Graph Mining and Social Network Analysis

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)
References

- Jiawei Han and Micheline Kamber, "Data Mining: Concepts and Techniques", The Morgan Kaufmann Series in Data Management Systems (Second Edition)
 - Chapter 9
Graph Mining
Graph Mining Overview

- Graphs are becoming increasingly important to model many phenomena in a large class of domains (e.g., bioinformatics, computer vision, social analysis)
- To deal with these needs, many data mining approaches have been extended also to graphs and trees
- Major approaches
 - Mining frequent subgraphs
 - Indexing
 - Similarity search
 - Classification
 - Clustering
Mining frequent subgraphs

- Given a labeled graph data set

\[D = \{G_1, G_2, \ldots, G_n\} \]

- We define \(\text{support}(g) \) as the percentage of graphs in \(D \) where \(g \) is a subgraph

- A frequent subgraph in \(D \) is a subgraph with a support greater than \(\text{min_sup} \)

- How to find frequent subgraph?
 - Apriori-based approach
 - Pattern-growth approach
AprioriGraph

- Apply a level-wise iterative algorithm
 1. Search for **similar size-k frequent** subgraphs
 2. **Merge** two similar subgraphs in a **size-(k+1)** subgraph
 3. Check if the new subgraph is **frequent**
 4. Restart from 2. until all similar subgraphs have been considered. Otherwise restart from 1. and move to k+1.

- What is subgraph size?
 - Number of vertex
 - Number of edges
 - Number of edge-disjoint paths

- Two subgraphs of size-k are similar if they have the same size-(k-1) subgraph

- AprioriGraph has a big computational cost (due to the merging step)
PatternGrowthGraph

- Incrementally extend frequent subgraphs
 1. Add to S each frequent subgraphs g_E obtained by extending subgraph g
 2. Until S is not empty, select a new subgraph g in S to extend and start from 1.
- How to extend a subgraph?
 - Add a vertex
 - Add an edge
- The same graph can be discovered many times!
 - Get rid of duplicates once discovered
 - Reduce the generation of duplicates
Mining closed, unlabeled, and constrained subgraphs

- Closed subgraphs
 - *G is closed* iff there is no proper supergraph *G’* with the same support of *G*
 - Reduce the growth of subgraphs discovered
 - Is a more compact representation of knowledge

- Unlabeled (or partially labeled) graphs
 - Introduce a special label *Φ*
 - *Φ* can match any label or not

- Constrained subgraphs
 - Containment constraint (edges, vertex, subgraphs)
 - Geometric constraint
 - Value constraint
Graph Indexing

- Indexing is basilar for effective search and query processing
- How to index graphs?
 - **Path-based** approach takes the **path** as indexing unit
 - All the path up to $maxL$ length are indexed
 - Does not scale very well
 - **gIndex** approach takes **frequent** and **discriminative** subgraphs as indexing unit
 - A subgraph is frequent if it has a support greater than a threshold
 - A subgraph is discriminative if its support cannot be well approximated by the intersection of the graph sets that contain one of its subgraphs
Graph Classification and Clustering

- Mining of frequent subgraphs can be effectively used for classification and clustering purposes

Classification
- **Frequent** and **discriminative** subgraphs are used as features to perform the classification task
- A subgraph is discriminative if it is frequent only in one class of graphs and infrequent in the others
- The threshold on frequency and discriminativeness should be tuned to obtain the desired classification results

Clustering
- The mined frequent subgraphs are used to define **similarity** between graphs
- Two graphs that **share a large set of patterns** should be considered **similar** and grouped in the same cluster
- The threshold on frequency can be tuned to find the desired number of clusters

- As the mining step affects heavily the final outcome, this is an intertwined process rather than a two-steps process
Social Network Analysis
A social network is an **heterogeneous** and **multirelational** dataset represented by a graph
- Vertexes represent the **objects** (entities)
- Edges represent the **links** (relationships or interaction)
- Both objects and links may have **attributes**
- Social networks are usually very large

Social network can be used to represents many real-world phenomena (not necessarily social)
- Electrical power grids
- Phone calls
- Spread of computer virus
- WWW
Are social networks random graphs?

NO!

- Internet Map
- Science Coauthorship
- Protein Network

High degree of local clustering

Few degrees of separation
Society:
Six degrees
S. Milgram 1967
F. Karinthy 1929

WWW:
19 degrees
Albert et al. 1999
Small World Networks (3)

- **Definitions**
 - Node’s **degree** is the number of incident edges
 - Network **effective diameter** is the max distance within 90% of the network

- **Properties**
 - **Densification power law**
 \[e(t) = n(t)^\alpha \]
 - n: number of nodes
 - e: number of edges
 - \(1 < \alpha < 2 \)
 - **Shrinking diameter**
 - **Heavy-tailed degrees distribution**
Mining social networks (1)

- Several **Link mining** tasks can be identified in the analysis of social networks
- **Link based object classification**
 - Classification of objects on the basis of its attributes, its links and attributes of objects linked to it
 - E.g., predict topic of a paper on the basis of
 - Keywords occurrence
 - Citations and cocitations
- **Link type prediction**
 - Prediction of link type on the basis of objects attributes
 - E.g., predict if a link between two Web pages is an advertising link or not
- **Predicting link existence**
 - Predict the presence of a link between two objects
Mining social networks (2)

- Link cardinality estimation
 - Prediction of the number of links to an object
 - Prediction of the number of objects reachable from a specific object

- Object reconciliation
 - Discover if two objects are the same on the basis of their attributes and links
 - E.g., predict if two websites are mirrors of each other

- Group detection
 - Clustering of objects on the basis both of their attributes and their links

- Subgraph detection
 - Discover characteristic subgraphs within network
Challenges

- **Feature construction**
 - Not only the objects attributes need to be considered but also attributes of **linked objects**
 - **Feature selection** and **aggregation** techniques must be applied to reduce the size of search space

- **Collective classification and consolidation**
 - Unlabeled data cannot be classified independently
 - New objects can be **correlated** and need to be considered **collectively** to consolidate the current model

- **Link prediction**
 - The prior probability of link between two objects may be very low

- **Community mining from multirelational networks**
 - Many approaches assume an **homogenous relationship** while social networks usually represent **different communities** and **functionalities**
Applications

- Link Prediction
- Viral Marketing
- Community Mining
Link prediction

- What edges will be added to the network?
- Given a snapshot of a network at time t, **link prediction** aims to predict the edges that will be added before a given future time t'
- Link prediction is generally solved assigning to each pair of nodes a weight $score(X,Y)$
- The higher the $score$ the more likely that link will be added in the near future
- The $score(X,Y)$ can be computed in several way
 - **Shortest path**: the shortest he path between X and Y the highest is their score
 - **Common neighbors**: the greater the number of neighbors X and Y have in common, the highest is their score
 - **Ensemble of all paths**: weighted sum of paths that connects X and Y (shorter paths have usually larger weights)
Viral Marketing

- Several marketing approaches
 - Mass marketing is targeted on specific segment of customers
 - Direct marketing is target on specific customers solely on the basis of their characteristics
 - Viral marketing tries to exploit the social connections to maximize the output of marketing actions
- Each customer has a specific network value based on
 - The number of connections
 - Its role in the network (e.g., opinion leader, listener)
 - Role of its connections
- Viral marketing aims to exploit the network value of customers to predict their influence and to maximize the outcome of marketing actions
500 randomly chosen customers are given a product (from 5000).
The 500 *most connected consumers are given a product.*
Community Mining

- In social networks there are usually several kinds of relationships between objects.
- A social network usually contains several relation networks that plays an important role to identify different communities.
- The relation that identify a community can be an hidden relation.
- Relation extraction and selection techniques are generally used to discover communities in social networks.
- Example: