

Embedded Systems: Introduction

Anno Accademico 2009-2010

Lecturer:

Prof. William Fornaciari

Politecnico di Milano, DEI

fornacia@elet.polimi.it Home.dei.polimi.it/fornacia

Embedded Systems Everywhere

Networked Embedded Intelligence

- Enabling transportation, infrastructure industries
- Leading to revolutions like the digital home
- Turning ambient dreams into reality
- Enabling sensor networks improving our quality of life

Four main application contexts

- 4 -

Embedded Systems 10 years from now

- Networked: from working in isolation towards communicating, networked, distributed solutions
- Secure: threatened by enormous security issues, challenging its technical and economical viability
- Complex:
 - Giga-complexity enabled by nano-technology
 - Complex through heterogeneity
 - Transducer devices
 - Sensors: Biosensors, MEMS, NEMS
 - Actuators/Interactive Screens/Displays
 - Speech input device/Handwriting input devices
 - Computing devices: more software than hardware, application domain specific, reconfigurable

- 5 -

- Communication: protocols, standards, RF
- Low power: scavenging power

Embedded Systems Design: not Business as usual...

- Embedded Systems require a holistic approach to design, manufacturing, and skill creation in a distributed industrial context (eco-alliances)
- Embedded systems are complex by nature:
 - ► GLOBAL TECHNICAL SYSTEMS: networkedsensingintelligence
 - (hw/sw)-actuation = MULTI-DISCIPLINARY
 - OPERATING on an EMBEDDING ENVIRONMENT IN AN APPLICATION DOMAIN with its own requirements and expertise

Embedded System Characteristics

- Multi-disciplinary by nature: EE + CS + DOMAIN
- Hard constraints: real-time, low cost, low energy yet complex software on dedicated distributed platforms, short t.t.m., security, ease of use ...
- Requires global system approach based on application domain expertise
- Products result from eco-alliances in domain Traverses many layers of abstraction (vertical)

Each application context has specific requirements and technologies...

Nomadic	Private Space	Public Infrastr.	Industrial
Sw. Radio Auto-Reconf Low Energy Secure netw	Sensor Netw Multimedia Context sens. Self-x	Sensor netw Longevity Data mining Language proc. Adaptivity	Safety critical Adv. Control Reliability Self-dia-repair
SoC-SiP	SoC	MPU-FPGA-SoC SiP	MPU-FPGA

	Pow	er
μ W	W	kW

Where has Moore's law brought us?

- Moore's law has had almost 40 years of validity
- The Semiconductors Industry Association (SIA) roadmap for process technology predicts the progress to go on for at least the next 10 - 15 years
- The theoretical limit for transistor gate length on silicon is around 1.5nm.
 - Today's 65nm CMOS process has a gate length of 42nm: i.e 28X larger than the theoretical limit!
 - In 32nm, the gate length is 21nm
 - i.e. 14X above limit
- The gate delay determines the fundamental speed of the logic. The theoretical limit is 0.04ps
 - ► Today's 65nm logic NAND2 is ~1ps, i.e. <u>24X slower!</u>
- Transistor density, i.e. the number of device which can be squeezed into a chip, reaches the limit around 1.8 billion Tx per cm².
 - Today's 65nm CMOS device is 7.5X larger! (i.e. 750Kgate/mm² = 2.4M Tx/mm² = 240M Tx/cm²)
- Performance as measured by clock speed, fell off Moore's Law during the last decade, thanks to Multi Processors computing architectures.

Chip: Architectural evolution

System consequences: Design complexity and costs

- IC complexity has grown faster than design efficiency: design crisis
 - The answer was reuse
 - Three generations of re-use
 - Standard cell and automatic synthesis: sea of gates
 - ▶ IP block reuse: sea of IP
 - Architecture reuse: platforms
- Design costs are increasing (for 90 nm: up to 20M€ / design)
 - Platform based design (SoC)
 - System in Package (SiP)

The critical discontinuity

- Moving from closed to interconnected systems
- Moving from closed to open application platforms
- Moving from telecom standards [ATM/WAP etc...] to IP networks
- As a result we shall need
 - huge general purpose low power computing systems with standardized software platforms
 - Also, internet broadband connections will redefine the balance between locally run and web hosted applications

Long term technology trends

- System-on-Chip (SoC)
 - Focus on full integration and lowest cost per transistor
- System-in-Package (SiP)
 - Focus on lowest cost per function and for total system
- Complementing, not competing architectures
- Each requiring a different industrial approach
 - Advanced R&D / knowledge needed
 - Different manufacturing competences

Applications in 2020: *Technology requirements*

Leadership and Competitiveness

- Europe needs to quickly fill the gap on IP architectures and Computer Science
- Polimi courses?

Complexity vs productivity growth

SW complexity & productivity growth

HW complexity & productivity growth

Nano-systems with Giga-complexity

• If design productivity increases in the next 5 years at the pace of the last 5 years, we will need 10-20 times bigger teams to design our future chips

Some research directions

Software and compute architecture

Communication

Pheriferals

Design methodology: addressing complexity

Security

Compute architecture research

- Embedded systems are becoming computing networks: NOCs
 - major challenge for the engineering community, especially for SW developers: traditional SW programming methods do not work well for distributed highly concurrent platforms
- Focus should be the development of a network definition that is
 - agnostic to the processing element
 - independent of the application domain
 - unconcerned about location in the network
- At building block level: focus on domain specific processing units
 - Widely different programming models, from reconfigurable hardware to massively parallel processors
- The whole system architecture to be optimized for critical nonfunctional qualities, such as energy consumption

Software research

- Real time and embedded software technologies
 - Real time OS
 - Lightweight Middleware with QOS
- Platform independence
 - Address Software portability
 - Address the multiprocessor platform challenge
- Complexity
 - Model driven development allowing development at a higher level of abstraction
 - Verification and validation is increasingly becoming the bottleneck, topics include formal verification, modelling
- Address Standardization
 - Proven in the general purpose world: Linux, UML, XML
 - Embedded world is still a green field

Communication

- ES: Evolving from working in isolation towards communicating, networked, distributed solutions
- IP protocol demonstrated the power of a universal protocol
 - Reduces complexity in development, in validation
 - Ubiquitous, from data telecom network towards the phone [VoIP], the home network, enterprise etc...
 - Hossein Esambolchi (ATT CTO) says "IP is like a Pacman, it will eat everything by the end of the decade".
- For Embedded systems we should:
 - Define and standardize a universal communication protocol
 - Address heterogeneous communication: Car environment talking to Mobile environment, talking to home environment, talking to www.
 - Address ad-hoc networks: communication established on an adhoc or opportunistic basis. Self discovering, self diagnosis, self organizing
 - Move towards several communicating objects forming one functionality

Peripherals

- Transducers, sensors and actuators are essential enabling technologies for embedded systems,
 - interface to/shield from a sometimes harsh, rugged environment,
 - requiring various types of technologies
- Research agenda includes
 - Cost effective, integrated sensors and actuators, based on a wide range of new technologies: MEMS, NEMS, BIOsensors,...
 - Output & Power devices in nm CMOS
 - Communication interfacing technology: wired, RF, optical...
- Should be
 - Capable of living in the harsh environment: mechanically and thermally robust
 - Low power: autonomous, power scavenging
 - Fail safe, degrading gracefully, reliable

Design methodology: addressing complexity

- Quick design exploration: translate quickly applications into architectures
- Formal approach to capture user requirements
- Automation: link to final implementation should be fast:
 - Model based design -> design activity will be done at higher abstraction level where models can be verified and manipulated
- Formal synthesis and formal verification,
 - supported by the definition of clear layers of abstraction, masking implementation details
- Design methodologies must support heterogeneous systems,
 - abstracting the hell of physics,
 - including exotic technologies like MEMS, Biosensors, all in one design flow

Platform based design

Security

- Management of rights (DRM) for a connected device will be fundamental to almost all future devices and SOCs
 - "Cisco VP of strategic Technology believes the DRM is THE fundamental factor that will drive their business (internet traffic) to the next level."
- Individual devices are easy targets for disruptive attacks in open, ad hoc wireless networks
- Widespred diffusion of intelligence/data (e.g., into smartcards) can become a new source of attacks (like DPA)
- Challenges:
 - The basis for any security solution is a trusted infrastructure, putting challenges towards all components of an embedded system
 - Standardization
 - Global end to end security management