più possibile autocontenuto, in modo che il lettore, e in particolare il docente, possa facilmente personalizzare il percorso di approfondimento delle tematiche.
Si è cercato di trasferire soprattutto l'aspetto metodologico nell'analisi dei problemi, per consentire di valutare e selezionare ogni novità tecnologica, cogliendo le eventuali opportunità ma, nel contempo, evitando che l'attenzione sulle soluzioni dell'ultima ona portino lontano dagli obiettivi (e vincoli) reali del progetto.

Struttura del volume
L'organizzazione del testo prevede quattro parti che ricalcano gli aspetti rilevanti dell'analisi e progettazione dei sistemi.
La prima parte conduce il lettore nel mondo dei sistemi dedicati.
Nel Capitolo 1 si evidenziano le peculiarità che distinguono i sistemi embedded dai sistemi general purpose, descrivendo come gli obiettivi e vincoli di progetto si riflettono sulle scelte architetturali. Vengono infine evidenziate e caratterizzate le forze che spingono l'evoluzione dei sistemi embedded, ovvero i trend del mercato e i progressi tecnologici attesi.
Nella seconda parte l'attenzione viene posta sulle metodologie di progettazione.
Il Capitolo 2 introduce soluzioni, tecnologie disponibili e metodologie per la realizzazione di sistemi misti hardware/software per applicazioni embedded. L'obiettivo è fornire una panoramica degli ambiti applicativi, dei pregi e dei limiti delle varie soluzioni presenti sul mercato: si spazia dal tradizionale (e lungo) montaggio su board,
per arrivare alla realizzazione dell’intero sistema su un unico circuito integrato. Per le varie tecnologie sono esaminati i pragi e le limitazioni che possono per esempio essere indotte dall’elevato livello d’integrazione, come il testing delle funzionalità.

Il Capitolo 3 riguarda i vari passi che consentono di tradurre le funzionalità astratte di un sistema in un’architettura reale. Dopo una fase di analisi delle specifiche, per buona parte dei sistemi embedded il problema principale è selezionare l’architettura su cui mappare le funzionalità, procedendo quindi alla sintesi di tutti i componenti: hardware, software e interfacce di comunicazione. Il capitolo offre una completa panoramica del flusso di progettazione a livello di sistema, specializzando in seguito i percorsi per il software, l’ hardware e lo sviluppo della board. Particolare attenzione è stata rivolta nell’evidenziare l’importanza di comporre una toolchain di strumenti di sviluppo, al supporto di un realistico flusso di progettazione del sistema.

Il Capitolo 4 conclude la seconda parte del volume, richiamando l’attenzione su aspetti talvolta trascurati: la pianificazione e la gestione delle attività di sviluppo. Il successivo e la progettazione di un sistema embedded, infatti, non dipendono solo da fattori tecnologici, ma sono anche espressione della capacità di organizzare il lavoro e di saper prendere le decisioni migliori all’inizio del processo di sviluppo, quando il livello d’incertezza è ancora elevato. A tal fine sono presentati i più diffusi approcci organizzativi, illustrati i principali modelli per la previsione dei tempi e costi e chiarito il ruolo e le responsabilità di un project manager nella realizzazione di un prodotto per il mercato dei sistemi embedded. Particolare attenzione viene rivolta alla comprensione delle implicazioni della progettazione basata sul riuso.

La terza parte è dedicata alla presentazione degli aspetti di elaborazione. Le tecnologie e i dispositivi per realizzare le sezioni di calcolo sono il contenuto dei Capitoli 5, 6 e 7, che presentano gli approcci per implementare i sistemi digitali dedicati e le diverse architetture di microprocessore.

La trattazione si articola partendo da soluzioni puramente hardware, con elevato grado di specializzazione. Il Capitolo 5 si concentra sugli approcci che sfruttano la tecnologia dei circuiti integrati, ottimizzando il livello d’integrazione (ASIC) o la flessibilità (logiche programmabili). I processori, descritti nel Capitolo 6, vengono classificati sulla base del loro grado di specializzazione, dettagliando alcune soluzioni dedicate, come i microcontrollori e i DSP, utilizzate efficacemente in molti sistemi embedded.

Il sottosistema di memoria è l’oggetto del Capitolo 7 dove si riportano le caratteristiche delle principali tecnologie allo stato solido. Si analizzano in maniera comparata le possibili scelte, in funzione dei requisiti dell’applicazione e delle peculiarità delle varie tecnologie. Viene inoltre descritta l’organizzazione di una gerarchia di memoria, evidenziandone i pragi, ma anche i limiti di complessità che la rendono inadatta per un numero significativo di applicazioni embedded.

Il Capitolo 8 è dedicato a inquadrare il ruolo del software di base e le peculiarità che deve assumere in relazione ai vincoli di reattività e real-time dei sistemi embedded. Dopo un richiamo al ruolo e organizzazione del sistema operativo, si analizzano le esigenze dei sistemi real-time in termini di latenza nella risposta agli eventi e determinismo nel comportamento. Si sottolinea come tali esigenze si ripercuotano sulla struttura dei sistemi operativi real-time, soprattutto per quanto concerne la strategia di gestione e scheduling della CPU. A chiusura del capitolo sono analizzati alcuni
sistemi operativi reali, per comprendere se e quando, in base alla loro complessità e organizzazione, possono essere un valido supporto alla realizzazione di un sistema embedded.

La visione applicativa del software è contenuta nel Capitolo 9, dove si considerano in modo congiunto gli aspetti legati all'architettura di calcolo, il processo di sviluppo e gli ambienti di supporto alla scrittura del codice. Si descrivono le caratteristiche salienti di un linguaggio di programmazione per applicazioni embedded, presentando al lettore gli strumenti per valutare e migliorare diversi aspetti del software: prestazioni, chiarezza stilistica, documentazione, efficienza e correttezza. L'obiettivo è trasferire al lettore l'esigenza e l'importanza di scrivere codice di qualità, come primo passo verso la correttezza e la robustezza dell'applicazione complessiva. Il problema della verifica viene affrontato in maniera incrementale, partendo dalle problematiche di testing a livello del codice, per giungere alla simulazione del comportamento a livello di sistema.

Il capitolo si conclude con un caso di studio che presenta le ripercessioni sul software associate al processo di certificazione di qualità dei prodotti per uso domestico.

La quarta parte è dedicata alla comunicazione e all'interfacciamento fra i sistemi.

Il Capitolo 10 introduce il concetto di segnale e tratta le problematiche di conversione analogico/digitale e viceversa. Tale problema è fondamentale poiché, sebbene in un sistema embedded i calcoli siano svolti principalmente nel dominio digitale, l'interazione con l'ambiente è forte, con la conseguente esigenza di rilevare e controllare grandezze analogiche. La necessità d'interfaccia fra il dominio analogico e digitale è quindi cruciale, e il capitolo presenta le principali architetture evidenziando limiti e pregi di ogni soluzione.

Nel Capitolo 11 si prende in considerazione come trasferire le informazioni da una sezione all'altra di un sistema, ovvero la comunicazione. Le strategie presentate vengono inquadrate in termini di requisiti e struttura della soluzione, in modo da caratterizzarle in base alla distanza coperta, natura e velocità del canale di trasmissione. La trattazione si articola dalle soluzioni più semplici per la trasmissione seriale di informazioni, per giungere ad affrontare le problematiche di trasmissione delle informazioni con tecnologie wireless, esplorando nel contempo il tema della codifica delle informazioni per una maggiore immunità dai disturbi.

L'interfacciamento, descritto affrontando gli aspetti d'indirizzamento e sincronizzazione, è il tema del Capitolo 12. Tale chiave di lettura del problema viene utilizzata per i diversi ambiti applicativi. Si presentano dapprima le strategie d'interfacciamento tra dispositivi hardware e fra gli elementi di un sistema basato su microprocessore, descrivendo architetture di base, politiche di gestione, aspetti legati al software e, infine, limitazioni di ogni approccio.

Il tema dell'interfacciamento si conclude nel Capitolo 13 che affronta il problema di acquisire informazioni dal mondo reale, tramite sensori. Si presentano i principali elementi d'interesse per un progettista: come cogliere gli scostamenti dal comportamento ideale e quali sono le principali famiglie di sensori disponibili.

A chiusura del libro sono riportate due appendici.

La prima è un caso di studio che affronta una classica situazione in cui, in tempi stretti, si devono coniguirare le competenze tecniche con gli aspetti di gestione della progettazione. Si tratta di uno studio di fattibilità per valutare la convenienza nell'adottare una soluzione single-chip per l'aggiornamento e l'evoluzione di un sistema già
esistente, basato sull’uso di componenti discreti e FPGA. Sono contenute molte tematiche che si affrontano nella realtà, come la selezione e l’interazione con una foundry di silicio e il confronto economico fra diverse tecnologie.

La seconda appendice inizia presentando il ruolo dei formalismi per la specifica dell’hardware all’interno di un flusso di progettazione.

Il prosieguo costituisce una valida guida introduttiva per comprendere che cosa significhi rappresentare un’architettura di calcolo reale tramite un linguaggio di descrizione dell’hardware. Con riferimento ai due formalismi più diffusi (VHDL e Verilog), sono discussi i vari passi che portano dal livello più astratto della simulazione funzionale del comportamento, sino alla sintesi e verifica dell’hardware finale.

Chiudono il volume un dettagliato glossario e una estesa bibliografia di riferimento.

Carlo Brandolese e William Fornaciari

Politecnico di Milano
Dipartimento di Elettronica e Informazione