Elliptic Curves Signature

Giulia Mauri

Politecnico di Milano

email: giulia.mauri@polimi.it website: http://home.deib.polimi.it/gmauri

May 27, 2015

Giulia Mauri (DEIB) Exercises May 27, 2015 1 / 26

Overview

- 1 Elliptic Curves Signature
 - ElGamal Digital Signature
 - ECDSA

Giulia Mauri (DEIB) Exercises May 27, 2015 2 / 26

Elliptic Curve

Definition (Elliptic Curve)

An elliptic curve E is the graph of an equation:

$$E: y^2 = x^3 + ax^2 + bx + c$$

Definition (Addition Law)

Let E given by $y^2 = x^3 + bx + c$ and let $P_1 = (x_1, y_1), P_2 = (x_2, y_2).$

Then $P_1 + P_2 = P_3 = (x_3, y_3)$, where:

$$x_3 = m^2 - x_1 - x_2$$

 $y_3 = m(x_1 - x_3) - y_1$

$$m = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1} & \text{if } P_1 \neq P_2 \\ (3x_1^2 + b)(2y_1)^{-1} & \text{if } P_1 = P_2 \end{cases}$$

If the slope m is infinite, then $P_3 = \infty$. There is one additional law: $\infty + P = P$ for all points P.

Giulia Mauri (DEIB) Exercises May 27, 2015 3 / 26

ElGamal Digital Signature

Alice wants to sign a document. Alice first must establish a public key. She chooses the curve E, the prime p, the number of points n, and the points A and B=aA. While Alice keeps secret the integer a.

To sign a document m, Alice does the following:

- Computes R = kA = (x, y), where k is a random integer with $1 \le k < n$ and gcd(k, n) = 1
- ② Computes $s \equiv k^{-1}(m ax) \pmod{n}$
- **3** Sends the signed message (m, R, s) to Bob.

Bob verifies the signature as follows:

- Computes $V_1 = xB + sR$ and $V_2 = mA$
- ② Declares the signature valid if $V_1 = V_2$

◆ロト ◆問 ト ◆ 差 ト ◆ 差 ・ 釣 へ (*)

Exercise

Alice uses the following ElGamal signature with elliptic curves. Alice chooses the curve:

$$E: y^2 \equiv x^3 + 3 \pmod{31}$$

The number p=31 is prime. Alice computes the number of points n which belong to the curve and obtain n=43. On the curve E she chooses the point A=(1,2) and the secret number a=18. She then computes the position of the point B=aA and obtains:

$$B = aA = (17, 24)$$

Alice publishes the curve E, the number p and the position of the points A and B. The number a is kept secret.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

5 / 26

Giulia Mauri (DEIB) Exercises May 27, 2015

Exercise

- Alice wants to send the message $m_1 = 7$ and chooses the random number k = 3. Compute Alice's signature.
- Verify the signature.
- 3 Alice, then, signs a second message $m_2 = 13$ and uses the same nonce as before, obtaining $R_2 = (22, 24)$, $s_2 = 30$. Bob computes the nonce.

4□ > 4□ > 4 = > 4 = > = 90

Solution

Alice must compute: $R = kA = 3 \cdot (1,2) = (1,2) + (1,2) + (1,2)$ We first compute 2(1,2), obtaining: $m = 3 \cdot 4^{-1} \mod 31 = 3 \cdot 8 = 24$ To compute the inverse of 4 modulo 31 we can use the extended Euclidean algorithm. By solving the equations for x_3 e y_3 we obtain:

$$x_3 = m^2 - x_1 - x_2 = 24^2 - 2 \cdot 1 \mod 31 = 16$$

 $y_3 = m(x_1 - x_3) - y_1 = 24(1 - 16) - 2 = 10$

We then sum (1,2) + (16,10) and obtain:

$$m = 8 \cdot 15^{-1} \mod 31 = 8 \cdot (-2) = 15$$

 $x_3 = 15^2 - 1 - 16 \mod 31 = 22$
 $y_3 = 15 \cdot (1 - 22) - 2 \mod 31 = 24$

Therefore R = (22, 24).

Solution

We compute s:

$$s = k^{-1}(m - ax_R) = 3^{-1}(7 - 18 \cdot 22) \mod 43 =$$

= 29 \cdot (-389) \mod 43 = 28

Alice publishes the message m and the signature (m, R, s). Then, we verify the signature:

$$V_1 = x_R B + sR = 22 \cdot (17, 24) + 28 \cdot (22, 24)$$
$$= (9, 22) + (16, 21) = (25, 29)$$
$$V_2 = mA = 7 \cdot (1, 2) = (25, 29)$$

The signature is verified.

401491411111111111

Giulia Mauri (DEIB) Exercises May 27, 2015 8 / 26

Solution

We compute the nonce as follows:

$$s_1k - m_1 = -ax_R = s_2k - m_2 \pmod{n}$$

$$(s_1 - s_2)k = (m_1 - m_2) \pmod{n}$$

$$(28 - 30)k = (7 - 13) \pmod{43}$$

$$41k = 37 \pmod{43}$$

$$k = 37 \cdot 41^{-1} \pmod{43} = 37 \cdot 21 = 3$$

9 / 26

Giulia Mauri (DEIB) Exercises May 27, 2015

ECDSA

Alice wants to sign a document m, which is an integer. Alice chooses the curve E, the prime p, a large prime factor q ($qA = \infty$) of n (number of points), and the points A and B = aA. Alice's secret parameter is the integer a.

Alice does the following:

- Computes $R = kA = (x_R, y_R)$, where k is a random integer with $1 \le k < q$
- 2 Computes $s \equiv k^{-1}(m + ax_R) \pmod{q}$
- **3** Sends the signed message (m, R, s) to Bob.

Bob verifies the signature as follows:

- ① Computes $u_1 \equiv s^{-1}m \pmod{q}$ and $u_2 \equiv s^{-1}x_R \pmod{q}$
- 2 Computes $V = u_1A + u_2B$
- **3** Declares the signature valid if V = R.

Exercise

The parameters of ECDSA are given by the curve

 $E: y^2 = x^3 + 2x + 2 \mod 17$, the point A = (5,1) of order q = 19 and Bob's private a = 10. Show the process of signing (Bob) and verification (Alice) for the following hash values and the nonces k:

- a m = 12, k = 11
- b m = 4, k = 13
- c m = 9, k = 8

Giulia Mauri (DEIB)

Exercises

Solution

a

$$R = kA = 11 * (5,1) = (13,10)$$

$$s = (m + ax_R)k^{-1} = (12 + 10 \cdot 13)11^{-1} \mod 19 = 6$$

$$u_1 = ms^{-1} = 12 \cdot 6^{-1} \mod 19 = 2$$

$$u_2 = x_r \cdot s^{-1} = 13 \cdot 6^{-1} \mod 19 = 18$$

$$V = u_1A + u_2B = 2(5,1) + 18(7,11) = (13,10)$$

Solution

b

$$R = kA = 13 * (5,1) = (16,4)$$

$$s = (m + ax_R)k^{-1} = (4 + 10 \cdot 16)13^{-1} \mod 19 = 17$$

$$u_1 = ms^{-1} = 4 \cdot 17^{-1} \mod 19 = 17$$

$$u_2 = x_r \cdot s^{-1} = 16 \cdot 17^{-1} \mod 19 = 11$$

$$V = u_1A + u_2B = 17(5,1) + 11(7,11) = (16,4)$$

Solution

C

$$R = kA = 8 * (5,1) = (13,7)$$

$$s = (m + ax_R)k^{-1} = (9 + 10 \cdot 13)8^{-1} \mod 19 = 15$$

$$u_1 = ms^{-1} = 9 \cdot 15^{-1} \mod 19 = 12$$

$$u_2 = x_r \cdot s^{-1} = 13 \cdot 15^{-1} \mod 19 = 11$$

$$V = u_1A + u_2B = 12(5,1) + 11(7,11) = (13,7)$$

Exercise

Alice uses the DSA signature scheme on the elliptic curve

 $E: y^2 \equiv x^3 + 3x + 8 \mod 23$. The curve E has 29 points. Alice chooses the base point A = (0, 10), the secret a = 5 and computes B = aA. Then she signs the message $m_1 = 3$ using the nonce k = 2.

- (a) Verify if A satisfies the conditions required by DSA signature.
- (b) Compute B.
- (c) Sign m_1
- (d) Verify the signature obtained in (c)

15 / 26

Solution

(a) The order of A must be prime. In this case the number of points is prime, therefore all the points have order q.

(b)
$$B=aA = 5(0,10) = 2(0,10) + 2(0,10) + (0,10) = (1,14) + (1,14) + (0,10) = (16,14) + (0,10) = (20,8).$$

(c)

$$R = kA = 2A = 2(0, 10) = (1, 14)$$

 $s \equiv k^{-1}(m + ax_R) = 15(3 + 5 \cdot 1) = 4 \pmod{29}$

(d)

$$u_1 \equiv s^{-1}m = 22 \cdot 3 = 8 \pmod{17}$$

 $u_2 \equiv s^{-1}x_R = 22 \cdot 1 = 22 \pmod{17}$
 $V = u_1A + u_2B = 8A + 22B =$
 $= 8(0, 10) + 22(20, 8) = (1, 14)$

Exercise

Consider the elliptic curve $E: y^2 \equiv x^3 + 3 \pmod{7}$, with 13 points. Alice publishes the curve and the points A = (1,2) and B = aA = (2,2). Then, Alice signs the messages $m_1 = 2$ and $m_2 = 3$ using the DSA signature and obtains:

$$sig(m_1, k_1) = (x_{R,1}, s_1) = (3, 10)$$

$$sig(m_2, k_2) = (x_{R,2}, s_2) = (3, 5)$$

- List all the points of curve E
- Verify the signature of message m₁
- **1** Using the repeated nonce, compute k_1
- Compute the secret number a

Solution

1

X	$y^2 \equiv a$	$a^{\frac{p-1}{2}}$	$y \equiv a^{\frac{p+1}{4}}$
0	3	-1	_
1	4	1	±2
2	4	1	±2
3	2	1	±3
4	4	1	±2
5	2	1	±3
6	2	1	±3
∞	_	_	∞

Solution

2

$$u = s^{-1} m \mod 13 = 8$$

 $v = s^{-1} x_R \mod 13 = 12$

$$V = 8A + 12B = 8A - B$$

Compute
$$2A = 2(1, 2)$$

$$m = 3 \cdot 4^{-1} \mod 7 = 6$$

$$x_{2,A} = 36 - 2 \mod 7 = 6$$

$$y_{2,A} = 6(1-6) - 2 \mod 7 = 3$$

Solution

2 *Compute* 4A = 2(6,3)

$$m = 108 \cdot 6^{-1} \mod 7 = 4$$

$$x_{4,A} = 16 - 12 \mod 7 = 4$$

$$y_{4,A} = 4(6-4) - 3 \mod 7 = 5$$

Compute
$$8A = 2(4,5)$$

$$m = 48 \cdot 10^{-1} \mod 7 = 2$$

$$x_{8,A} = 4 - 8 \mod 7 = 3$$

$$y_{8,A} = 2(4-3) - 5 \mod 7 = 4$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 勿 へ ②

Solution

2 Compute
$$V = (3,4) + (2,5)$$

 $m = (5-4)(2-3)^{-1} \mod 7 = 6$
 $x_V = 36 - 3 - 2 \mod 7 = 3$
 $y_V = 6(3-2) - 3 \mod 7 = 3$

Since $x_V = x_R$, the signature is verified.

3

$$s_1k - m_1 \equiv ax_R \equiv s_2k - m_2 \pmod{13}$$

 $(s_1 - s_2)k \equiv m_1 - m_2 \pmod{13}$
 $5k \equiv 12 \pmod{13}$
 $k \equiv 12 \cdot 5^{-1} \equiv 5 \pmod{13}$

Solution

4

$$s_1k - m_1 \equiv ax_R \pmod{13}$$

$$a \equiv (x_R)^{-1}(s_1k - m_1) \equiv 9 \cdot 48 \equiv 3 \pmod{13}$$

Exercise

Alice uses the DSA signature scheme on the elliptic curve $E: y^2 \equiv x^3 + 2x + 6 \mod 7$. The curve $E: y^2 \equiv x^3 + 2x + 6 \mod 7$. The curve $E: y^2 \equiv x^3 + 2x + 6 \mod 7$. Then she signs the message $m_1 = 3$ using the nonce k = 6.

- Verify whether A satisfies the conditions required by DSA signature.
- Compute B.
- \odot Sign m_1 .
- Verify the signature obtained in 3.
- Alice signs the message m'=4 and publishes $sig(m_2)=[R_2,s_2,m_2]=[(4,6),7,4]$. Which mistake did she do? How can it be exploited by an attacker to find the secret key a?

4 D > 4 B > 4 B > 4 B > 9 Q (~

Giulia Mauri (DEIB) Exercises May 27, 2015 23 / 26

Solution

1 The order of A must be prime. In this case the number of points is prime, therefore all the points have order q.

2

$$B = aA = 4(1,3) = 2(1,3) + 2(1,3) = (2,2) + (2,2) = (3,5)$$

3 Signature:

$$R = kA = 6A = 4(1,3) + 2(1,3) = (3,5) + (2,2) = (4,6)$$

 $s \equiv k^{-1}(m + ax_R) = 2(3 + 4 \cdot 4) = 5 \pmod{11}$

Solution

4 Verification:

$$u_1 \equiv s^{-1}m = 9 \cdot 3 = 5 \pmod{11}$$

 $u_2 \equiv s^{-1}x_R = 9 \cdot 4 = 3 \pmod{11}$
 $V = u_1A + u_2B = 5A + 3B =$
 $= 5(1,3) + 3(3,5) = (4,6)$

Since V = R, the signature is verified.

Giulia Mauri (DEIB) Exercises May 27, 2015 25 / 26

Solution

5 Alice used the same k twice, so we can write the following equation:

$$s_1k - m_1 \equiv ax_R \equiv s_2k - m_2 \pmod{q}$$
$$(s_1 - s_2)k \equiv m_1 - m_2 \pmod{q}$$
$$(5 - 7)k \equiv 3 - 4 \mod{11}$$
$$k = 6$$

Now we substitute the value of k in the equation $sk - m \equiv ax_R$ and obtain:

$$a \equiv x_R^{-1}(sk - m) \pmod{q}$$

 $a \equiv 4^{-1}(5 \cdot 6 - 3) \equiv 4 \pmod{11}$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

26 / 26

Giulia Mauri (DEIB) Exercises May 27, 2015