Formal methods (with particular attention to concurrent and real-time systems)

Teacher: Dino Mandrioli

Course given in English

Shared by joint UIC-PdM master and normal PdM’s Ingegneria Informatica (plus Ingegneria dell’Automazione) curriculum

Course presentation

• Outline

• Organization
Introduction and motivation (lot of motivation needed):
 – what are formal methods?
 – Objectives, problems, criticisms, …promises and reality, hopes and hypes, academia and industry, …
 – FMs in the context of sw (system!) life cycle
 – The international FM community (organizes conferences, etc)

The basics of FMs:
 – Hoare’s approach to program specification and proof
 – Introduction to Model checking

Coping with concurrent -distributed- and real-time systems: problems and approaches

A short survey of main FMs for concurrent -and real-time- systems: Petri nets, CSP, timed automata, (timed) temporal logic, …

Case studies: the TRIO method
 – the TRIO language(s)
 – the tools
 – applying TRIO to industrial problems: experiences and case studies

The dual language approach: operational + logic; Petri nets + TRIO

The refinement approach to system design and verification (hints)
Organization.1

- Class lectures
- Class exercises (with a TA)
- Class case studies and tool demos (with TAs)
- Homework(s)
 - Individual or team work
 - developing case studies
 - Visit to a lab
 - use of tools
 - producing documentation
- (Midterm and) Final tests:
 - paper and pencil
 - Based on the “conceptual parts” (Hoare, FMs for concurrent systems, …)
- Follow up for theses (both at UIC and PdM)
Organization.2

• We have a problem:
• We (UIC) must be finished by June 30!
• (unlike non-UIC courses)
• To allow for completing the homework in time some theoretical topics (Hoare’s proof method and dual-language approach) have been moved to the end; most likely refinement will be only mentioned
• With (one or two) final tests
• Thus:
 – Basics of logic approaches to model and analyze (concurrent and time-dependent) systems
 – Very basics on model checking
 – TRIO and other preliminaries to assign and start the homework
 – Start the homework (proceeds asynchronously)
 – Resume basic theory: Hoare’s method
 – Timed Petri nets and their axiomatization
 – Proving properties of concurrent, time-critical systems through dual language approach (Timed PNs + TRIO)
Organization.3

• Minor organizational details:
 – Time table (classes: Wednesday 14.15 PM– 16.15 PM; Friday. 12.15 PM – 14.15PM ; later on meetings with the TA – Mehrnoosh Askarpour and/or me)
 – Use of tools and lab: agree with Mehrnoosh
 – Interact! Through e-mail for non-technical issues; face to face preferred for technical issues
 – Anything else? OK, this way?
A check on your background

NB: these are not prerequisites!

- UML
- Statechart
- Petri nets
- Model checking
- TRIO
- Theoretical Computer Science
 - Automata theory, formal languages, computability, complexity, basics of compiler design
- Mathematical logic
Teaching material

• *Reference books*
 – Mandrioli/Ghezzi, Theoretical foundations …, J.Wiley
 – Heitmeyer/Mandrioli (eds), Formal methods for real time computing, Wiley

• Transparencies (.pdf) available on the web (my personal – italian- page)

• Other scientific papers and reports (to be specified; possibly electronically available)

• (Public domain) tools
What are Formal methods?

- Exploiting mathematical formalisms in the analysis and synthesis of computer systems
- Not a big deal in traditional engineering
- What is new/different in computer science/ SW engineering?
- Traditional mathematics is not well suited (lack of continuity, lack of linearity, …)
- Boolean algebra and other “basic discrete formalisms” are good only for low level hardware design; ---->
- In “normal” computer system design the programming language is the only -if any!- formalized medium:
- Most design documentation is “semiformal” -whatever such a term means …-
- Be aware of the difference between (design) notation and design/development method.
The problems with informal methods

- Lack of precision (see next slide):
 - ambiguous definitions/specifications
 - erroneous interpretations
 - user/producer
 - specifier/designer
 - shaky verification (the well known problems with testing)
- Unreliability
 - lack of safety/security: what if the program in the next slide were part of a critical system?
 - economic loss
- Lack of generality/reusability/portability
- Poor quality (Even MS realized that …)
Example of C Program

What should the following program evaluate to?

```c
int main(void) {
    int x = 0;
    return (x = 1) + (x = 2);
}
```

- According to the C “standard”, it is **undefined**
- GCC4, MSVC: it returns **4**
- GCC3, ICC, Clang: it returns **3**
- By April 2011, both Frama-C (with its Jessie verification plugin) and Havoc ”prove” it returns **4**
Formal methods: the ideal picture

• Everything is formalized: a mathematical model of everything is built ----->
• Every reasoning is based on mathematical analysis
• What is “everything”?
 – The system to be built
 – The system to be controlled
 – The (non-computer) to-be-controlled system / (computer-based) controller
 – The wished/feared properties (requirements)
 – …
 – The “context-dependent concept of environment”
• “Everything” is mathematically certified
• Mathematical reasoning can be (partially) automatized
• Increased reliability, ….
• Increased quality
What is wrong with the ideal picture?
Why FMs did not gain -so far- wide industrial adoption?

• Formal models are not reality:
 – of course; this is true everywhere;
 – certainly we need verify adequacy of formalization, no 100% guarantee in real cases; certainty is only mathematical but not real, …
 – nevertheless they have been often powerful design tools
 – mathematics is not guarantee of error freedom, but is much better than informal reasoning

• (Proposed) FMs require too much mathematical skill on the side of industrial people
 – yes, but this claim is pretty much “context-dependent” …
 – (we will go back to this issue several times)

• (Present) tools are not well-engineered/user-friendly, ….
 – True, but the situation may -and should- evolve …
What is wrong with the ideal picture? Why FMs did not gain so far wide industrial adoption?

• … and is evolving!
 – From NASA’s report on Curiosity (Mars mission), SW CACM, February 2014:
 – Formal methods help verify intricate software subsystems for the potential of race conditions and deadlocks: new model checking techniques automate the verification process
 – In fact model checking produced a major breakthrough in the technology of FMs, in tool engineering and, therefore, in industrial attitude.
 – NASA is supportive of FMs from a fairly long time: NASA’s conference thereon
• If we look at most formal methods we actually find that they are much more of \textit{formal models} than real \textit{formal methods}.

 – A fashionable slogan (due to John Rushby?):
 “the problem with formal methods is that they are just \textit{formal} not \textit{methods}”

• This criticism is pretty much true and must be taken into account seriously

• Studying formal models is a basic prerequisite to apply formal methods but is not enough

• A common misunderstanding on FMs:

 – FMs = formal verification: absolutely not! They are much more. Formal verification is a -non necessary- part of a FM
FMIs in the context of (SW or system?) life cycle

- All systems -including but not exclusively!- SW systems have their own life cycle
 - feasibility study,
 - requirements analysis and specification
 - design
 - verification,
 - ...
 - maintenance
- their development exploits suitable methods (UML [not a real method …], IEC, VDM, Structured vs OO analysis and design, agile, extreme, cloud… lot of buzzwords)
- not all methods are exclusive … in one way or another they can be integrated
• FM can be “pure” and/or complete (B, Z, VDM with their OO versions, …)

• Or they can be used as a “formal add-on” to be matched and integrated with pre-existing (and adopted) methods: “formal UML” TRIO-XXX/UML”, …

• Incrementality should play a major role in developing and introducing (Formally-based) Methods in industrial environments.

• Much more on this critical topic should be said -and a little more will be.

• Reference readings:
 – Ciapessoni et al. From formal models to .. Methods .. ACM TOSEM, January 1999.
Let us now (re)begin from the very basics..

- **Formalism categories:**
 - operational formalisms or abstract machines (FSM, Petri nets, …)
 - descriptive formalisms (logic formulae, algebraic formalisms, …)

- Let us restart from the use of logic formulas to specify systems (properties) ...
• Let us go back to an old (for PdM CS students) example: the light timer:

- L_On: Light is on; P_B: push the button,

\begin{equation}
\forall t (P_B(t) \rightarrow \forall t_1 ((t \leq t_1 < t + k) \rightarrow L_On(t_1)) \land
\forall t_2 ((t + k \leq t_2) \rightarrow L_Off(t_2))
\end{equation}

• Actually this formalization leaves much to be desired … let’s apply some error chasing …
What about this one:

\[\forall t ((P_B(t) \land L_{\text{Off}}(t)) \rightarrow \neg P_B(t)) \]

\[\forall t_1 ((t \leq t_1 < t+k) \rightarrow L_{\text{On}}(t_1)) \land L_{\text{Off}}(t+k) \]

\[\land \]

\[\forall t_3, t_4 (L_{\text{Off}}(t_3) \land \forall t_5 ((t_3 \leq t_5 \leq t_4) \rightarrow \neg P_B(t_5))) \rightarrow L_{\text{Off}}(t_4) \]
A little more systematic approach
(mainly for continuous time modeling)

- **L_On, L_Off**: states; **P_B**: input

- **Event_E**: short notation for the following:

\[
\forall t(E(t)) \rightarrow \exists \delta(\forall t_1(t - \delta < t_1 < t \land t < t_1 < t + \delta) \rightarrow \neg E(t_1))
\]

- **Up_to_now_S(t)**: short notation for:

\[
\exists \delta(\forall t_1(t - \delta < t_1 < t) \rightarrow S(t_1)) \quad \text{(subsumed : } \delta > 0)\n\]

- **From_now_on_S(t)**: short notation for:

\[
\exists \delta(\forall t_1(t \leq t_1 < t + \delta) \rightarrow S(t_1))
\]
Going back to our timer:

\[\forall t (L_{\text{On}}(t) \leftrightarrow \neg L_{\text{Off}}(t)) \quad (\text{we can argue about that}) \land \\
Event_{\ P\ _B} \land \\
\forall t ((P_B(t) \land Up_to_now_L_Off(t)) \rightarrow \\
\quad \forall t_1 ((t \leq t_1 < t + k) \rightarrow L_{\text{On}}(t_1)) \land L_{\text{Off}}(t + k)) \land \\
\forall t_3, t_4 (L_{\text{Off}}(t_3) \land \forall t_5 ((t_3 \leq t_5 \leq t_4) \rightarrow \neg P_B(t_5))) \rightarrow L_{\text{Off}}(t_4) \]
Several lessons can already be derived from this first little example

- Pretty much work is already necessary -and far from trivial- just for *specifying* -i.e., *defining*- system properties
- Using formulas is no guarantee to avoid mistakes ...
- But it helps understanding and fixing errors
- We need *methods* (guidelines) to learn how to write good specifications whether formal or not
- Formulas are the *result* of our activity
- All above work -whether formal or not:

 Requirements elicitation, analysis and specification: a typical and critical phase of system development
- The activity is in the domain of SW (system) engineering;
- But exploiting formalism may help a lot (even more with the help of tools):
 - informal statement;
 - sample behavior
 - tentative formula
 - checking for consistency
 - modifying and retrying ...
Logic formulas and deductions to verify system design

Let us consider a railroad crossing system. Such a system is widely used in the literature as an interesting benchmark for rigorous (formal) analysis methods.

For the time being we consider a highly simplified version thereof:

- Event_Ar (not only isolated, but …)
- Event_En
- Event_Ex
- State_In

Only one track and only one train.
Instantaneous opening and closing of the gate.
First, we formalize the “controlled system” behavior (α):

\[
\begin{align*}
(\delta_1 &= \frac{d}{V_{\min}} \land \delta_2 = \frac{d + l}{V_{\max}}) \land (\delta_3 = \frac{l}{V_{\min}}) \land (\delta_4 = \frac{l}{V_{\max}}) \land (\delta_{\text{min}} = \frac{d}{V_{\max}}) \land (\delta_{\text{max}} = \frac{d + l}{V_{\min}}) \land \\
\forall t (Ar(t) \rightarrow \exists t_1 (En(t_1) \land (t + \delta_{\text{min}} \leq t_1 \leq t + \delta_1)) \land \\
\forall t (En(t) \rightarrow \exists t_1 (Ar(t_1) \land (t - \delta_1 \leq t_1 \leq t - \delta_{\text{min}})) \land \\
\forall t (En(t) \rightarrow \exists t_1 (Ex(t_1) \land (t + \delta_4 \leq t_1 \leq t + \delta_3)) \land \\
\forall t (Ex(t) \rightarrow \exists t_1 (Ar(t_1) \land (t - \delta_{\text{max}} \leq t_1 \leq t - \delta_2)) \land \\
\forall t (In(t) \leftrightarrow \exists t_1 (En(t_1) \land (t_1 \leq t)) \land \neg \exists t_2 (Ex(t_2) \land (t_2 \leq t)) \\
\end{align*}
\]

Second, we specify the safety requirement (β):

\[
\forall t (In(t) \rightarrow Down(t))
\]

Remark: such a (safety) requirement is not a complete enough spec of what we want/need form a railroad crossing system (why?). But for the moment we focus on this fundamental requirement.

Finally, we “design the controller”, i.e., the gate behavior (γ):

\[
\begin{align*}
\forall t (Ar(t) \rightarrow \forall t_1 ((t + \delta_{\text{min}} \leq t_1 \leq t + \delta_{\text{max}}) \rightarrow Down(t_1))) \land \\
\forall t (Down(t) \rightarrow \exists t_1 ((t - \delta_{\text{max}} \leq t_1 \leq t - \delta_{\text{min}}) \land Ar(t_1))) \land \\
\forall t (Down(t) \leftrightarrow \neg Up(t))
\end{align*}
\]
At this point we are ready to prove the correctness of our design, i.e.:

First we obtain the following from the fourth and sixth row of α:

$$ In(t) \rightarrow \exists t_1 (En(t_1) \land (t - \delta_3 < t_1 \leq t)) $$

In fact $In(t)$ implies

$$ In(t) \rightarrow \exists t_1 (En(t_1) \land (t_1 \leq t)) $$

$$ En(t_1) \rightarrow \exists t_2 (Ex(t_2) \land (t_1 + \delta_4 \leq t_2 \leq t_1 + \delta_3)) $$

Thus, $t < t_2$ and therefore $t - \delta_3 < t_1$
(From the third row of \(\alpha \)), the consequent of the above formula, in turn, implies:

\[\exists t_3 (\text{Ar}(t_3) \land (t - \delta_1 - \delta_3 \leq t_3 \leq t - \delta_{\text{min}})) \]

Then, thanks to the inequalities

\[\delta_{\text{min}} \leq \delta_1 + \delta_3 = \delta_{\text{max}} \]

and from the first row of \(\gamma \), we obtain the thesis
Again, we can derive several lessons from this second little example

- We have obtained -thanks to mathematical formalization- a correctness proof as opposed to system testing: a successful test (running just one train at a given speed) is no guarantee of complete correctness ---->

- Typical folklore about “testing can only show the presence of errors, not their absence” as opposed to mathematical certainty coming form a mathematical theorem

- However:
 - not so trivial proof for a very trivial property of a very trivial system
 - what about real, complex cases?
 - (we will see that just a bit of generalization makes things much less trivial)
 - how much mathematical skill needed? (probably more than what is needed just for specifying)
 - the more details, the more chances for errors,
 -

- We must keep in mind that we are just laying the foundations of -hopefully- practically useful formal methods: this first example should be intended as the first programming examples of, say, Euclid algorithm, possibly even in machine language.

- Much support can -and should- be obtained from support tools (despite we are dealing with undecidable problems, … at least in most cases)
Our “ideal path” towards specifying and proving (critical, real-time) systems:

• A classical method for the analysis of sequential programs
• Moving to concurrent and time-dependent systems
 – An operational formalism (Petri nets)
 – A logic formalism
 – Their synthesis in a dual method approach
 – Applications and case studies
• The very basics of model checking (for those who need it)
• Homework to apply the theoretical foundations
For organizational reasons the “ideal path” must be slightly reshaped:

- A classical method for the analysis of sequential programs: (only a short hint)
- Moving to concurrent and time-dependent systems
 - An operational formalism (only a short summary of basic Petri nets, for those who need them) (postponed)
 - A logic formalism explicitly tailored towards time critical systems
 - Applications and case studies (derived form industrial experience)
- The very basics of model checking (for those who need them)
- Start the homework
- Resuming and deepening the theoretical aspects:
 - Hoare’s method for sequential programs
 - The dual language approach applied to timed Petri nets and TRIO
Let us now hint at a first program verification method: the classical Hoare’s method

- Let us recall program specification:
 - {Precondition: Pre}
 - Program - or program fragment- P
 - {Post-condition: $Post$}
 If Pre holds before P’s execution then, after P’s execution $Post$ must hold:
- Example: search in an ordered array:

\[
\forall i(1 \leq i \leq n) \rightarrow a[i] \leq a[i + 1]
\]

P

\[
\{\text{found} \leftrightarrow \exists i(1 \leq i \leq n \land a[i] = x)\}
\]
In analogy with the railroad crossing example:

- We build a specification $Spec$:
 - $\{Pre\}$
 - P
 - $\{Post\}$
- We design an implementation (program) P
- We want to prove that P’s semantics implies $Spec$.
- To reduce the whole process to a logic deduction we need:
 - A syntax that embodies program and their properties (as first-order formulas)
 - An axiom system that embodies program semantics, i.e., allows to deduce properties on program variable (values) that are consequence of program statements execution (language semantics axiomatization)
- We will do this for a typical “MiniPascal” language
• The method is a typical syntax-directed, compositional method, as it is often the case with structured Algol-like languages (the same applies to operational and denotational semantics, to translation schemas, to compiler testing, etc.)

• Thus, let us begin with the kernel of any -von Neumann- language: the assignment statement
The axiomatic semantics of the assignment statement

• Let us go backwards:
 – If we execute \(x := 0 \) we are sure that after the execution the condition \(x = 0 \) holds
 – This allows us to derive the axiom
 \(\{ T \} \ x := 0 \ \{ x = 0 \} \)

• A little more generally:
 – if we want that after execution of \(x := a \), the postcondition \(Post(x) \equiv x > y + z \) holds a necessary and sufficient precondition to achieve such a goal is that \(Pre(a) \equiv a > y + z \) holds before statement execution
However, for organizational reasons, we temporarily abandon Hoare’s method to give priority to the critical path towards the homework
Formal models and methods for concurrent, distributed, and real-time systems

- Concurrent systems: several computations/processes are ongoing in parallel and need coordination.
- Real-time systems: time, which is usually abstracted away in the description and analysis of computing-systems becomes an essential component of their behavior. Typically this is due to the fact that a system (component) must react with given time constraints to stimuli coming from other components (environment). Thus, in most cases, real-time systems are also concurrent (also called reactive) systems.
- Let us first consider “purely concurrent” systems and let us postpone the further issue of real-time
• What does it change when moving from a sequential to a concurrent/parallel system?

• Externally:
 – Is it still adequate to formalize a “problem” as a function to be computed, or a string to be translated, or accepted by some device?
 • In some cases yes: e.g., we wish to exploit parallelism to compute -faster- the inverse of a matrix, …
 • In general however, the picture is rather different:

Environment

![Environment Diagram]

Is the analogy of the (Turing machine) tape(s) still valid?
• Furthermore, for such systems, talking about <input data-computation-output data>, or begin-end of computation, is often inadequate: most computations are “never ending”

• We could -and can- resort to the notion of infinite strings and related elaboration (a full theory of infinite strings formal languages has been developed);

• But still we should deal with the *interleaving* of signals/data flowing through different “channels”: how can we describe and manage different sequencings in such signals? Should we consider all possible interleavings? Is this feasible/useful?

Think e.g. to the following cases:

– The system is a collection of PCs with independent users performing independent jobs
– The system is a collection of processors managing signals coming from a plant (sensors) and human operators

• We can easily imagine that a further order of complexity will arise when *temporal relations* among such signals will become a critical issue (e.g. reacting to alarms)
Let us move a few preliminary and basic steps

- Let us first look at the issue from an operational point of view:
- A system is simply a collection of abstract machines - often called processes.
- In some cases we can easily and naturally build a global state as the composition of local states of single machines:

Let us recall the construction of “intersection machines”
Parallel composition vs. intersection

\[A_1 \parallel A_2 = A_1' \cap A_2' \]

NB:
\[I_1 \cup I_2 \]

vs
\[I_1 \times I_2 \]
• Typical case: composition of FSMs, as in the case of Statechart

We call such an approach *synchronous*:

• **there is a global clock, with a global state**

• at each time tick each component changes its own local state synchronously with other components

• signals can be local or shared (e.g. the output of a machine is the input to another one)

• time —whether explicit or implicit— is typically discrete
• In other cases it is inconvenient - or even impossible - to “view” a global state which evolves synchronously throughout every component.
• Each process evolves autonomously and only occasionally synchronizes with other processes.
• Typical asynchronous abstract machines are Petri nets.
• (already known? If not, basic theory available in the text book, Ch. 1 and 6)
PNs marking and firing sequences:
t_1 fires ...
... t_3 fires ...
... t_5 fires ...
t_1 and t_2 fire simultaneously …
\[\cdots \]

\[
\begin{align*}
P_1 & \xrightarrow{t_1} P_4 \\
\quad & \xleftarrow{t_3} \quad P_3 \\
P_4 & \xrightarrow{t_5} P_6 \\
\text{\textbullet} & \xrightarrow{t_6} \text{\textbullet} P_7 \\
P_6 & \xleftarrow{t_5} P_3 \\
P_2 & \xrightarrow{t_2} P_5 \\
\end{align*}
\]
• In some cases we can formally reduce one machine to another one:

• A FSM description of:
... of the more understandable Petri net
• The FSM formalizes the *interleaving semantics* of the PN
• However synchronous and asynchronous abstract machines have some “philosophical” differences (the “religious war” of asynchronous people against synchronous ones …)
• In some cases however, it is simply impossible to talk about a global system state:
 – in distributed systems the various components are physically located in different locations
 – they communicate through signals flowing in channels
 – when components evolution proceeds at speeds comparable with the light speed it is meaningless saying that “at a given time \(t \) component \(C_1 \) is in state \(Q_a \) and component \(C_2 \) in state \(Q_b \) so that the global system is in state \(< Q_a, Q_b > \)
The famous «dining philosophers problem»
A PN formalization of the ...Dining Philosophers
When time comes into play ...

- … things become even more critical
- Side remark:
 unlike traditional engineering (see dynamical system theory) computer science tends to abstract away from time and to deal with it in a fairly separate fashion (complexity/performance evaluation)
 this may work fine in several cases but certainly not for real-time systems, whose correctness, by definition, does depend on time behavior.
- We must deal with:
 - time occurrence -and order- of events;
 - duration of actions and states
 - in critical cases such time values may depend on data values and conversely (e.g. if the reaction to an alarm depends on some computation, whose duration, in turn, depends on some input data)
• For a fairly long time -in the 80s- there has been a -somewhat annoying-debate on the necessity of dealing explicitly and “metrically” with time in high level specifications (requirements): pure theorists did not like making their formalisms “dirty” with the addition of time (e.g. Petri nets).

• The claim was that what really matters in requirements is an ordering of events, not a time measure: e.g.:

 “The system must be shut down before temperature reaches a critical value”

• The point is that the notion of specification is a relative concept:

• If the plants heats at a given speed, then I must compute the time amount I have within which the system must be shut down.

• Nowadays there is much more agreement that, after all, we do need models that allow managing explicitly time metrics.
Time has been “added” to formalisms in several ways

• In operational formalisms:
 – durations have been added to transitions (whether FSM transitions or PN transitions, or …)
 – there is a large literature of timed PNs (time added to transitions, to places, to arcs, ….)
 – often such “added times” are constant values; in more sophisticated cases they may depend on data
 – Some approaches consider time as “yet another system variable, t”. Time elapsing is formalized by assignments to such a tick variable. We will partially illustrate and criticize such an approach.

• In descriptive formalisms:
 – Pure temporal logic leaves time implicit and with no metrics: time is infinitely “elastic”: typical operators such as eventually, until predicate the occurrence and order of events/states, but do not measure how long these things take
 – Several “metric temporal logics” have been defined (bounded until, bounded eventually, ….)
A survey of some major timed formalisms

• Timed (finite) state machines
 – Timed Statechart
 – TTM
 – Lynch and Heitmeyer infinite state machines
 – ...

• Timed CSP/LOTOS, …timed algebraic approaches

• Timed Petri nets

• Timed (temporal) logics
 – RTL (Koymans)
 – RRTTL (Ostroff)
 – Abadi & Lamport
 – TRIO
 – ASTRAL
• The “dual language” approach (Ostroff, TRIO/PN …)
 – The system is described through an operational formalism (automata, PN, …)
 – Its properties are asserted through a descriptive formalism (e.g. logic)
 – It is “proved” - through some axiomatization- that the -designed- system does indeed exhibit the desired properties

• Reference reading:
 – Heitmeyer and Mandrioli (eds) Formal methods for real-time computing
 – In particular, see the -survey- chapter 1
 – Mandrioli: Transparencies of a Pisa Seminar, November 2003
 – (A more thorough and comprehensive reading):
 • CARLO A. FURIA and DINO MANDRIOLI and ANGELO MORZENTI and MATTEO ROSSI: Modeling Time in Computing: A Taxonomy and a Comparative Survey

• Next ….
We will examine in some detail a few cases among the above formal models
We will consider moving from formal models to formal methods
We will experiment with prototype tools and case studies (sometimes imported from real-life projects)
The usefulness of a suitable benchmark for case studies:
 – a testbed for checking applicability of methods
 – a reference for comparisons
 – a source for inspiration
 – … let’s avoid the annoying debate between “toy problems” and “real-life projects” … the two’s are often complementary and in some cases mutually derived
Sample benchmarks
(not fully exploited but a good source of -possibly personal- exercises)

• The dining philosophers
• The elevator system
• The (generalized) railroad crossing system
• The reservoir system (see next slides)
• ….
The reservoir system. Version 1

The purpose of the example is to clarify how the description of a system state can be refined through several levels by applying the principle that the refinement adds to, but does not change, the information contained in the upper level.

Informal description.
- At the upper level we describe the system as composed of two processes:
 - reservoir and control.
- Reservoir exports a variable level whose evolution depends on the amount of water flowing in and on the fact that the sluice gate is open or closed.
- A sluice gate is managed by the control process which is in charge to open it when the level exceeds a given value and to close it when the level is less than another value.

Refined view:
- the sluice gate is operated by engines which take some time to change its state so that it is necessary to express the fact that it may be opening or closing.
- We maintain an external view where only the fact that the gate is open or closed are visible, but we add an internal more detailed description which takes into account the state of the sluice gate from the point of view of the engines operating on it.
• The reservoir system. Version 2

• The purpose of this example is to help understanding and defining possible implementation mechanisms that allow increasing the number of parallel processes between upper level specifications and lowe level ones without invalidating properties already proved to hold for the UL. The proposed example is an enrichment of previous version 1.

• Informal description.

• Top level.
• The system consists of two processes, reservoir and control, as in version 1.
• The differences are the following:

• 1.
• The reservoir exports two variables l_1 and l_2. These are the level measure obtained by two different sensors which are located in different places of the reservoir. They are intended to measure in some way the "global level" of the reservoir, but also to account and to manage possible little differences due to waves or major anomalies (big waves due to earthquake or sensors malfunctions).
2. The control process elaborates the values of l1 and l2 with the purpose of
 a) opening and closing the sluice gate (S_G) when they exceed given minimum and maximum
 values as it happened in version 1;
 b) raising an anomaly detection signal (variable alarm) when the two measures appear to be
 inconsistent.
 Jobs a) and b) can be roughly described as follows:

 a) If the average of the two averages of variables l1 and l2 computed in the last Delta time units exceeds
 LMAX then the gate must be open.
 Similarly for LMIN.

 b) If during the last Delta time units the absolute value of the difference between the averages of l1 and
 l1 (still computed on the last Delta time units) exceeds a value k for more than h times then the alarm
 should be raised.
• **Refinement**

• The reservoir process is the same as in the UL

• The control process is refined into 4 parallel processes: P1, P2, PC, and PM
 – P1 and P2 are identical and are in charge of computing updated values $l1^\wedge$ and $l2^\wedge$ of the averages (over the last Delta time units) of $l1$ and $l2$, resp.
 – PC is on charge of computing how many times within the last Delta time units $l1^\wedge$ and $l2^\wedge$ differed by more than k.
 – PM gathers the above results from P1, P2, PC and decides whether to open or close the gate (in the same way as in example 1) and to raise the alarm.

• Comments:
 • This type of parallel refinement seems nicely realistic. Think of coprocessors that make heavy sequential computations such as FFTs instead of simple averages and comparisons as in this toy example.
 • It also shows that we can have a good amount of parallel and asynchronous computation still keeping the principle that events that represent UL events (start and end of transitions) are "synchronized" with their UL counterparts.
The case of
the TRIO language

• One of the -first- “metric extensions” of temporal logics
• One of the -first- OO+ graphically extended formalisms to cope with the many typical problems of using formalisms in large, real-life cases (now we have VDM++, Z++, Objective Z, OO-PN, …)
• First we look at the “kernel” of TRIO
• Later we will develop the full language/methods/tools/applications
The logic kernel of TRIO

• Imports from classical temporal logic:
 – Extending first order logic
 – Implicit current time
 – asserting future (and past evolution)

• Introduces
 – Quantitative measuring time distances

 Thus, there exists an explicit time domain which is not fixed but must be numeric in nature: it requires basic arithmetic operations and (in general, total) ordering. Typical time domains are:
 • discrete domains such as Naturals and Integers
 • dense domains such as rationals and reals
 • This is a distinguishing feature of TRIO: many other temporal formalisms fix time domain to be either discrete or continuous
 – Only one basic temporal operator:
Dist(A, t)

- If A is any TRIO formula and t is a term in the time domain
- Dist(A, t) is a TRIO formula and intuitively means that it holds if and only if A holds at distance t from the current instant (i.e., the instant when Dist(A, t) is claimed) in the temporal domain.
In TRIO, as well as in classical temporal logic, all formulas refer to an implicit current instant, the “now” when the formula is claimed.

Apart from the above distinguishing feature, the rest of TRIO syntax and semantics are typically first-order (and thus, does not need further explanations).

First example:

Light_on \land \text{Dist}(\neg \text{Light}_\text{on}, -3) \land \text{Dist}(\neg \text{Light}_\text{on}, 3)

means that now the light is on, but it was not on \textit{exactly} 3 time units ago and will not be on 3 time units in the future.

Notice that the operator Dist predicates the holding of a formula \textit{exactly} at the -relative- time indicated: it does not claim anything about the time interval in between now and the indicated instant: thus, the above formula says nothing about, say 1 time unit ago.
• What if we wanted to claim that the light was on only since -1 to now and off (better, not on) in the remaining of the interval [-3 ..3], including the boundaries?

• \(\forall t \ ((-3 \leq t < -1) \rightarrow (\text{Dist} (\neg \text{Light}_\text{on}, t))) \)
 \(\land \)
 \((-1 \leq t \leq 0) \rightarrow (\text{Dist} (\text{Light}_\text{on}, t)) \)
 \(\land \)
 \((0 < t \leq 3) \rightarrow (\text{Dist} (\neg \text{Light}_\text{on}, t))) \)

• The only operator Dist is general enough to deal with all possible temporal properties we wish to predicate

• In fact any other temporal operator can be defined as a derived operator in terms of Dist. For instance:

• Property P holds from now on for (at least) K time units:

• \(\text{Lasts}(P, K) \iff \forall t \ (0 \leq t \leq K \rightarrow \text{Dist}(P, t)) \)

The symbol \(\iff \) will denote “is defined as”
A (partial) list of useful derived temporal operators
The list is open: others can be defined as useful

- **Futr(F, d)** \(\iff d \geq 0 \land \text{Dist}(F, d)\) Future
- **Past(F, d)** \(\iff d \geq 0 \land \text{Dist}(F, -d)\) Past
- **Lasts_{ee}(F, d)** \(\iff \forall d' (0 < d < d \implies \text{Dist}(F, d'))\) F holds over a period of length d (boundaries of the interval are excluded)
- **Lasted_{ei}(F, d)** \(\iff \forall d' (0 \leq d < d \implies \text{Dist}(F, -d'))\) F held over a period of length d in the past (now is included, now -d is excluded)
- **Alw(F)** \(\iff \forall d (\text{Dist}(F, d))\) F always holds
- **SomF (A)** \(\iff \exists d (d \geq 0 \land \text{Dist}(F, d))\) Sometimes in the future F will hold
\[\text{Within}_{ee}(F, d) \iff \exists d'(0<d'<d \land \text{Dist}(F, d')) \quad \text{F will occur within } d \text{ time units} \]

\[\text{UpToNow} (F) \iff \exists d \ (d > 0 \land \text{Past}(F, d) \land \text{Lasted}_{ee}(F, d)) \]
\(F \) held for a nonnull time interval that ended at the current instant

\[\text{Becomes} (F) \iff F \land \text{UpToNow} (\neg F) \]
\(F \) holds at the current instant but it did not hold for a nonnull interval that preceded the current instant

\[\text{NextTime} (F, t) \iff \text{Futr}(F, t) \land \text{Lasts}_{ie}(\neg F, t) \]
The first time in the future when \(F \) will hold is \(t \) time units apart from the current instant

\[\text{Until} (A_1, A_2) \iff \exists t \ (t > 0 \land \text{Futr}(A_2, t) \land \text{Lasts}(A_1, t)) \]
\(A_1 \) holds until \(A_2 \) becomes true

\[\text{Since} (A_1, A_2) \iff \exists t \ (t > 0 \land \text{Past}(A_2, t) \land \text{Lasted}(A_1, t)) \]
\(A_1 \) held since \(A_2 \) became true
• Why the choice of the implicit current time instead of predicking explicitly any time?

– Most systems are “time invariant”: their behavior is in general identical for any initial time and give initial “state”

---->

– most requirements are of the type: “if event E occurs, related event E1 must occur within \(\Delta \)” , or “state S must last at least -or no more than- \(\Delta \) since the time it is entered”, …

– to better understand, let us compare previous formulas stated with explicit time with the corresponding TRIO formulas
Going back to our old timer:

![Diagram]

\[\forall t (L_{On}(t) \iff \neg L_{Off}(t)) \] (we can argue about that) \quad \wedge

Non TRIO

\[\forall t ((P_B(t) \land Up_to_now_L_Off(t)) \rightarrow \]
\[\forall t_1 ((t \leq t_1 < t + k) \rightarrow L_{On}(t_1) \land L_{Off}(t + k)) \] \quad \wedge

\[\forall t_3, t_4 (L_{Off}(t_3) \land \forall t_5 ((t_3 \leq t_5 \leq t_4) \rightarrow \neg P_B(t_5))) \rightarrow L_{Off}(t_4) \]

TRIO

\[\text{Alw}(L_{On} \iff \neg L_{Off}) \] \quad \wedge

Event_P_B (we will introduce the notion of event as a built-in TRIO concept) \quad \wedge

\[((P_B \land Up_to_now_L_Off) \rightarrow \text{Lasts}_{ie}(L_{On}, k) \land \text{Futr}(L_{Off}, k)) \] \quad \wedge

\[\forall y ((y > 0) \land L_{Off} \land \text{Lasts}_{ie}(\neg P_B, y)) \rightarrow \text{Lasts}_{ie}(L_{Off}, y) \]
Let us now go back to another old example: the railroad crossing system (with a first, minor, generalization) (KRC: Kernel railroad crossing)

- Informal description:

- Only one train
- d_m and d_M, minimum and max time, resp., to go from the beginning of R to the beginning of I
- h_m and h_M, minimum and max time, resp, to go through I
- The gate can be open or closed but also moving up and down
- The moving of the gate takes γ and cannot be interrupted
Let us replay the original formalization with the minor necessary modifications and with the use of TRIO instead of pure first-order calculus

- \textit{EnterR}, \textit{EnterI}, and \textit{ExitI} are time dependent predicates, i.e., predicates that may hold or not in different instants (with zero arguments). They represent, respectively the events of a train entering region R, entering region I, or exiting region I (and hence R). Predicates \textit{InR} and \textit{InI} represent the state of a train being in region R (i.e., it has entered the region but it did not exit yet) or, respectively, in region I. Since we consider only one single train, each of the events \textit{EnterR}, \textit{EnterI}, and \textit{ExitI} occur at most once:
 - (k1) \textit{EnterR} → \text{AlwP}(\neg\textit{EnterR}) \land \text{AlwF}(\neg\textit{EnterR})
 - (k2) \textit{EnterI} → \text{AlwP}(\neg\textit{EnterI}) \land \text{AlwF}(\neg\textit{EnterI})
 - (k3) \textit{ExitI} → \text{AlwP}(\neg\textit{ExitI}) \land \text{AlwF}(\neg\textit{ExitI})
Axioms describing the train movement are TRIO restatements of previous formalization:

- (k4) \(\text{EnterR} \rightarrow \exists t(d_m \leq t \leq d_M \land \text{Futr(EnterI, t)}) \)

 (i.e., its takes the train a time between \(d_m \) and \(d_M \) to go from region R to region I).

- (k5) \(\text{EnterI} \rightarrow \exists t(h_m \leq t \leq h_M \land \text{Futr(ExitI, t)}) \)

 (i.e., its takes the train a time between \(h_m \) and \(h_M \) to go exit region I once entered it).

Also, an exit event occurs only after the corresponding enter event.

- (k6) \(\text{EnterI} \rightarrow \exists t(d_m \leq t \leq d_M \land \text{Past(EnterR, t)}) \)

- (k7) \(\text{ExitI} \rightarrow \exists t(h_m \leq t \leq h_M \land \text{Past(EnterI, t)}) \)

The above time bounds on train movements satisfy the following obvious axiom.

- (k8) \(d_M \geq d_m > 0 \land h_M \geq h_m > 0 \)

A train is inside region R or I if it did not exit that region since it entered it.

- (k9) \(\text{InR} \leftrightarrow \text{Since}(\neg\text{EnterI}, \text{EnterR}) \)

- (k10) \(\text{InI} \leftrightarrow \text{Since}(\neg\text{ExitI}, \text{EnterI}) \)
• The formalization of the gate control is slightly more detailed to take into account the movement of the gate:

• go(up) and go(down): (events) commanding the gate to open or close

• open, closed, mvUp, and mvDown are the states of the gate

• the axioms for gate movement are the following:
 – When the gate in the closed state receives a go(up) command, it will move upwards for γ time units and will remain in the open position until a go(down) is issued
 – (M1) $\text{UpToNow}(\text{closed}) \land \text{go}(\text{up}) \rightarrow \text{Lasts}_{ie}(\text{mvUp}, \gamma) \land \text{Futr}(\text{WUntil}_{ie}(\text{open}, \text{go}(\text{down})), \gamma)$
 – Symmetrically:

 – (M2) $\text{UpToNow}(\text{open}) \land \text{go}(\text{down}) \rightarrow \text{Lasts}_{ie}(\text{mvDown}, \gamma) \land \text{Futr}(\text{WUntil}_{ie}(\text{closed}, \text{go}(\text{up})), \gamma)$

 – Initially, i.e., before any operation takes place, the gate is open (we assume here that the gate is installed before any train arrives).

 – (M3) $\text{AlwP}_{i}(\lnot \text{go}(\text{down})) \rightarrow \text{open}$
• The goal we want to achieve is stated by the following requirements:
 – Safety: \(\text{InI} \rightarrow \text{closed} \)
 Of course, we want the gate closed when the train is in the cross.
 However, we also do not want the gate to be uselessly closed. This is somewhat
 more difficult to formalize since a requirement such as
 – \(\neg \text{InI} \rightarrow \text{open} \)
 would be clearly unfeasible. Thus we define the following property:
 – Utility: \(\text{Lasted}_{ii}(\neg \text{InI}, \gamma) \land \text{Lasts}_{ii}(\neg \text{InI}, d_m - d_m + \gamma) \rightarrow \text{open} \)
 (it would be better – more abstract- but more difficult to formalize
 “The gate should be closed only when it is possible that the train is \text{InI}”)
• To achieve the above goal(s) we “design” the following control:
 – (c1) \(\text{go(down)} \leftrightarrow \text{Past(EnterR, } d_m - \gamma) \)
 /* \(d_m > \gamma \), of course*/
 – (c2) \(\text{go(up)} \leftrightarrow \text{ExitI} \).
• All above specifies:
 – How the system components (train and gate) behave
 – What do we want from the system
 – How we design (manage) the system to achieve the desired goals
• Thus, we have all the elements to prove -or disprove!- that our design is correct:
• We need to show that all axioms k’s, M’s, c’s, imply the safety and the utility formulas.
• To do so we need a formal deduction system for TRIO.
• TRIO has two natural formal semantics
 – An interpretation-based one
 – A deduction system
 – Both are quite intuitive and naturally derived by extension of the traditional semantics of first-order theories
 (Soundness and -relative- completeness thereof has been proved)
TRIO’s only “proper” axioms are the following (quite natural) ones:

- **T1.** Dist(\(\alpha, 0\)) \iff \alpha
- **T2.** Dist(\(\alpha, t_1 + t_2\)) \iff Dist(Dist(\(\alpha, t_1\), \(t_2\))
- **T3.** Dist(\(\alpha \land \beta, t\)) \iff (Dist(\(\alpha, t\) \land Dist(\(\beta, t\))
- **T4.** Dist(\(\neg \alpha, t\)) \iff \neg Dist(\(\alpha, t\)
- **T5.** \(\alpha \iff \text{Alw}(\alpha)\) if \(\alpha\) is time independent
We are now ready for the proof of the safety property
(the proof of the utility property is left as an exercise)

- InI is equivalent, by (k10), to Since(¬ExitI, EnterI) which, by the definition of the Since operator, implies Past(EnterI, t) for some t>0. This in turn by (k6) ensures that Past(EnterR, t') for some t'>d_m and then, by (c1), that Past(go(down) t") for some t">γ, i.e, the gate was lowered more than γ time units ago. Now by (k2), (c1), and (M3) this implies Past(UpToNow(open), t"), so that at a time t" before the current time the premise of (M2) is satisfied so that its conclusion holds at that time, i.e.,

- (◆) Past(WUntil_ie(closed,go(up)), t"-γ), with t"-γ > 0.
- But (k10) together with (c2) ensures that no go(up) command has been issued since t' time units ago up to the present time, so that, by (◆), closed holds now.
What about utility?

- If we can prove

 $\alpha)$ \(\text{Lasted}_i(\neg \text{InI}, \gamma) \land \text{Lasts}_i(\neg \text{InI}, \gamma) \rightarrow \text{open} \)

 - $\alpha)$ could be proven by only issuing \(\text{go(down)} \leftrightarrow \text{Past(EnterR, } d_M - \gamma) \)

- It is certainly also

- $\beta)$ \(\text{Lasted}_i(\neg \text{InI}, \gamma) \land \text{Lasts}_i(\neg \text{InI}, d_M - d_m + \gamma) \rightarrow \text{open} \)

- However, there is one possible system behavior consistent with $\alpha)$ which would violate the safety property.

 ![Diagram]

 - As a consequence $\beta)$ represents the weakest utility definition that is compatible with the safety property
Let us now go back to the fundamental issue: applying FMs in the practice of industrial projects

- Let us first recall the main obstacles that hamper(ed) diffusion of FMs in industrial environments:
 - Historically: Formal models are just like “assembly languages to build complex programs”. We need:
 - structuring mechanisms (modularization, abstraction, information hiding, …)
 - modifiability/reusability mechanisms
 - utilities to make their use comfortable (graphical interfaces, …)
 - supporting tools
 - In summary: most of the utilities that have been proved useful in the programming activity -typically OO machinery- are useful as well for “higher level” languages and their use
 - All this stuff is now available for most formalisms (with something still to be desired about tools)
 - Nevertheless … we are still far from wide adoption
 - Why?
• The need of high mathematical skill
• Overhead costs (really?)
• Tools inadequacy
• Lack of methods (remember that any document -whether formal or informal- is the result of a human intensive activity: such an activity must be a right blend of repetition/experience and intuition/innovation)
• The dilemmas evolution/revolution; innovation/conservation (look at the history of programming languages)
• Possible remedies?
 – Political (in a generalized sense) commitment:
 • Pursuing quality rather than time to market
 • Imposing standards, at least for critical systems
 • Making the market more mature so that cost/benefits must be reevaluated
 Anecdotes about MS SW:
 – would you buy a car with the same reliability as MS-Word?
 – Would you change a car after 3 months you bought it just because a new model with a few fancy optionals has been put into the market?
Thinking seriously on the introduction of FMs in the industrial environment:

- avoid overselling
- plan carefully
- be modest in stating the goals
- apply incrementality at every level:
 - e.g., be happy enough with introducing formal specification and forget for a while about formal verification, mainly formal correctness proof
- plan carefully the training process and give it the right priority (too bad experiences on this respect)
- The best results are obtained with young unbiased people
- Thus, in the long term, success can come mainly or only from the “school” (this happened to Pascal)

- Do you think that all this is useless overhead (for you now and for your and others’ industrial work later)??
 - Listen to this: …

Reference reading:

- Ciapessoni et al. “From formal models to .. Methods” .. ACM TOSEM, January 1999.
The TRIO case

• From the formalism to the (specification) language
• TRIO-based verification
 – Correctness proofs
 – Test case generation: verification and validation
 – Model checking (more recent)
• Experiences with the TRIO tools
• Case studies
• Towards exploitation of TRIO throughout the whole life cycle
The TRIO+ specification language

• (What we know so far of) TRIO is not a real specification language:
 – It lacks structuring mechanisms; therefore, the management of large specifications which are typical of real-life systems may become a difficult task.
 – It does not support incrementality: there is no mechanism to facilitate the construction of complex formulas through several versions at increasing level of precision and formality.
 – TRIO is similar to a Pascal-like toy programming language which is suitable to describe algorithms but not to build large programs. In other words, TRIO is a specification language in the small, whereas we need a specification language in the large as well as we need programming languages in the large.

• Most of the typical programming in the large features -OO ones in particular- are good for specification in the large as well:
 – structuring, abstraction, modularization reusability, …. are concepts that work as well for specs as for implementation
 – thus, classes, inheritance, genericity, … are good for specs too
 – TRIO+ embeds such concepts into the logic stage of the basic TRIO.
 – Furthermore, it is provided with a graphical interface to support ease of use.
A TRIO+ specification is built by defining suitable classes.

A class is a set of axioms describing a system, constructed in a modular, independent way, following information hiding principles and object oriented techniques.

Classes may be simple or structured, and may be organized in inheritance hierarchies.

A simple class is a group of TRIO axioms, preceded by the declaration of all occurring predicates, variables, and functions.

As a first example of simple class let us consider the class CrossingBar reported below, which includes all the axioms regarding the gate and the declarations of the related predicates, variables and constants. Here we refer to a generalized version of the railroad crossing system (GRC):

1. Any finite number of trains can enter or leave the same region at the same time instant.
2. In every finite interval only a finite number of trains can enter R.
3. There is no bound to the number of tracks (this is consistent with assumption 1).
4. The gate movement in the up direction can be interrupted by an opposite command (go down).
class CrossingBar; -- class header
visible γ, go, state; -- class interface
temporal domain real; -- the temporal domain to be considered in the specification

TD items -- the declarations of time dependent predicates, variables and functions

predicates go({up, down});
vars state: {open, closed, mvUp, MvDown};

TI items
consts γ: real;
axioms -- the axioms of the specification (implicitly preceded by an Alw operator)
vars t: real; -- the time independent variables, implicitly universally quantified
positiveγ: γ > 0

M3: -- when the gate moving up receives a go(down) command it inverts its motion, at the same speed reaches again the closed position and stays there until the next go(up)
UpToNow(mvUp) ∧ go(down) ∧ LastTime(go(up), t) →
Lasts_ie(mvDown, t) ∧ Futr(WUntil_ie(closed, go(up)), t)

Other axioms M1, M2, M4, and M5 are reported similarly ... see below

end CrossingBar.
• For the sake of completeness:

• (M1) When the gate in the closed state receives a go(up) command, it will move upwards for γ time units or until a go(down) is issued:
$$\text{UpToNow}(\text{closed}) \land \text{go}(\text{up}) \rightarrow \text{Until}_{ie}^{\text{mvUp}}, (\text{go}(\text{down}) \lor \text{Lasted}_{ie}^{\text{¬go}(\text{down}), \gamma}))$$

• (M2) When the gate in the open state receives a go(down) command, it will move downwards for γ time units and then stay closed until a go(up) command is issued:
$$\text{UpToNow}(\text{open}) \land \text{go}(\text{down}) \rightarrow \text{Lasts}_{ie}^{\text{mvDown}, \gamma} \land \text{Futr}(\text{WUntil}_{ie}^{\text{closed}, \text{go}(\text{up})}, \gamma)$$

• (M3) When the gate moving up receives a go(down) command it inverts its motion, at the same speed reaches again the closed position and stays there until the next go(up):
$$\text{UpToNow}(\text{mvUp}) \land \text{go}(\text{down}) \land \text{LastTime}(\text{go}(\text{up}),t) \rightarrow$$
$$\text{Lasts}_{ie}^{\text{mvDown}, t} \land \text{Futr}(\text{WUntil}_{ie}^{\text{closed}, \text{go}(\text{up})}, t)$$

• (M4) After moving up for γ time units, if there is no go(down) command the gate stays open until the next go(down) command:
$$\text{Lasted}_{ie}(\text{mvUp}, \gamma) \land \neg\text{go}(\text{down}) \rightarrow \text{WUntil}_{ie}(\text{open}, \text{go}(\text{down}))$$

• (M5) Initially, i.e., before any operation takes place, the gate is open (we assume here that the gate is installed before any train arrives):
$$\text{AlwP}_{i}(\neg\text{go}(\text{down})) \rightarrow \text{open}$$
Explanations and comments

- The class header is followed by the **visible** clause, which defines the class interface. In the example, γ, go and state are the only visible symbols of the class.
- The **temporal domain** clause indicates the temporal domain of the specification.
- The keyword **TD Items** is followed by the declarations of the local time dependent functions, predicates and variables;
- the keyword **TI Items** is followed by the local time independent functions, predicates and constants. In the example γ is a real constant, go is a unary time dependent predicate on the set \{up, down\}, state is a time dependent variable whose value ranges on \{open, closed, mvUp, mvDown\}.
- The **axioms** are TRIO formulas. Comments, in the form of natural language sentences, are allowed, although they do not have any formal semantics.
- The TRIO formulas of the **axioms** are prefaced with an implicit universal classical and temporal quantification, i.e., all free variables are universally quantified and an *Always* temporal operator precedes the formula.
- A name can precede an axiom, to be used as a reference for axiom redefinition in inheritance. The name must not conflict with other names used in the class declaration. A **vars** clause after the keyword **axioms** lists the declaration of time independent, local variables.
• A class may have a graphic representation as a box, with its name written at the left top; the names of the items are written on lines internal to the box; if an item is visible, then the corresponding line continues outside the box. Class *CrossingBar* is represented in Figure below.
Structured classes are classes that have components—called modules—of other classes. They permit the construction of TRIO+ modular specifications, especially suited to describe systems in which parts can be easily recognized. In our example, the structured class Crossing models the railway crossing: it includes modules for the gate, the sensors at the RI and RO boundaries, and the control system.

Each component corresponds to a module declared in the modules clause by indicating its class (the classes sensor and RControl of modules sensorRI, sensorRO, and control will be declared subsequently). Items of the structured class, like II (a train enters region I), d_m, d_M, h_m, and h_M, may appear in the class axioms.

Modules may not be used directly in axioms, since they represent a set of items and module definitions, with related axioms. Visible items of the local modules, denoted by using a dot notation, can however appear in axioms of the enclosing class: for instance, ‘control.RI’ appears in axiom B1 of class Crossing.

The connections clause specifies equivalence or identity between pairs of items in the scope of the current class, and may often be interpreted as information flows between components. E.g., the connection (gate.state, control.barState) is: $\text{Alw}(\text{gate.state} = \text{control.gateState})$. This asserts that the value of the position of the gate is instantly known to the controller.
• class Crossing;
• temporal domain real;
• TD items
 • predicates \(\Pi \) (natural);
• TI items
 • constants \(d_m, d_M, h_m, h_M \): real;
• modules sensorRI, sensorRO: sensor;
 • gate: crossingGate;
 • control: RCControl;
• connections \{ (sensorRI.E, control.RI),
 (sensorRO.E, control.RO),
 (\(\Pi \), control.\(\Pi \)),
 (gate.\(\gamma \), control.\(\gamma \)),
 (gate.go, control.go),
 (gate.state, control.gateState),
 (\(d_m \), control.\(d_m \)),
 (\(d_M \), control.\(d_M \)) \}
• axioms
•
• **axioms**
• **vars**
 - k: natural;
 - t: real;
• positiveTimeConsts: \(d_M > d_m > 0 \land h_M > h_m > 0\)
• B1: -- the k-th train enters region I with a delay between \(d_m\) and \(d_M\) after the k-th train enters R
• control.RI(k) \(\rightarrow \exists t \ (d_m \leq t \leq d_M \land \text{Futr}(\text{II}(k), t))\)
• -- Axioms (B2)÷(B4) below have a similar meaning:
• (B2) \(\forall k(\text{II}(k) \rightarrow (\exists t \ d_m \leq t \leq d_M \land \text{Past}(\text{RI}(k), t)))\)
• (B3) \(\forall k(\text{II}(k) \rightarrow (\exists t \ h_m \leq t \leq h_M \land \text{Futr}(\text{RO}(k), t)))\)
• (B4) \(\forall k(\text{RO}(k) \rightarrow (\exists t \ h_m \leq t \leq h_M \land \text{Past}(\text{II}(k), t)))\)
• **end** Crossing.
Graphical version of the Crossing class

Remark: A connection is pictorially represented by a line joining the two items. If these have the same name, then it is repeated only once, near the linking line. The advantage of using a connection in place of an axiom is that a connection has an intuitive, pictorial notation, while an axiom does not.
Let us go a little further in the -top-down- development of class definition.
• class RCControl;
• temporal domain real;
• visible RI, II, RO, \(d_m, d_M, \gamma\), go, gateState, \(\gamma\);
• TD items
• predicates RI(natural);
• II(natural);
• RO(natural);
• go({up, down});
• variables gateState: {open, closed, mvUp, mvDown};

• TI items
• consts \(d_m, d_M, \gamma\): real;
• modules countRI, countII, countRO: counter;
• connections \{ (RI, countRI.E),
• (II, countII.E),
• (RO, countRO.E) \}
• ...
• **axioms**

 ...axioms defining CTPI and CTPI\(\gamma\), plus axioms (C1) and (C2) defining the commands ...

 safety: -- safety property for the GRC: if the number of trains that entered the critical region exceeds the number of trains that exited, then the gate must be closed

 \[
 \text{counterII.C} > \text{counterRO.C} \implies \text{gateState} = \text{closed}
 \]

• **end** RCControl.

• Remark: The last “axiom” in class RCControl is an interesting example of a *property* which does not describe directly the required system behavior but expresses some desired system properties that are *ensured* by the other axioms. Such special “axioms” should be called, more appropriately, *properties*, or *theorems*. TRIO+ -unfortunately- did not distinguish between basic and derived properties (axioms and theorems). This is essentially due to TRIO’s history which privileged industrial application w.r.t. theoretical elaboration.
• **class** counter;

• **temporal domain** real;

• **visible** E, C;

• **TD items**

 • **predicates** E(natural);

 • **variables** C: natural;

• **axioms**

 • **vars** k: natural;

 – (A1) Counter(C,E) = \text{def} \quad \begin{align*}
 \text{Alw}(\forall k \ (k \geq 1 \rightarrow ((C = k) \iff (\text{SomP}_i(E(k)) \land \neg\text{SomP}_i(E(k+1)))))) \land \\
 \text{Som}(C=0 \land \text{AlwP}(C=0))
 \end{align*}

• **end** counter.
• The class sensor includes the axioms characterizing the events generated by the sensors in the railway crossing. One axiom, called nonZeno specifies the requirement that at any time only a finite number of trains will cross any region boundary.

• class sensor;

• temporal domain real;

• visible E;

• TD items

• predicates E (natural);

• axioms

• vars k, j: natural;

□ (E1) --- Event occurrences are unique, i.e., they can be true at most in a single instant within the time axis.

$$\forall k(E(k) \rightarrow (\text{AlwP}(\neg E(k)) \land \text{AlwF}(\neg E(k))))$$

--- $E(k)$ denotes the k-th occurrence of event E

□ (E2) --- Events must satisfy a (weak) monotonicity of parameter k with respect to time flowing, i.e.:

$$\forall k(E(k) \land k > 2 \rightarrow \text{SomP}_i(E(k-1))$$

• (E3) --- By convention: $\text{Alw}(\neg E(0))$

• nonZeno: -- at any time only a finite number of trains can enter or leave any region

□ $\exists k (\forall h (h > k) \rightarrow \neg E(h))$ /*is this a strong enough nonZeno axiom to capture physical behavior?*/

• end sensor.
Inheritance in TRIO+ (hints)

- As usual, inheritance provides the possibility for a class—also named subclass, or descendant, or heir class—to receive attributes from other classes—named its superclasses or ancestors. To permit the correct evaluation of inherited axioms, inheritance in TRIO+ requires a form of monotonicity of the external interface (a visible item must remain visible in the descendants), and the monotonicity of the data components (inherited items cannot be canceled). On the other hand, TRIO+ permits to redefine freely the inherited axioms, i.e., to change completely the semantics of the descendants.
- This possibility is particularly useful for a specification language, which must be flexible in the first place because modeling and requirement specification are often exploratory activities: see later.
In our example:

- Suppose we wish to specify a class `sensorWithNTracks`, i.e., a kind of sensor to be used in a crossing where the number of tracks is not left unbound as in the general case but is assumed to be equal to a given constant `nTracks`. This variation in the sensor specification is modeled by means of the inheritance construct.
- The class `sensorWithNTracks` inherits from class `sensor`; it adds the constant item `nTracks` modeling the number of distinct tracks in the crossing, and redefines the axiom `nonZeno` by stating that no more than `nTracks` simultaneous events of type `E` can occur at any time, thus imposing this number as a limit on the number of trains that can simultaneously cross any region boundary.
 - `class sensorWithNTracks;`
 - `inherits sensor [redefine nonZeno]`
 - `TI items`
 - `consts`
 - `nTracks: natural;`
 - `axioms`
 - `nonZeno: -- no more than nTrack trains are simultaneously sensed by the sensor`
 - `E(k) ∧ E(j) → k-j < nTracks`
 - `end sensorWithNTracks`
Hints towards TRIO’s evolution

- Higher-order TRIO (HOT): Class = Type! → modules can be items → they can be quantified
- Strictly monotonic inheritance → equals subtyping.
- However free inheritance is kept to allow flexibility
- Methodological hints towards the managing of inheritance:

```
C1
  ↓
C2 redefines C1
```

```
C0
  ↓
C1 subtype of C0
  ↓
C2 subtype of C0
```
A brief overview of ArchiTRIO
(reference: ArchiTRIO(SDL)05.doc in the web page)

• The basic idea:
a user starts by drawing a UML (class/structure) diagram and then refines/specializes/completes it until (s)he obtains a complete architecture, consisting of Composite Structure diagrams and their ArchiTRIO semantics, possibly augmented with exclusively ArchiTRIO concepts, on which formal verification can be carried out.
Running example: Building Access Control System

- Three different security levels: *low*, *medium*, and *high*.
- The building may contain zero or more areas of a given security level.
- The access control is enforced essentially through two kinds of entities: a local mechanism based on the concept of *security gate*, and a *central control* connected to a user database.
First, high level UML view:
class diagram(s)

```
<table>
<thead>
<tr>
<th>Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>HighSecurityGate</td>
</tr>
<tr>
<td>out:GatePort</td>
</tr>
<tr>
<td>inH:HighSecAutProtocol[*]</td>
</tr>
<tr>
<td>CentralControl</td>
</tr>
<tr>
<td>inL:LowSecAutProtocol[*]</td>
</tr>
<tr>
<td>inM:MedSecAutProtocol[*]</td>
</tr>
<tr>
<td>UserDB</td>
</tr>
<tr>
<td>+getUser:User</td>
</tr>
<tr>
<td>+checkPD:boolean</td>
</tr>
<tr>
<td>User</td>
</tr>
<tr>
<td>+ name : Integer</td>
</tr>
<tr>
<td>- badge : Badge</td>
</tr>
<tr>
<td>- fingerprint : Fingerprint</td>
</tr>
<tr>
<td>- retina : Retina</td>
</tr>
</tbody>
</table>
```
• UML 2.0 introduces the useful concept of *port*, which is essentially an interface container. In this example ports are used to define the protocols used by the CentralControl, to get from, send data to, and manage gates. In Figure 1, every gate has a port of type GatePort, while CentralControl has three different ports, LowSecAutProtocol, MedSecAutProtocol, and HighSecAutProtocol that are used to communicate with SimpleGates, MediumSecurityGates, and HighSecurityGates, respectively.
Moving in a top-down fashion, …
The low security gate is the simplest one, and is depicted in the left part of the diagram. A SimpleGate is an entity having one or more BadgeReaders (a subclass of IdRecognizer), managed by a local controller LC_SimpleGate. Communication between BadgeReader and LC_SimpleGate is based on the interface LocalControl, implemented by the latter.

The medium security level gates are described in the central part of the diagram. A MediumSecurityGate is based on a more sophisticated IdRecognizer, a fingerprints reader (class FingerprintsReader), and has an entry sensor (class EntrySensor). In the typical usage scenario of a medium security gate, the user approaches the gate and his/her fingerprints are scanned; his/her data is then sent to the central control to be checked. If control is passed, the gate remains open either for a short fixed time interval, or until the entry sensor actually detects the user getting in. This scenario could typically be described in UML by a sequence diagram, not reported here. Analogously to the simple gate, a medium security gate is supervised by a local controller, LC_MedSecGate, and communication between the local controller and the sensors is based on the interface LocalControl.

The most complex type of gate is the HighSecurityGate, on the right side of the Figure: it consists of two kinds of IdRecognizers, a FingerprintsReader and a RetinaScanner; an EntrySensor; and a local controller LC_HighSecGate. Its behavior is basically analogous to the medium security level one, but for the retina scanner: the access control has to check both the user’s fingerprints and retina to open the gate.
From class diagrams to *structure* diagrams

Structure diagrams are more object-oriented than class-oriented: Every component is an instance of the corresponding class.
The whole building structure

Structure diagrams are pretty much the same as TRIO+ diagrams
• UML *per se* does not precisely define many of the constructs we used for describing our system here.
• For instance, a precise definition of timeouts management and local control behavior is nowhere to be found.
• More generally, we would like to be able to precisely express a critical property and possibly to verify it.
• In our example an unwanted behavior like the following should not be possible: Alice has clearance to enter Area51 and authenticates herself at the gate, at the same time a malicious Bob is waiting for her authentication behind a corner nearby, trying to enter into the restricted area right behind her. On one hand it is easy to correctly model the local control by using behavioral diagrams (e.g. statecharts or SDL); on the other hand however, general properties, such as “the entry sensor must signal a single entrance after a valid authentication, and it must occur not before k ms and not after $k+n$ ms”, are very hard to express, let alone to verify, if one uses pure UML.
At this point TRIO comes into play: UML + TRIO = ArchiTRIO

- Class LC_HighSecGate provides interface LocalControl and has a port of type GatePort; interface LocalControl defines two operations, incomingData and personEntered.
- In addition to the aforementioned UML port and interface, class LC_HighSecGate includes three logic items, inGate, lastUser and gate_open.
 - Item inGate is time-independent and represents the identifier of the Gate to which the controller belongs;
 - item lastUser is time-dependent and models the data corresponding to the user who had either his/her fingerprints or his/her retina scanned;
 - item gate_open, instead, is a state and models the intervals in which the gate is open.
class LC_HighSecGate
 provides LocalControl ...

ports:
 out : GatePort; ...

items:
 TI inGate : GateId;
 TD lastUser : User;
 state gate_open;

constructors:
 LC_HighSecGate(GateId g) : inGate = g;

temporal domain: real;

axioms: ...
end
• **Axiom dataRelay** states that when an invocation of operation incomingData (exported through interface LocalControl) is received by the controller and the value of the rawData parameter is pd, within T time units in the future the controller will invoke (an instance of) operation sendPersData on port out, passing pd and the value corresponding to item inGate as parameters.

• **vars:**
 - iD : incomingData;
 - sPD : sendPersData;
 - pd : PersonalData;

 dataRelay:
 iD.inv_rec(pd) ->
 ex out.sPD(WithinF(out.sPD.invoke(pd, inGate), T);
• A *port* is a collection of provided and required interfaces.

 – It can be used to define a *protocol*, intended as a combination of invocations of operations that can be received (from a provided interface) or issued (to a required interface).
 – Thus, an ArchiTRIO port can contain axioms defining the corresponding protocol in terms of the involved operation invocations.
• HighSecAutProtocol provides interface AccessControl, and requires one instance of interface FromAccessControl.
interface AccessControl
operations:
User sendPersData(in PersonalData rawData,
 in GateId gate)
 raises UserNonExistentException;
enterPerson(in User user,
 in GateId gate)
 raises UserNonExistentException;
end

interface FromAccessControl
operations:
openGate();
end

The port defines the authentication protocol for gates that require that a user authenticates him/herself through both a fingerprint and a retina scan: the two scans can occur in any order, but always within a maximum delay one from the other for the authentication to be successful (i.e. for the controller to allow the user to enter by opening the gate through an openGate command).

Syntactically stereotypes (<< >>) are used to define TRIO semantics.
Exercise: formalize through TRIO axioms
ArchiTRIO exploits HOT (Higher order TRIO) for the complete definition of its formal semantics:

All UML “concepts” (Interface, port, operation, etc.) are formalized as classes: it is fundamental that items of a class can be instances of other classes, unlike TRIO+

Interested readers may refer to FORTE_05-Camera-Ready.pdf also available on the web:
Complements the basics given in ArchiTRIO_SDL05.doc

Absolutely not necessary for the exam!
Next, before telling a further case study …

… let us add some background material in the (homework) path towards automatic verification
A “new” formal verification technique:

Model checking

• Traditionally - and incorrectly - correctness proofs are “opposed” to testing as well as theory is “opposed” to practice, academy to industry, etc.

• Actually they are complementary - and potentially mutually beneficial - verification techniques:
 – testing is simpler and more intuitive
 – but it does not provide any certainty
 – correctness proofs, in principle, provide guaranteed correctness
 – but they are often complex and error prone themselves (in our case, experience still to be done 😊)

• These - and more - remarks should be taken into account when designing real (verification) methods (we will go back to the issue)

• Next we review a fairly new verification technique, which, under some circumstances, aims at joining pros of both testing and mathematical proof, i.e., verifying “by running the system - better, a model thereof” and obtaining mathematical certainty: model checking
The very idea of model checking:

- Correctness (of an implementation w.r.t. a specification) means “all behaviors compatible with the implementation are also (are a subset of those) compatible with the specification”: the language containment problem;
- exploiting the fact that correctness, i.e., guaranteeing system requirements, i.e. the language containment problem, though undecidable in general, is indeed decidable when the system is (modeled by) a finite state machine (FSM) [though, often of exponential complexity …].
• Original paper by Clarke et al.
 – Became soon highly popular
 – Lot of further research/extensions/tools
 – Significant industrial successes (mainly in the field of HW design)

• System described by a FSM

• Properties (requirements) formalized with a kind of –equivalent- temporal logic

• (Inductive -and somewhat exhaustive) algorithm, rooted in the old-fashioned Pumping Lemma, to verify whether the machine guarantees the properties; if not, a counterexample is provided.
Let us illustrate the essentials of model checking through a running example

- First, a FSM description of the system is given:
Note: this is a FSM “version” of the more understandable Petri net
• Second step: a desired -or feared- property is formalized. The original and traditional syntax for such formulas is of propositional-temporal logic flavor:

- A finite set \mathbf{AP} of atomic propositions is defined. For instance:
 - C_l, C_r, mean that the processes described by the left and right portions of the net, respectively, are in the critical region, i.e., "own" the resource modeled by place P_3.
 - N_l, N_r, mean that the two processes are in the non critical region (tokens are in P_1 and P_2, respectively)
 - R_l, R_r, mean that the two processes requested the shared resource (tokens are in P_4 and P_5, respectively).

- A subset of \mathbf{AP} is associated with each state of the FSM. Such an association defines all elementary properties that hold in a given state. For instance, when the system is in state $<P_1, P_2, P_3>$, neither process is in the critical region; thus, we associate the subset $\{N_l, N_r\}$ with state $<P_1, P_2, P_3>$:
• Then, more complex formulas are built, inductively, in the typical way:
• Let F_1, F_2 denote two generic formulas. Then the following are also formulas:

- F_1 and F_2, not F_1, F_1 or F_2 with the usual meaning of the propositional operators not, or, and.
- $AX(F_1)$: holds when the FSM is in a given state s (called the current state), if and only if F_1 holds in every state that can be reached from s in a single step.
- $EX(F_1)$, holds when the FSM is in state s, if and only if F_1 holds in some state that can be reached from s in a single step.
- $A(F_1 U F_2)$ holds when the FSM is in state s, if and only if for every sequence σ of transitions starting from s, σ has a prefix σ_1 such that F_2 holds in state s' reached by σ_1 and F_1 holds in all states preceding s' in σ_1. For this reason U is called the Until operator)
- $E(F_1 U F_2)$ holds when the FSM is in state s, if and only if there is some sequence σ of transitions starting from s such that σ has a prefix σ_1 such that F_2 holds in state s' reached by σ_1 and F_1 holds in all states preceding s' during the application of σ_1.
- $AF(F_2)$ (respectively $EF(F_2)$) is an abbreviation $A(TRUE U F_2)$ (respectively $E(TRUE U F_2)$; they are read "F_2 is inevitable" and "F_2 potentially holds", respectively.
• For instance:
• $\text{EF}(C_l)$ holds in every state but $\text{AF}(C_l)$ does not hold in any state that does not include P_6; this means that there is always a computation that allows the left process to enter the critical region, but there is no guarantee that the left process accesses the shared resource unless it already owns it.
• Notice that this temporal logic introduces a quantification with respect to possible behaviors; specially well suited for nondeterministic behaviors (but not only).
 – Think e.g. to a property such as:
 – “If it is not possible that a train is in the critical region then the gate must be open”
• At this point …. We “push the button”!

• In fact such formulas are decidable for FSMs:
 – Axioms:
 – $P_1 \land P_2 \land P_3 \Rightarrow N_l \land N_r$, …

 – “Questions”:
 – $N_l \land N_r \Rightarrow AF(C_l)$?
 – i.e.,
 – $N_l \land N_r \land \neg AF(C_l)$ unsatisfiable?
 – if satisfiable, i.e. $N_l \land N_r \Rightarrow AF(C_l)$ is False, a counterexample is provided
 – Otherwise, it returns True

• This has been the major source of the success of model checking
• We do not give the details of the model checking algorithm(s), but you will see ZOT. However:
 – It exploits the typical finiteness of these machines: there are finite many states, each one with finite many possible elementary properties.
 – Thus, properties that predicate machine behavior even for infinite sequences of transitions can be checked inductively in a finite way thanks to the typical cyclic behavior of FSMs: once more, the *pumping lemma* comes into play.

• There are drawbacks, of course:
 – The system must be modeled by a finite set of states (if a system is finite state, its properties too can be “propositional-based”)
 – If the original system is not FS, we can approximate it in such a way (finite integers, …), but …
 – even if the approximation is realistic, we are faced with the typical *combinatorial explosion* (a k-bit register has \(2^k\) states)
• Remark:

 - There are many “tricks” to reduce higher level logic formulas to (a collection of) propositional ones. E.g.:
 • $\forall x \ (1 \leq x \leq 3) \implies \ldots$
 • $(x=1 \lor x=2 \lor x=3) \implies \ldots$

 - Divide the reals domain as
 • $R1: x > 3$
 • $R2: x < 0$
 • $R3: 0 \leq x \leq 3$
 • \ldots
 • Of course the basic assumption is to “finitize” the interpretation domain … and its transitions.
many ad-hoc techniques have been developed to deal with such an enormous number of potential states:

- partitioning, symbolic execution, ...

- some of them can be applied even to infinite state spaces (provided we are able to partition an infinite space into a finite set of “equivalence classes”, e.g.:
 - Temperature below -30, temperature between -30 and +30, temperature above +30)

- All this stuff is the matter of promising and very active research activity

- Initially, as we said, major successes in the HW sector, rather than in the SW:
- HW exhibits more “regularities”
- More recently, however, major progresses and successes in other fields:
 - Theoretical improvements
 - Practical scaling up (from hours to seconds of run-time; from weeks to hours, etc.)

- Applications in
 - embedded systems
 - Flexible manufacturing systems (FMSs)
 - QoS (Quality of services) (in distributed systems; e.g. cloud computing)
 - ...
What about a model checker for TRIO?

- Full TRIO is undecidable:
 - A suitable subsetting must be applied
 - We exploit the typical path of “making the language propositional”
 - ZOT follows the way of “working on the logic version”
 - Essentially reducing the decision problem to a (propositional) formula satisfiability (SAT problem and solvers)
 - \(L(FSM) \subseteq L(\varphi) \iff \tau(FSM) \Rightarrow \varphi \iff L(FSM) \subseteq L(\tau^{-1}(\varphi)) \)
Let us now resume
Case stud(ies) from industrial experience(s)

1. From an established, informal, specification method to the exploitation/introduction/addition of a formal (TRIO-based) approach
2. Dealing with fault tolerance requirements
3. Dealing with -specification- configurability

4. Towards extending the approach to other design phases
 • Reference:
 – Ciapessoni et al. From formal models to .. Methods .. ACM TOSEM, January 1999.
1. From informal to formal specs: a smooth approach

- The informal IEC standard:
 - System description: static and dynamic views:
 - The static view identifies the main components (the environment in which it operates, the process or plant to be controlled, ...) and the relations occurring between them (e.g., physical and logical connections).
The dynamic view defines all the relevant system properties. In most cases such properties are expressed in an *operational style*, that is by means of *state variables* (e.g., temperatures, pressures, the level of a reservoir, the power produced by a plant, …) and *state transformations*, or *transitions* (e.g., the opening or closing of gates or valves, the switching of electric connections, …).

Since the relevant properties of Supervision and Control Systems (SCS) are usually quite numerous and may differ deeply in scope and relevance, they are structured as follows:

- **Functional properties**, related to data monitoring and elaboration. For instance: “the Acquisition and Pre-processing resource must periodically acquire from plant sensors the measurements of 31 analog variables (mostly pressures and temperatures) and 3 digital variables”.
- **Performance properties**. A typical example is the time within which an alarm must be managed.
- **Safety properties**, including system protection from external disturbances, built-in safety mechanisms and protections against risks, suitable safety rules for the personnel.
- **Relevant external conditions** under which the system has to operate during its mission. For example, an alarm managing module may assume that sensors –and, therefore, the controlled plant– do not generate more than 10 alarms per second: under this hypothesis its requirements state that all of them must be served within 10 seconds.
- **Definition of system behavior under permanent or transient faults**.
 - under normal conditions, the module must guarantee some given requirements;
 - under exceptional conditions it must instead guarantee some other requirements.
• The above properties are grouped into a larger category, named *operating properties*. There are also other types of properties specifying managing and maintenance procedures, services supplied by vendors and users, documentation requirements, training procedures, HW and SW compatibility, communications, etc.

• Among these other properties special attention is devoted to *configurability requirements*, since system configurability is a fundamental quality for most industrial systems. Designing a configurable system is a typical example of the *design for change* principle stated by Parnas. In fact, in most cases a system is a member of a family of similar but not identical elements. For instance, in the case of hydroelectric power systems many similar plants may differ in the number, type, and altitude of reservoirs, in the number and power of power stations, etc.

• The result of system analysis is a *specification document* which is structured into several chapters and sections reflecting the above categorization.
Formalizing the specification document

- First step: writing a collection of boxes that correspond one-to-one to system's main components:

```
reservoir inputs (incoming rivers, rain, ...)
```

```
hydraulic quantities relating reservoir and pipes (water yield, pressure ...);
```
• Remarks and comments ---> methodological suggestions
 – Strictly speaking, TRIO is more class-oriented than object-oriented, since a specification consists of a collection of class rather than object definitions: in most cases we are not interested in specifying the properties of a single object. Only when configuring a particular system we describe the specific features of subclasses possibly down to single plants.
 – TRIO does not have an explicit notion of input/output relations among modules. Thus, for instance, an object "monitor" receiving an alarm from the environment and reacting by providing a shutdown command to the plant, can be formally expressed by an item *alarm* and an item *shutdown* in the box *monitor*. However, the user can augment lines denoting items by giving them a direction (denoted by an arrowhead).
 – The *connections* between TRIO classes must not be confused with possible *physical links* between the objects denoted by those classes: a TRIO connection simply denotes that the two items represented by the line segment (a level measure, a signal, …) are the same thing. Therefore, a physical link between objects, such as a pipe connecting a reservoir with a power station or an electrical junction between circuit components, does not necessarily result into a TRIO connection in the specification document.
 – … more later.
Formalizing system properties

- Once we have formalized the system structure by means of a suitable collection of TRIO classes, items, and connections we move to the formalization of the system properties.
- This activity too follows the structure of the original informal document: first, we group the (usually numerous) properties into several modules and sub-modules.
- This is accomplished by using classes, but in a different way than when defining the system structure:
• Notice that it is not necessary that every system component specifies every type of properties: for instance, interface properties make sense only for those components that involve some human-machine interaction.

• Finally, we move from "specification in the large" (i.e., system structure and properties) to "specification in the small", where we formalize single properties using pure TRIO formulas. To simplify at best this critical and often difficult activity, we used the following guidelines:
 – *Not everything must be formalized*
 – *Use an operational attitude*
 – *Introduce some "thumb-rules"
 – In order to help users who are not familiar with the formal notation, the language manuals should include a collection of “thumb-rules” to move from prose description to formal specification, pointing out a few typical traps and suggesting how to avoid them.
A few thumb rules derived from experience

- Translate an informal "such that" into an implication when it is paired with a universal quantification and into a conjunction when it is paired with an existential quantification.
 "a reservoir located in the Alps must not have an area greater than k m²" becomes
 \(\forall r \ (\text{alpine}(r) \rightarrow \text{area}(r) \leq k) \)
 "there are reservoirs in the Alps that are located at an altitude greater than h" becomes
 \(\exists r \ (\text{alpine}(r) \land \text{altitude}(r) \geq h) \).

- Avoid – whenever possible – the use of explicit quantifiers when specifying time-related properties: use instead derived temporal operators.
 For instance the formula \(\text{Lasts}(P, d) \) is more immediate and understandable than
 \(\forall d' \ (0 < d' < d \rightarrow \text{Dist}(P, d')) \).

- Clearly, the usefulness and the style of such suggestions strongly depend on the cultural background of the industrial environment where the formal method must be adopted.
2. Dealing with fault tolerance requirements

- It is useful, from a methodological point of view, to distinguish requirements related with fault tolerance from requirements regarding system operation in absence of faults. ->
 structuring the specification into parts describing “normal” functioning and other parts describing “exceptional” or “faulty” conditions

- **Example**

- Suppose we want to specify a system subject to both hardware faults and disturbances which tend to change the value of a state variable, thus causing incorrect system operation. Informally, the basic requirements on the system behavior are specified as follows:
 - a) When a hardware fault occurs and remains unrepaired for at least \(\delta \) time units, the system must be able to find the damaged part and put it off-line;
 - b) The system operates normally only if the value of the state variable is not altered by a disturbance.
In order to formalize the above requirements which involve the distinction between normal and faulty operation, it is necessary to distinguish items into \textit{actualValues} and \textit{expectedValue}:

\begin{center}
\begin{tabular}{|c|c|}
\hline
C \hline
Fault \hline
FaultRepair \hline
damagedPart \hline
actualValue \hline
expectedValue \hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|}
\hline
shutOut \hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|}
\hline
normFunct \hline
\end{tabular}
\end{center}
class C
...

axioms

/* normFunct is the proposition that models the normal functioning of the system: it is defined as equivalent to the conjunction of $C_1 \ldots C_n$, the other axioms describing normal functioning in ordinary conditions */

normFunct $\iff C_1 \land \ldots \land C_n$

/* the axiom below formalizes requirement a) */

whenShutOut: shutOut(damagedPart) \iff Lasted(Since(\negFaultRepair, Fault), delta)

/* the axiom below formalizes requirement b) */

disturbFunct: normFunct \rightarrow actualValue = expectedValue

diss C
Suppose now that we need to specify the following *additional* fault tolerance properties to make the system more robust in presence of faults:

- a) the damaged part should be put off-line only whenever the second unrepaired hardware fault occurs (it is assumed that the system can be managed correctly in presence of a single unrepaired fault) and stays unrepaired for a given time;
- b) the system should operate normally if the value of the state variable, though recently altered for some time intervals, maintains the expected value for at least half of the time during the last Δt time units.

We specify these stronger fault tolerance requirements by defining a *heir class* of C, called $CFaultToler$, that inherits from class C and adds two modules, $HWFaulTol$ and $DistFaulTol$ that include the specification of properties of fault tolerance with respect to hardware faults and disturbances on the state variable, respectively.
Let us first consider the property of tolerance to hardware faults. The module HWFaulTol is of class \textit{clHWFaultTolerance}, defined by:

\begin{verbatim}
class clHWFaultTolerance
... item and module declarations ...
axioms
unrepairedFaults = FCount - RFCount
criticalFailure ⇔ unrepairedFaults ≥ 2
end clHWFaultTolerance.
\end{verbatim}
Class clHWFaultTolerance, in turn, includes two modules, FCcounter and RCcounter, of class EventCounter, to model the counting operation of the events Fault and FaultRepair, respectively. A critical failure (i.e., one originated by some faults that cannot be “tolerated”) occurs when the number of unrepaired faults (defined as the difference between the number of faults and the number of fault repairs) is greater than or equal to 2.

- EventCounter is a typical and well known example of library class definition: it includes axioms requiring that a generic predicate models an event, and specifying the counting operation.
• In a similar manner the module \textit{distFaultTol} of class \textit{clDisturbFaultTolerance} specifies the tolerance to disturbances on the value of the state variable

\begin{center}
\begin{tikzpicture}
\node (a) at (0,0) {clDisturbFaultTolerance};
\node (b) at (0,-1) {actual Value};
\node (c) at (0,-2) {expected Value};
\node (d) at (0,-3) {delta1};
\node (e) at (1,-1) {condition};
\node (f) at (1,-2) {measValue};
\node (g) at (1,-3) {heldOver};
\node (h) at (1,-4) {value Acceptable};
\end{tikzpicture}
\end{center}

\textbf{class} \textit{clDisturbFaultTolerance} \\
.... module and item declarations as in the graphical representation \\
...

\textbf{axioms}

measValue.condition \iff (actualValue = expectedValue) \\
valueAcceptable \iff measValue.heldOver(delta1) \geq delta1/2

\textbf{end} \textit{clDisturbFaultTolerance}.

Module \textit{measValue} of (library) class \textit{measure} specifies that the actual value of the state variable has been equal to the expected value for at least half of the last \textit{delta1} time units. Function \textit{heldOver} determines the total amount of time over which a given condition holds, for each possible length of the time interval ending at current time.
Finally, class \textit{CFaultToler} redefines the axioms \textit{whenShutOut} and \textit{disturbFunct} describing the new conditions under which a hardware fault causes a shut out of the damaged part, and a disturbance of the value of the state variable hinders normal functioning. Notice that the axioms \textit{whenShutOut} and \textit{disturbFunct} of class \textit{C} are redefined in \textit{CFaultToler} in a similar way, by taking into account the items exported by modules \textit{HWFaultTol} and \textit{DistiFaultTol} which specify the fault tolerance requirements.

\begin{verbatim}
– class CFaultToler
– inherit C [redefine whenShutOut, disturbFunct]
– item declarations and connections according to the representation of corresponding figure
– axioms
– /*the damaged part is put off line iff a critical failure persists for at least \textit{delay} time units*/
– whenShutOut: shutOut(damagedPart) ↔ Lasted(HWFaultTol.criticalFailure, delay)
– /*functioning is normal only if the comparison between the actual and the expected value gives an acceptable result*/
– disturbFunct: normFunct → DistFaultToler.valueAcceptable
– end CFaultToler.
\end{verbatim}
• Remarks:
• Notice the similarity with another standard (referring to industrial robots):
 • [a) a single fault in any of these parts does not lead to the loss of the safety function;
 • b) whenever reasonably practicable, the single fault shall be detected at or before the next demand upon the safety function;
 • c) when the single fault occurs, the safety function is always performed and a safe state shall be maintained until the detected fault is corrected; and
 • d) all reasonably foreseeable faults shall be detected.]

• Is the presented *method* an ideal one?
3. Dealing with -specification- configurability: a “static configuration” example

- A pondage power plant includes the modules *reservoir* and *powerStation* representing its physical components. To deal explicitly with its possible configurations, we add a module *configuration* that includes all information on the plant configuration. The configuration module does not correspond to a physical plant component: it is adopted as a *systematic* way to encapsulate the requirements concerning the allowed possibilities and the existing constraints on composing various kinds of plant components, thus determining the possible plant configurations.
• \textit{resDim}, the reservoir dimension: large, medium, or small; the size of the reservoir is directly related to its maximum water delivery;
• \textit{resAltid}, the altitude where the pondage is located.
• \textit{mangPol}, the managing policy adopted for the reservoir: it can be \textit{autonomous}, (i.e., the water of the pondage is managed according to a production program defined autonomously by the plant), or \textit{external} (i.e., the water is managed according to a production program that is defined outside the plant).
• A station for power generation is characterized as follows:
 • \textit{genKind} the type of the power generating units in the station: there exist two kinds of unit: Francis and Pelton, which are respectively more suitable for low or high leap (difference in altitude) from the pondage to the station;
 • \textit{genSize}, the size of the generating units in the station, which depends on their nominal power (number of Volt–Ampere); in pondage power plants one can have only small (generated power < 10 MVA) or medium size (≥ 10MVA) power units;
 • \textit{freqReg}: the power units may (or may not) be able to finely adjust the frequency of the generated electric voltage around the nominal value of 50Hz;
• \textit{statAltid}, the altitude of the station.
The class declaration for the module configuration includes the axioms describing how the plant can be configured by varying the type and dimension of its components.

- **type**
 - typeResDim = (smallRes, mediumRes, largeRes);
 - typeManPol = (autonomous, extern);
 - genKindType = (Francis, Pelton);
 - genSizeType = (small, medium);
class clConfig
visible
TI Items ...

const leap: natural; /*jump of the water from the reservoir to power station*/
freqReg: boolean; /*true if the power units can regulate the frequency*/

axioms

/*the leap is defined as the difference in altitude between reservoir and power station */
leap = resAltit - statAltit

/*generating elements of the Francis kind must be used for small leaps (<150 m), Pelton ones for high leaps (> 250); for intermediate leaps both Francis or Pelton can be used but if the size of the reservoir (and hence its water delivery) is large Francis must be chosen */
(leap <150 ∨ (leap ≤ 250 ∧ resDim = largeRes)) → genKind = Francis
leap > 250 → genKind = Pelton

... /* Similar axioms state constraints among chosen generating units, reservoir size, managing policies, etc. For instance: "The size of the generating units is small if the leap is ≤ 250 and the reservoir is small or medium; it is medium otherwise; ..." */

end clConfig.
• Notice that the properties asserted in the $cl\text{Config}$ class may imply more constraints on the configuration activity than those explicitly stated. We could derive, for instance:
 – i) in a plant with a reservoir managed autonomously, Pelton power units and frequency regulation the leap must be high (>250) and the reservoir size must be medium;
 – ii) no plant can exist with a median leap ($150 \leq \text{leap} \leq 250$), Pelton power units and frequency regulation.

• Often, different categories of plants can be defined on the basis of some choice of the configuration parameters. We can describe such categories by pairing the configuration class definition with the inheritance mechanism:
Notice that a heir class is empty if it has properties that are incompatible with the constraints expressed in class *clConfig*. Thus, the properties of the configuration expressed in *clConfig* provide some discipline in determining the types and the dimensions of the components, by ruling out some unfeasible combinations.
• The selection of the allowed possibilities from those deriving from a pure combination of the immediate heir classes of class plant can be done by the specifier through informal reasoning on the axioms of clConfig, as in points i) and ii), or could be more effectively supported by semantic tools through the analysis of suitable formulas stating explicitly the feasibility of some combination of elements.

• In our example, class clConfig could include a further set of axioms expressing configurability of the plant, that is requiring that a certain combination of elements exists. E.g.: non-emptiness of class AMPTRGplant:

\[\exists mp \exists gk \exists fr \ (mp=\text{managPol} \land gk=\text{genKind} \land fr=\text{freqReg} \land mp=\text{autonomous} \land gk=\text{Pelton} \land fr=\text{true}) \]

• By analyzing the above axiom (possibly using an automatic tool), one can establish that the above formula is consistent with the other axioms and that when \(mp, gk, \) and \(rg \) have the indicated values, the leap will be over 250 meters, and the reservoir size will be medium: we obtained an automatic design from specs!

• The above method illustrates static system configuration; See the paper for dynamic reconfiguration.
Further case studies to be developed

- Completing the GRC and proving safety/utilities properties (exploiting TRIO tools)
- Developing the reservoir system
- The ENEL’s energy meters
- …
- Investigating (more) thoroughly lower life cycle phases (design and verification)
- See also Specification of ENEL's energy meters (in Italian)
Let us now resume the original theoretical development:

Let’s go back to Hoare’s method to specify and prove sequential programs

We started with:
We build a specification \textit{Spec}:

\begin{itemize}
 \item \{\textit{Pre}\}
 \begin{itemize}
 \item \textit{P}
 \end{itemize}
 \{\textit{Post}\}
 \end{itemize}

We design an implementation (program) \textit{P}

We want to prove that \textit{P}’s semantics implies \textit{Spec}.

To reduce the whole process to a logic deduction we need:

\begin{itemize}
 \item A syntax that embodies program and their properties (as first-order formulas)
 \item An axiom system that embodies program semantics, i.e., allows to deduce properties on program variable (values) that are consequence of program statements execution (language semantics axiomatization)
\end{itemize}

We will do this for a typical "MiniPascal" language
• The method is a typical syntax-directed, compositional method, as it is often the case with structured Algol-like languages (the same applies to operational and denotational semantics, to translation schemas, to compiler testing, etc.)

• Thus, let us begin with the kernel of any -von Neumann- language: the assignment statement
The axiomatic semantics of the assignment statement

• Let us go backwards:
 – If we execute \(x := 0 \) we are sure that after the execution the condition \(x = 0 \) holds
 – This allows us to derive the axiom
 \(\{ T \} x := 0 \{ x = 0 \} \)

• A little more generally:
 – if we want that after execution of \(x := a \), the postcondition \(\text{Post}(x) \equiv x > y + z \) holds a necessary and sufficient precondition to achieve such a goal is that \(\text{Pre}(a) \equiv a > y + z \) holds before statement execution
• Even more generally:
 – Let \(x := \text{exp} \) be a generic assignment statement
 – Let \(\text{Post} \) be a generic (first-order) formula
 – Let \(\text{Post}_x^{\text{exp}} \) denote the result of substituting any (free…) occurrence of \(x \) in \(\text{Post} \) by \(\text{exp} \)
 – then
 – \(\text{Post}_x^{\text{exp}} \) is a necessary and sufficient precondition for guaranteeing the condition \(\text{Post} \).
 – We write the backwards substitution *axiom*
 – A1) \(\{ \text{Post}_x^{\text{exp}} \} x := \text{exp} \{ \text{Post} \} \)
 – Thanks to A1, whenever we can rely on that a condition such as \(\{ \text{Post}_x^{\text{exp}} \} \) holds before executing \(x := \text{exp} \), we can also rely on the holding of \(\text{Post} \) after its execution.
• Let us now consider the sequence of two statements such as $x := y; z := x$

 – By applying A1 twice we have, say,

 • $\{x > 0\} z := x \{z > 0\}$ and $\{y > 0\} x := y \{x > 0\}$, i.e.,

 • if y is > 0 before execution of $x := y$ then we can rely on $x > 0$ after its execution; but also if x is > 0 before execution on $z := x$ then we can rely on $z > 0$ after its execution; thus

 • if y is > 0 before execution of $x := y$ followed by $z := x$ then we can rely on $z > 0$ after execution of the sequence of the two statements

 – More generally, we can apply the following inference rule (IR1):

 – Let S_1 and S_2 be two program fragments, then

 $\frac{\{P\}S_1\{R\}, \{R\}S_2\{Q\}}{\{P\}S_1;S_2\{Q\}}$

 Where the notation $\frac{F_1, F_2, F_3, \ldots F_n}{F}$

 Means that if we have proven F_1, F_2, \ldots and F_n, then we can deduce F
• The following rule (IR2) can also be useful

\[
\begin{align*}
P_1 \rightarrow P, \; \{P\} \; S \; \{Q\}, \; Q & \rightarrow Q_1 \\
\{P_1\} \; S \; \{Q_1\}
\end{align*}
\]

Notice that \(P_1 \) is a sufficient (but not necessary) precondition to guarantee \(Q_1 \) as a postcondition of \(S \)

• From what we have up to now we are able to prove facts such as:

\[
\{ f(g(x)) > 5 \} \; x := g(x); \; x := f(x) \; \{ x > 0 \}
\]

The semantics of sequencing two pieces of programs is the *composition* of the two respective semantics
The axiomatization of the \textbf{if-then[-else]} statement

\begin{align*}
\text{(IRC}a\text{)} & \quad \text{IF} \quad \{P \land c\}S_1\{Q\}, \{P \land \neg c\}S_2\{Q\} \\
& \quad \{P\} \text{ if } c \text{ then } S_1 \text{ else } S_2 \{Q\}
\end{align*}

\begin{align*}
\text{(IRC}b\text{)} & \quad \text{IF} \quad \{P \land c\}S_1\{Q\}, \{P \land \neg c\} \rightarrow \{Q\} \\
& \quad \{P\} \text{ if } c \text{ then } S_1 \{Q\}
\end{align*}
Example

• We wish to prove that under *any circumstance*, the assertion
 \[z \geq y \land z \geq x \]
 holds as a consequence of executing
 \[
 \text{if } x > y \text{ then } z := x \text{ else } z := y , \text{ i.e.,}
 \]

• \[
\{T\} \quad \text{if } x > y \text{ then } z := x \text{ else } z := y \{ z \geq y \land z \geq x \}
\]

• [Questions:
 – Is this a specification for the computation of the maximum between two numbers?
 – Is this a statement that computes the maximum between two numbers?]
 – \[
 \{x \geq y \land x \geq x\} \ z := x \ {z \geq y \land z \geq x}\]
 – \[
 T \land x > y \rightarrow x \geq y \land x \geq x \]
 thus, by IR2,
 – \[
 \{T \land x > y\} \ z := x \ {z \geq y \land z \geq x}\]

• Similarly
 – \[
 \{y \geq y \land y \geq x\} \ z := y \ {z \geq y \land z \geq x}\]
 – \[
 T \land \neg(x > y) \rightarrow y \geq y \land y \geq x \]
 and, by IR2,
 – \[
 \{T \land \neg(x > y)\} \ z := y \ {z \geq y \land z \geq x}\]

• Finally, the desired result is deduced by IRCa
• We are now able to “prove” simple program fragments built by means of:
 – assignments
 – sequencing
 – conditional statements
• The rules are compositional, i.e. they can be inductively applied following the structure of the program (fragment)
• However, we know that the heart of most algorithms consists of iteration (or recursion):

\[
(IRW) \quad \frac{\{I \land c\} S \{I\}}{\{I\} \textbf{ while } c \textbf{ do } S \{I \land \neg c\}}
\]

I is called the (better: \(a\)) loop invariant

\(IRW\) states that if I holds as a precondition of the loop, then at loop exit (if ever! …) I and the negation of loop condition hold.

How do we use \(IRW\)???
A first “complete” example
(let’s forget about I/O, which anyway can be treated in a trivial way)

- \(\{ y > 0 \} \)

 \begin{verbatim}
 begin
 x := 1; j := 1;
 while y \geq j
 do
 j := j + 1; x := x * z
 end
 end
 \end{verbatim}

 \(\{ x = z^y \} \)

- The method suggests to go “backwards”:
 - We start from the postcondition and we try to build assertions \(\{ A_i \} \) such that
 - \(\{ \text{Pre} \} \) Fr1 \(\{ A_1 \} \), \(\{ A_1 \} \) Fr2 \(\{ A_2 \} \) …. Frn \(\{ \text{Post} \} \)
In our case:

- \{y>0\}
 begin
 x:= 1; j :=1;
 end
- \{I?\}
 while \ y \geq \ j
 do
 j := j + 1; x := x *z
 end
 end
 \{x = z^y\}

- We need an \ I \ such that
- \{y>0\} x:= 1; j :=1\{I\}
 and
- \{I\} while \ y \geq \ j do j := j + 1; x := x *z end \{I \land y < j \} \rightarrow \{x = z^y\}
Here we are faced with the main problem: we must **invent** a suitable invariant!

Let’s first proceed in a “blind” way: $I_1 \equiv \text{Post} \equiv x = z^y : \text{By this way we would immediately have } (I_1 \land \neg C) \rightarrow \text{Post} \text{ and we would be finished.}

Unfortunately, it is immediately clear that Post is not a loop invariant

- In fact we should prove $\{x = z^y \land y \geq j\} j := j + 1; x := x \ast z \{x = z^y\}$, i.e.,

 $x = z^y \land y \geq j \rightarrow x \ast z = z^y$ which is obviously false.

This failure shows a major point: we cannot proceed fully automatically (remember Rice’s theorem!): we must use our **ingenuity** to invent a suitable invariant. This simply means analyzing our program just as we do with “normal” informal analysis, but formulating our analysis through the mathematical notation.

The notion of loop invariant is not just a matter of mathematical formalism: it is a way of capturing the essence of the loop: transforming program state by keeping a fundamental property “invariant” and extending its scope up to “cover” all necessary cases (a whole array or list, a set of candidate elements where to look for a searched one, etc.)

In our case the initialization and the loop body suggest a natural relation between the counter j and the exponent of z (in x):
• Let us try $I_2 \equiv x = z^j$:

This is certainly a loop invariant: $x = z^j \land y \geq j \implies x \cdot z = z^{j+1}$; but $x = z^j \land y < j$ does not imply $x = z^y$ (in fact at the beginning $j = 1$ and $x = z^0$.) Thus,

• $I_3 \equiv x = z^{j-1}$ seems more appropriate. I_3 is invariant.

$I_3 \land y < j$ does not contradict $x = z^y$ but it does not imply it as well.

It is good but “not enough”: too “weak”: we need info to derive the Post.

• Finally we augment I_3 as $I_4 \equiv x = z^{j-1} \land y \geq j - 1$. I_4 is loop invariant too.

• This time however, $I_4 \land y < j$ does imply $x = z^y$.

• We are almost done: it remains only to verify that the invariant is stated by the initialization:

• $\{y > 0\} x := 1; j := 1 \{x = z^{j-1} \land y \geq j - 1\}$, i.e. $y > 0 \implies y \geq 0$

• and the proof is really complete!
Handling quantified assertions

- Consider the following example, derived by a “blind application” of axiom A1: $F \equiv \{ \exists \ z (z=2.z \land z > 0) \} \ x := z \ \{ \exists \ z (x=2.z \land z > 0) \}$

Intuitively, the retropropagation should produce the precondition that guarantees that, after executing $x := z$, x is an even number.

- The failure is due to the fact that z is not free for x in $\{ \exists \ z (x=2.z) \land z > 0 \}$ (for the same reason we cannot freely substitute x by y in $\forall x \exists y (A(x,y))$).

- The example, however, also shows a major difference between the meaning of variables such as z, which is quantified and variables such as x, which is not: here z denotes a generic value, whereas x denotes a program variable, i.e. an abstraction of a memory cell: two sharply different concepts are expressed by the same notation!

- To avoid confusion, in the following we will use overbarred identifiers to denote quantified variables (which are not program variables) and normal ones for program variables. In the above example we should rewrite:

$$\{ \exists \overline{z} (z = 2.\overline{z} \land \overline{z} > 0) \} \ x := \overline{z} \ \{ \exists \overline{z} (x = 2.\overline{z} \land \overline{z} > 0) \}$$

which makes perfectly sense.
As a further example, suppose you wish to state that, after execution of a program fragment S variable z has the maximum value among all other program variables.

At a first glance, one might try $S\{\forall y (z \geq y)\}$.

However, we would obtain

$$\{\forall y (z \geq y)\} x := z + 1 \{\forall y (z \geq y)\}$$

which is clearly wrong.

The error, again, abides in a confusion between variables denoting just values and program variables:

- the above formula actually states that “the value of -the contents of- variable z” is greater than or equal to any integer value, which is clearly unsatisfiable.

The above informal requirement should have been formalized as:

$$S \{\forall y (y = x_1 \lor y = x_2 \lor \ldots \rightarrow (z \geq y))\}$$

where x_i denotes a generic program variable identifier.

This time, backwards substitution through $x := z + 1$ would –correctly- yield False (in fact, there is no way that after executing $x := z + 1$, z will be the greatest program variable.)
A new example: Euclid’s algorithm

• Let us consider the classic Euclid’s algorithm to compute the greatest common divisor (GCD) of two non-zero natural numbers. As usual, let us “fake” I/O for simplicity:

• PGCD:

 • begin
 – \(x := z; \ y := w; \)
 – while \(x \neq y \) do
 • if \(x > y \) then \(x := x - y \) else \(y := y - x \) end
 – end

• end

• Its specification is \(\{ z > 0 \land w > 0 \} \) PGCD \(\{ x = \text{GCD}(z,w) \} \), where we use \(x = \text{GCD}(z,w) \) as a short notation for the formula:

\[
\exists k \left((k = x) \land \left(\exists u_1, v_1 (z = u_1 \cdot k \land w = v_1 \cdot k) \right) \land \left(\exists h, u_2, v_2 (z = u_2 \cdot h \land w = v_2 \cdot h \land h > k) \right) \right)
\]
Our goal: find a suitable I such that:

- \{Pre\} = \{z > 0 \land w > 0\}
- \textbf{begin}
 - x := z; y := w; \quad \{I\}
 - \textbf{while} \ x \neq \ y \ \textbf{do}
 - \textbf{if} \ x > y \ \textbf{then} \ x := x - y \ \textbf{else} \ y := y - x \ \textbf{end}
 - \textbf{end} \quad \{I \land x = y\}
- \textbf{end}
- \{Post\} = \{x = \text{GCD}(z,w)\},
• Let us focus immediately on the loop invariant: from our informal knowledge of Euclid’s algorithm, a natural one appears to be

I: GCD(x, y) = GCD(z, w), which, as before, it is intended as a short notation for:

\[
\exists k \left(\left(\exists x_1, y_1 \left(x = x_1 \cdot k \land y = y_1 \cdot k \right) \land \exists h, x_2, y_2 \left(x = x_2 \cdot h \land y = y_2 \cdot h \land h > k \right) \right) \land \left(\exists z_1, w_1 \left(z = z_1 \cdot k \land w = w_1 \cdot k \right) \land \exists h, z_2, w_2 \left(z = z_2 \cdot h \land w = w_2 \cdot h \land h > k \right) \right) \right)
\]

• First step:

\{ z > 0 \land w > 0 \} \ x := z; \ y := w \ {I}, i.e., GCD(z, w) = GCD(z, w)

which is obviously true.

• Second step:

I \land x = y implies x = GCD(z, w), which is also true in a fairly obvious way
(in fact x = y implies \(\bar{k} = x = y \)).

• It remains to be proved that I is indeed a loop invariant, i.e.,

\{ I \land x \neq y \} \ \text{if} \ x > y \ \text{then} \ x := x - y \ \text{else} \ y := y - x \ \text{end} \ \{ \text{I} \}
• The proof of \(\{ I \land x \neq y \} \) if \(x > y \) then \(x := x - y \) else \(y := y - x \) end \(\{ I \} \) in turn is split into:
 – \(I \land x > y \rightarrow \text{GCD}(x-y, y) = \text{GCD}(z, w) \)
 – \(I \land y > x \rightarrow \text{GCD}(x, y - x) = \text{GCD}(z, w) \)
 – Then, since the loop condition \(x \neq y \) implies \((x > y) \lor (y > x) \) (and therefore \((x \neq y \land \neg (x > y)) \rightarrow y > x \)) the proof will be complete.

• Let us prove the first conjunct (the second one being symmetric).

• First, notice that, for any \(\overline{k} \):

\[
x > y \land \exists x_1, y_1 \left(x = x_1 \cdot \overline{k} \land y = y_1 \cdot \overline{k}\right) \rightarrow x - y > 0 \land \exists x_1, y_1 \left(x - y = (x_1 - y_1) \cdot \overline{k}\right)
\]

Thus, \(\exists x_1, y_1 \left(x - y = x_1 \cdot \overline{k} \land y = y_1 \cdot \overline{k}\right) \)

I.e., \(\overline{k} \) is also a common divisor of \(x - y \) and \(y \)
Now, suppose that, \(\bar{k} \) is not the GCD of the twos. Then:

\[
\exists \bar{h}, x_2, y_2 \left(h > \bar{k} \land x - y = x_2 \cdot \bar{h} \land y = y_2 \cdot \bar{h} \right)
\]

This would imply

\[
x = x_2 \cdot \bar{h} + y_2 \cdot \bar{h} = (x_2 + y_2) \cdot \bar{h} \land y = y_2 \cdot \bar{h}
\]

and thus

\[
\exists \bar{h}, x_2, y_2 \left(h > \bar{k} \land x = x_2 \cdot \bar{h} \land y = y_2 \cdot \bar{h} \right)
\]

thus contradicting I.
Handling indexed variables

- Let us consider the backwards substitution axiom when formulas and statements involve the use of indexed variables (or pointers -which is conceptually similar).
- A first example such as
 \{T\} \texttt{a[x] := 5} \{a[x] = 5\}
seems to suggest that the axiom applies as well in this case too …
- … however, at a deeper inspection:
 \{a[x] = 3\} \texttt{a[k] := 5}\{a[x] = 3 \land a[k] = 5\}
is not so correct: what happens if \(k = x\)? Other similar examples are:
 - Let \(P\) be \(\forall i((1 \leq i \leq 10) \rightarrow a[i] = 5)\). Then we would obtain
 \{P\} \texttt{k := 3; a[k] := 6} \{P\}, which is clearly incorrect.
 - Let \(P\) be \(a[x] = 1 \land x = a[2]\). Then
 \{T\} \texttt{x := a[2]; a[x] := 1} \{P\} is falsified if \(a[2] = 2\)
- In general, the source of the problems is the aliasing induced by indexed variables (as well as pointers): *different symbols mean the same variable*. Thus, hidden effects are produced by assignments to given -variable-identifiers.
To overcome this difficulty aliasing must be explicitly taken into account during backwards substitution. This leads to the following reformulation of the main axiom:

\[\overline{A1)} \qquad \{ \overline{P}_{a[i]}^t \} \ a[i] := t \ \{ P \} \]

where \(\overline{P}_{a[i]}^t \) is the result of replacing any occurrence of \(a[x] \) in \(P \) by the expression
\[
\text{if } x = i \ \text{then } t \ \text{else} \ a[x]
\]

• For instance, if
\[
P = \forall \overline{p}\left((a[\overline{p}] \geq a[i]) \rightarrow (\forall \overline{z}(a[\overline{z}] \neq a[j])) \right)
\]

• Then \(\overline{P}_{a[i]}^t \) is:
\[
\overline{P}_{a[i]}^t = \forall \overline{p}\left(\left(\text{if } \overline{p} = i \ \text{then } t \ \text{else} a[\overline{p}] \right) \geq t \rightarrow
\left(\forall \overline{z}(\text{if } \overline{z} = i \ \text{then } t \ \text{else} a[\overline{z}] \neq (\text{if } j = i \ \text{then } t \ \text{else} a[j])) \right) \right)
\]
A nontrivial example: a sorting algorithm and its correctness

• (Let us recall) The specification of the sorting problem:

\[
\{ 1 \leq n \land \forall p(1 \leq p \leq n) \rightarrow a[p] = b[p] \}\]

• PSORT

\[
\left\{ \left(\forall p(1 \leq p \leq n - 1 \rightarrow (a[p] \leq a[p + 1])) \right) \land \\
\left(\forall p(1 \leq p \leq n) \rightarrow (\exists r(1 \leq r \leq n) \land (a[p] = b[r])) \right) \land \\
\left(\forall r(1 \leq r \leq n) \rightarrow (\exists p(1 \leq p \leq n) \land (a[p] = b[r])) \right) \right\}
\]

• A sorting algorithm:

begin
 – i := 2;
 – while i <= n do
 • x := a[i]; a[0] := x; j := i - 1;
 • while x < a[j] do a[j+1] := a[j]; j := j - 1 end
 • a[j+1] := x; i := i + 1
 – end
end
Let us now face the proof of the algorithm w.r.t. the above specification

- This time, the job is far from trivial. Thus, as usual with complex problems, we need to proceed judiciously, by applying some suitable method. In particular, proofs can and should be modularized as well as every other complex artifacts.

- Let us first observe that, if we have a specification of the type
 \{Pre1 \land Pre2\} Prog \{Post1 \land Post2\}
 and we succeed in proving separately
 \{Pre1\} Prog \{Post1\} and \{Pre2\} Prog \{Post2\}
 then we can deduce the proof of the whole specification.

- In our case let us therefore try to prove separately

 \begin{align*}
 \text{A} & \quad \text{B} \\
 \{1 \leq n\} & \quad \{\exists p (1 \leq p \leq n) \rightarrow a[p] = b[p]\} \\
 \text{PSORT} & \quad \text{PSORT} \\
 \{(\forall p (1 \leq p \leq n-1) \rightarrow (a[p] \leq a[p+1]))\} & \quad \{(\forall r (1 \leq r \leq n) \rightarrow (\exists p (1 \leq p \leq n) \land (a[p] = b[r]))\} \\
 \end{align*}
Let us give here the proof of A, leaving the proof of B as an exercise

- This time our algorithm consists of two nested loops; thus we will need two invariants. Let us begin with the external loop, as natural.
- A first informal analysis easily shows that the goal of the external loop is to partition the array a into two parts: the “lower” a[1..i-1] is sorted; then by increasing i from 2 (with i = 2, a[1..i-1] is sorted initially in a trivial way) to n+1 the whole array will be sorted. Let us translate this first informal analysis into an invariant for the external loop:

 \[I_{\text{EXT}} : 1 \leq i \leq n + 1 \land \forall p \left(1 \leq p < i - 1 \rightarrow a[p] \leq a[p + 1] \right) \]

- Now, it is immediate to verify that \(I_{\text{EXT}} \wedge i > n \) imply Post1, i.e.,

 \[\left(\forall p \left(1 \leq p \leq n - 1 \rightarrow \left(a[p] \leq a[p + 1] \right) \right) \right) \]

- Also immediate is the proof of \(\{ 1 \leq n \} \; i := 2 \; \{ I_{\text{EXT}} \} \)

- It remains to be proved that \(I_{\text{EXT}} \) is indeed invariant
Proof of I_{EXT}’s invariance

• First, we backwards propagate through $a[j+1] := x; i := i+1$, obtaining

\[
I^*_\text{EXT} : (0 \leq i \leq n) \land \forall p \left((1 \leq \bar{p} < i) \rightarrow \left(\begin{array}{l}
\text{if } p = j + 1 \text{ then } x \text{ else } a[\bar{p}] \leq (\text{if } \bar{p} + 1 = j + 1 \text{ then } x \text{ else } a[\bar{p} + 1])
\end{array} \right) \right)
\]

Notice that we applied the enriched axiom, to go through the assignment to $a[j+1]$ I^*_EXT can be rewritten into the equivalent and more readable form:

\[
(0 \leq i \leq n) \land \forall p \left((1 \leq \bar{p} < i) \rightarrow \left(\begin{array}{l}
\text{if } \bar{p} = j + 1 \text{ then if } \bar{p} + 1 = j + 1 \text{ then } x \leq x \text{ else } x \leq a[\bar{p} + 1] \\else if \bar{p} + 1 = j + 1 \text{ then } a[\bar{p}] \leq x \text{ else } a[\bar{p}] \leq a[\bar{p} + 1]
\end{array} \right) \right)
\]

and then simplified into:

\[
I^*_\text{EXT} : 0 \leq i \leq n \land \forall \bar{p} (1 \leq \bar{p} < i) \rightarrow \text{if } \bar{p} = j + 1 \text{ then } x \leq a[\bar{p} + 1] \\else if \bar{p} = j \text{ then } a[\bar{p}] \leq x \\else a[\bar{p}] \leq a[\bar{p} + 1]
\]

since $\bar{p} = j + 1$ implies $\bar{p} + 1 \neq j + 1$
Now, we “hit” the inner loop: thus, we need an invariant for it. As usual, let us first analyze informally the rationale of the loop: Its purpose is to create a “hole” for \(a[i] \) to be inserted in the appropriate position. This is obtained by shifting elements of the lower part of \(a \). Thus, \(a[i] \) must be saved (in \(x \)). Thus, the inner loop further partitions the lower subarray \(a[1..i-1] \) plus \(a[i] \) into two sorted subarrays \(a[1..j] \) and \(a[j+1..i] \) such that each element of the latter is \(\geq x \), which in turn is equal to the “sentinel” \(a[0] \). Furthermore \(a[j] \leq a[j+1] \), except when \(j = i-1 \). All this is formalized as:

\[
I_{IN} : \forall p \left((1 \leq p < j) \rightarrow a[p] \leq a[p+1] \right) \wedge \\
\left((j+1 \leq p < i) \rightarrow a[p] \leq a[p+1] \right)
\]

\[
x \leq a[j+1] \wedge 0 \leq j < i \wedge x = a[0] \wedge (j < i-1 \rightarrow a[j] \leq a[j+1])
\]

At this point, to complete our proof, we need to prove:

- The invariance of \(I_{IN} \)
- That \(I_{IN} \wedge x \geq a[j] \rightarrow I_{EXT}^* \)
- That \(I_{EXT} \wedge i \leq n \rightarrow \) the result of backwards substitution of \(I_{IN} \) through \(x := a[i]; a[0] := x; j := i-1 \)
Step 1: proof of the invariance of I_{IN}

- Backwards substitution of I_{IN} through $a[j+1] := a[j]; j := j - 1$ yields

$$I^{*}_{IN} : \forall p \left(\begin{array}{l} (l \leq p < j-1) \rightarrow a[p] \leq a[p+1] \land l^{*} \neq j+1, j^{*}/ \\
\text{if } p = j+1 \text{ then } a[j] \leq a[p+1] \\
\text{elseif } p = j \text{ then } a[p] \leq a[j] \\
\text{else } a[p] \leq a[p+1] \end{array} \right) \land
x \leq a[j] \land 0 \leq j-1 < i \land x = a[0] \land
(j < i \rightarrow a[j-1] \leq a[j])$$

- Let us now prove that $I_{IN} \land x < a[j]$ implies I_{IN}^{*} step by step:
 1. $x < a[j]$ implies $x \leq a[j]$
 2. $x = a[0]$ implies $x = a[0]$
 3. $j < i$ implies $j - 1 < i$
 4. $j = 0$ implies a contradiction between $x < a[j]$ and $x = a[0]$ so that $x < a[j]$ implies $j \neq 0$ and $0 \leq j \land j \neq 0$ implies $0 \leq j - 1$
• So far we have proven \(x \leq a[j] \land 0 \leq j - 1 < i \land x = a[0] \)

• It remains to be proven:

\[
\forall p \left(\left(1 \leq p < j - 1 \rightarrow a[p] \leq a[p + 1]\right) \land \\
\left(\begin{array}{l}
\text{if } p = j + 1 \text{ then } a[j] \leq a[p + 1] \\
\text{elseif } p = j \text{ then } a[p] \leq a[j] \\
\text{else } a[p] \leq a[p + 1]
\end{array}\right)\right) \land (j < i \rightarrow a[j - 1] \leq a[j])
\]

5. \(\forall p \left(1 \leq p < j \right) \rightarrow a[p] \leq a[p + 1] \)

obviously implies

\[
\forall p \left(1 \leq p < j - 1 \right) \rightarrow a[p] \leq a[p + 1] \land a[j - 1] \leq a[j]
\]

6. \(\forall p \left(j + 1 \leq p < i \right) \rightarrow a[p] \leq a[p + 1] \)

implies that

\[
\forall p \left(j \leq p < i \right) \land p \neq j \land p \neq j + 1 \rightarrow a[p] \leq a[p + 1]
\]

• It remains to consider the cases: \(p = j \) and \(p = j + 1 \)
7. If $\overline{p} = j+1$ then $j < i - 1$ (because $\overline{p} < i$) and therefore $a[j] \leq a[j+1]$, but also $a[j+1] \leq a[j+2]$ (because $a[\overline{p}] \leq a[\overline{p}+1]$) and so $a[j] \leq a[j+2] = a[\overline{p}+1]$

8. If $\overline{p} = j$, then $a[\overline{p}] = a[j] \rightarrow a[\overline{p}] \leq a[j]$

9. Finally, $j < i \rightarrow a[j-1] \leq a[j]$ can be deduced by I_{IN}, when $j > 1$, and by $x = a[0] \land x < a[j]$ when $j = 1$.

/*
From the first row of IN
$\left((1 \leq \overline{p} < j) \rightarrow a[\overline{p}] \leq a[\overline{p}+1]\right)$
with $\overline{p} = j-1$
*/
Step 2: Proof that $I_{IN} \land x \geq a[j] \rightarrow I_{EX}^*$, i.e.,

$$I_{IN} : \forall p \left(\left(1 \leq p < j \right) \rightarrow a[p] \leq a[p + 1] \right) \land \left(\left(j + 1 \leq p < i \right) \rightarrow a[p] \leq a[p + 1] \right) \land \left(x \leq a[j + 1] \land 0 \leq j < i \land x = a[0] \land (j < i - 1 \rightarrow a[j] \leq a[j + 1]) \right)$$

implies

$$I_{EXT}^* : 0 \leq i \leq n \land \forall p \left(1 \leq p < i \right) \rightarrow \text{if } p = j + 1 \text{ then } x \leq a[p + 1] \text{ elseif } p = j \text{ then } a[p] \leq x \text{ else } a[p] \leq a[p + 1]$$

1. The case $p \neq j \land p \neq j + 1$ is trivial
2. The case $p = j + 1$ comes from $x \leq a[j + 1] = a[p] \leq a[p + 1]$
3. The case $p = j$ comes from $a[p] = a[j]$ and $x \geq a[j]$

Notice that $0 \leq i \leq n$ is obviously invariant in the inner loop.

It has not been explicitly mentioned in I_{IN} in order to make the notation not too heavy.
Step 3: \(I_{EX} \land i \leq n \rightarrow \overline{I_{IN}} \) where \(\overline{I_{IN}} \) is the result of backwards propagating \(I_{IN} \) through \(x := a[i]; a[0] := x; j := i - 1, \) i.e., the predicate
\[
\forall \overline{p} (1 \leq \overline{p} < i - 1) \rightarrow a[\overline{p}] \leq a[\overline{p} + 1] \land 0 \leq i - 1.
\]
In fact, backwards substitution of \(j + 1 \leq \overline{p} < i \) through
\[
j := i - 1 \quad \text{gives } F \quad \text{so that} \quad (i \leq \overline{p} < i) \rightarrow a[\overline{p}] \leq a[\overline{p} + 1] \quad \text{is always } T.
\]
The same happens for \(j < i - 1 \)

We are eventually finished!

A lot of tedious details?
Yes, but most of them are trivial: we need to be systematic -and *helped* (not *replaced*!) by some machine. This does happen -sometimes- in practice: we will hint at the B method.
The termination issue

• Consider the following program:
 • P: begin
 • x := n; y := m; c := 0;
 • while x ≠ 0 do x := x - y; c := c + 1 end
 • end

• It is immediate to prove {True} P {c = n/m} by means of the invariant
 J: n - y.c = x ∧ y = m

• However, it is also clear that P’s execution never terminates unless n is a
multiple of m.

• This is due to the fact that the while-loop proof rule formalizes the semantics
 that “if and when the loop execution terminates, then we can rely on the
invariant and the negation of the loop condition to hold”. Nothing is said about
termination however. For this reason Hoare’s correctness proofs are called
partial correctness proofs.
• If program execution termination is not obvious we need to prove termination in addition to partial correctness.

• Here we briefly introduce a termination proof method (with not much emphasis)

• Let us start from the above example. Consider the following assertion:

\[J' : \exists k \left(x = y \cdot k \land x \geq 0 \land y > 0 \land k \geq 0 \right) \]

• \(J' \) defines the set of multiples of \(y \) as possible values of \(x \).

• \(J' \) is invariant too, w.r.t. \(P \)'s loop, i.e., if \(x \) is a multiple of \(y \) at the beginning of loop execution, then, it is so even at the end:

 - Backwards substitution:

\[
\begin{align*}
\{ \exists k \left(x - y = y \cdot k \land x \geq y \land y > 0 \land k \geq 0 \right) \} & \mid x := x - y; c := c + 1 \\
\{ \exists k \left(x = y \cdot k \land x \geq 0 \land y > 0 \land k \geq 0 \right) \} & \end{align*}
\]
– Implication proof:

\[J' \land x \neq 0 \equiv \]
\[\exists k \left(x = y \cdot k \land x \geq 0 \land y > 0 \land k \geq 0 \right) \land x \neq 0 \rightarrow \]
\[\exists k \left(x = y \cdot k \land x > 0 \land y > 0 \land k > 0 \right) \rightarrow \]
\[\exists k \left(x - y = y \cdot (k - 1) \land x > 0 \land y > 0 \land k > 0 \right) \rightarrow \]
\[\exists h \left(x - y = y \cdot h \land x > 0 \land y > 0 \land h \geq 0 \right) \rightarrow \]
\[\exists h \left(x - y = y \cdot h \land x - y \geq 0 \land y > 0 \land h \geq 0 \right) \rightarrow \]
\[\exists k \left(x - y = y \cdot k \land x \geq y \land y > 0 \land k \geq 0 \right) \]

• Thus:

\[\{ \exists k \left(n = m \cdot k \land k \geq 0 \land m > 0 \right) \} \{ P \{ n = m \cdot c \} \} \]

• Notice that the above proof is still a *partial correctness* proof!
• However, we now know that, if

$$\exists k (n = m \cdot k \land k \geq 0 \land m > 0)$$

• holds before P’s execution, then x always ranges over the positive -or null- multiples of m. It also happens that x’s value is decreased by the positive value y = m at every iteration. Thus, x must eventually reach the 0 value and therefore the loop must be terminated.

• The above example can be easily generalized to the following ...
Termination proof method

• Let $L = \textbf{while } C \textbf{ do } L_B \textbf{ end}$ be any loop within a program P
• Let z denote the collection of P’s variables and let Z denotes its state space.
• Let z' and z'' denote the value of z before and after execution of the loop body, respectively.
• If we find:
 - 1. A well-founded set $<\mathcal{W}, \succ>$
 (a well founded set is an ordered set such that there do not exist
 infinite decreasing sequences $w_0 \succ w_1 \succ w_2 \succ \ldots$)
 - 2. A (possibly partial) function $f : Z \rightarrow \mathcal{W}$
 - 3. A loop invariant J such that $J \rightarrow f(z) \in \mathcal{W}$
• And we prove that
 - 4. $J^{z'}_z \land C^{z'}_z \rightarrow (f(z') \succ f(z''))$
• Then, we can conclude that L does terminate if J holds before its execution
• In our example we used:
 – The conjunction of the partial correctness invariant J and J' as the loop invariant
 – $\langle \mathbb{N}, \succ \rangle$ as well founded set
 – $f(x,y) = x$
 – This allowed to prove conditions 3. and 4. above.
 – Thus we could conclude the termination of P under the assumption (precondition) of:

$$
\exists k \left(n = k \cdot m \land k \geq 0 \land m > 0 \right)
$$

which guarantees that the invariant holds at the loop entry
The soundness and completeness issues

• Of course every proof method must be *sound* (theorems must be true!) and possibly/hopefully *complete* (truths should be provable as theorems).

• It is not difficult to show (meta-prove) that Hoare’s method is sound.

• Since the method includes arithmetics, and arithmetics is intrinsically incomplete (Goedel’s theorem), Hoare’s method cannot be complete.

• However, the notion of *relative completeness* has been introduced:

• Intuitively (and without deepening this issue):
 – Suppose an “oracle” can supply truth or falsity of arithmetic formulas
 – Then a proof system is *relatively complete* w.r.t. arithmetics if every truth of the system can be proved by using arithmetics true formulas as hypotheses.

• Hoare’s method is not even relatively complete (w.r.t. arithmetics) but other more sophisticated methods are.
• Hoare’s method is a first case of dual language approach:
 – A descriptive language –first order theory- specifies system properties
 – An operational formalism (programming language) describes an implementation aimed at guaranteeing the desired properties
 – A axiom system formalizing the semantics of the operational formalism in terms of the descriptive language allows to verify whether the implementation guarantees the wished properties

• We now generalize the approach to the analysis of concurrent, time-dependent systems:
 – We use TRIO as the specification language and
 – Timed (version of) Petri nets as the operational formalism

• We begin with introducing timed Petri nets and critically analyzing their semantic subtleties
The case of **Timed Petri nets**

- Many versions thereof, more or less precisely formalized:
 - time attached to transitions (Merlin & Farber)
 - time attached to places, to arcs, …
 - combinations, reductions …
 - time + values associated with tokens and mutual dependencies
- Here we focus on Merlin & Farber (M&F)
- From the first, intuitive claims ….

If 0 and 2 are the times when tokens in P1 and P2 are produced, respectively, the tr fires nondeterministically in a time between 5 and 9
… to a deeper semantic analysis:

- Consider the net fragment in the figure below:

If transition s fires at time 0 and r fires at time 5, then v cannot fire before time 9. Furthermore, if within time 12 neither v nor u fired, then v must fire (unless u fires exactly at that time.)

The above rule is the usual interpretation of TPNs. It is called strong time semantics (STS) because it forces a transition to fire after its upperbound elapsed. However, this semantics is perhaps inconsistent with traditional Petri nets semantics, where a transition is never forced to fire. For this reason, a new semantics is proposed besides STS, that is called weak time semantics (WTS).
In WTS a transition is never forced to fire, but it is stated that, if it fires, it must fire in a time included in the interval \([m_v, M_v]\). For instance, suppose that in the net of the figure an upperbound of 3 is associated with \(u\). Then, in STS \(v\) could never fire; instead, in WTS it could happen that \(v\) fires—after at least 4 time units since its enabling—because it would not be imposed that \(u\) fired before (in that case \(u\) could not fire anymore by using the token that enabled it for more than 3 time units. Both semantics may be useful in different contexts. Here, however, we will mainly focus on STS which is more widely adopted, leaving WTS for a few side remarks.

Notice that tokens are *uniquely* generated and consumed by transition firings. In particular any firing of a transition consumes one and only one distinct token from each place in its preset (we call this property IU, input unicity), and introduces one and only one token into each place of its postset; that token can contribute to no more than one single transition firing (we call this property OU, output unicity).
Let us now consider in some depth a few critical cases with the aid of the following figures.
Simultaneous firings. Contemporary transition firings may occur in TPNs in two, deeply different, ways:

- **Simultaneous and concurrent firings.** This case is exemplified in Figure (g). Assume that both s and v have $m_v = M_v = 3$. Then, whenever r fires, s and v will both fire exactly 3 time units later. It is clear that, in general, they *could fire contemporarily* if and only if the intersection between their associated time intervals is not empty. A special case of simultaneous and concurrent firing will be examined shortly (meaning of the lowerbound).

- **Simultaneous but logically ordered firings (zero-time transitions).** In general, it is not excluded that, for some transition, m_v—and possibly even M_v—are equal to 0. This abstraction is useful whenever the duration of the described event is negligible with respect to the other time constants of the net and it is widely adopted in the literature on TPNs. Consider the fragment of Figure (e). In this case, whenever r fires, s fires *immediately* too, although the intuition associated with the usual interpretation of Petri nets would lead to say that s always fires *after* r. Thus, we are compelled to clearly distinguish between *logical ordering and temporal ordering*, although it is obvious that an event s that is the logical consequence of an event r *cannot precede* r, it is not implied that s *strictly* follows r in time.
Meaning of the lowerbound. Assume that in the net of Figure (a) $m_v = M_v = 3$. Then, if transition s fires in two instants that are 1 time unit apart, so does transition v, with the same delay. This semantics could not correspond to an intuitive interpretation of transition firing as executing some action that takes a given time. For instance, v could be interpreted as executing some algorithm on a datum that is modeled by the token produced in p. In such a case, if m_v gives the minimum time that is necessary to execute the algorithm, it is clearly wrong assuming that two consecutive computations may occur at a distance of 1 time unit. This interpretation of transition lowerbound is sometimes called the “recharge time”.

There is no evidence that one of the two interpretations is preferable to the other one, but we chose the former because it is more general: the latter can be easily simulated by the former by simply adding a new place—with a single token assigned to it in the initial marking—that is both in the preset and in the postset of the considered transition.

Figure (f) shows how the fragment of Figure (a) should be transformed if one wants that two consecutive firings thereof never occur in a time interval that is shorter than m_v.

Remark: this semantics of the lowerbound may introduce another type of simultaneous and concurrent firing of the same transition. E.g., in the fragment of Figure (d), assume that r and s fire simultaneously and that $m_v = M_v = 3$.
Transitions with empty preset.
In non-timed Petri nets a transition v with no input places is conventionally considered as always enabled. This would allow an extension of the semantics to the timed case where, once the lowerbound m_v elapsed after the initial time, v may fire an unlimited number of times at any time.
This interpretation is clearly of no use in most cases since it reduces the meaning of m_v to that of an initial delay with no impact in the subsequent behavior of the net. Thus, we assume that such a transition cannot fire twice consecutively in less than m_v time units (by implicating adopting a recharge time semantics). If one wished to make this convention more explicit, it would suffice to add v a new place that is both input and output thereof in the same way as in Figure (f).
If in exceptional cases the other interpretation is preferred, this can be dealt with in several ways that are left to the reader.
Infinite upperbounds. If the upper bound time value M_v of a transition v is equal to ∞, then a behavior in which v never fires, and tokens entering the places of its preset stay there forever is admissible for the net. This is consistent with the traditional assumption that TPNs reduce to classical Petri nets when, for every v, $m_v = 0$ and $M_v = \infty$.

However, another possible intuitive meaning of the time interval $[m_v, \infty]$ is “the limit for $M_v \to \infty$ of $[m_v, M_v]$”. Since in STS this means that v must fire in a time t, such that $m_v \leq t \leq M_v$ unless previously disabled, we could deduce that the meaning of $[0, \infty]$ is that v must fire in a time $t < \infty$, what is different from saying that the semantics of the net is the same as in non timed Petri nets, where an enabled transition could *never* fire.

In other words a *fairness* hypothesis could be assumed for the firing of enabled transitions (a transition cannot remain enabled for an infinite time without firing).

The new interpretation is more consistent with STS, whereas the traditional one is more consistent with WTS.

However, we stay as close as possible to the most widely known literature on TPNs, so we assume the original semantics for the interval $[m_v, \infty]$. We propose instead the use of the symbol ‘♦’ to denote an unbounded finite value, i.e., the fact that the transition cannot remain enabled for an infinite time without firing.

Remark: the symbol ♦ denotes “any finite value in an infinite domain”, which is uncomputable. This should not prevent, however, from using it in *specifications*, by knowing a priori that it can only be *implied* by possible implementations (e.g., an implementation that guarantees the firing within a fixed time satisfies, but is not equivalent to, the requirement of guaranteeing the firing within ♦).
A timed Petri net formalizing a “timed” dining philosophers table.
After having made precise the semantics of TPNs through informal analysis, we are now ready for its formalization (or, conversely, formalizing TPN semantics would force us to clarify the above issues: not everybody did so in the literature …).

This will be done by means of TRIO.
The essentials of the dual language approach illustrated through the case of Timed PN + TRIO

• We have often distinguished between operational and descriptive formalisms.
• We now know their distinguishing features, though we also realized that the borderline is not as sharp.
• It is not difficult to use a descriptive formalism with an operational style: it is sufficient to “plug in” the notion of state and its evolution: B is a typical example of a logic language tailored (perhaps too much) at describing abstract machines. (It ends up with a fairly intricate mixture of declarative and operational style: think e.g. of the meaning of ‘:=‘)
• It is a bit less natural to do the converse operation: abstract machines are used as “specifications” and lower level ones are their “implementation” the implementation relation is formalized through some notion of mapping (homomorphism). Algebraic approaches -Algebras, process algebras, CCS, LOTOS) are the typical realization of such an attitude. We do not explore them in this course.
• Given that the two approaches are complementary, why not using them in combination?

• Actually, Hoare’s approach already goes in this direction: we use a programming language (abstract machine) to implement algorithms and a logic language to express their properties (specification). The proof axioms and rules are nothing else than a formal definition of abstract machine semantics through the assertion language: it is also called *axiomatization* (when the assertion language is based on mathematical logics.)

• Another example is given by model checking: a logic language is used to express properties of a FSM; then, thanks to the decidability of most properties of FSM inductive algorithms are built to decide whether or not the FSM does indeed enjoy the desired properties.

• In general, such an approach [Describing a “design” through a suitable abstract machine; its properties through a descriptive language; providing a “bridge” between the twos through some kind of axiomatization, or translation schema] is called the dual language approach.

• Some of its pioneers were Pnueli and Ostroff (more or less finite state machines paired with more or less temporal logic.)
The basic, Hoare–like, idea

\{\text{marked}(P) \land \text{marked}(Q)\}_{\text{fire}(tr)}\{\text{marked}(R) \land \text{marked}(S)\}

- We have seen, however, that the -informal- semantics of TPNs is not as simple and straightforward as it appears at a first glance (several \textit{errors} in the literature)

- Major sources of difficulties are:
 - The need of identifying tokens to compute firing times.
 - If contemporary firings are possible, saying that transition \text{tr} fires at time \(t\) is not enough: how many times does it fire -i.e., how many tokens does it produce?
 - The nondeterminism of the machine:
• Here, it is natural to state that, if u fires at time t, then v fires at t', with $t + m_v \leq t' \leq t + M_v$.

• However, this cannot be generalized to say that, for w:

$w \ [m_w, M_w]$

• If u fires at time t, then v fires at t', with $t + m_v \leq t' \leq t + M_v$.

• If u fires at time t, then w fires at t', with $t + m_w \leq t' \leq t + M_w$.

• The “and” of the two claims generates a contradiction!
Here we will illustrate the dual language approach for TPNs and TRIO -in a simplified, yet still meaningful, context

Main references:
The first, strong, simplifying assumptions

- 1-bounded TPNs (à la Merlin & Farber)
- The pre- and post- sets of every place have at most one transition each (marked graphs)
- There are no transitions with minimum firing time \(= 0 \)
 \(\Rightarrow \) non-Zenoness
- By this way there is no doubt on the origin of a token in a given place;
- No logically dependent transitions can occur contemporarily
- This strongly simplifies TPNs axiomatization, to be given next.
Thanks to the above simplifications we only need to consider PN fragments of the two types depicted in Figures (a) and (b) below:

They are enough to formalize, e.g., the KRC system:
Special, initializing transitions

KRC TPN: no 0-time version
• A first axiom states that the predicate fire is instantaneous:
 \[(\text{Ist}):\quad \text{fire}(r) \rightarrow \text{UpToNow}(\neg \text{fire}(r) \land \text{FromNow}_e(\neg \text{fire}(r)))\]

• Another axiom relates the property of being a place marked to the firing of its input and output transitions: if \(s\) is the (unique) input transition of a place \(P\) and \(v\) is its (unique) output transition, then

\[(\text{Mar}):\quad \text{marked}(P) \leftrightarrow (\text{Since}_{ii}(\neg \text{fire}(v), \text{fire}(s)) \lor (\text{fire}(s) \land \neg \text{fire}(v))),\]

i.e., place \(P\) is marked iff at some time in the past its input transition fired and since then its output transition did not fire yet; or just now the input transition fires and the output transition does not fire (which cannot happen under the hypotheses of no 0-time transitions and 1-boundedness).

Notice that \textit{marked} is a predicate that can hold only in left-closed, right-open, \textit{not empty}, intervals.
Furthermore, the following axioms formalize the firing relations for the transitions belonging to the fragments of Figures (a) and (b):

- (LB.(a)) \(\text{fire}(v) \rightarrow \text{Lasted}_{ie}(\text{marked}(P), m_v) \)
- (UB.(a)) \(\text{Lasted}_{ie}(\text{marked}(P), M_v) \rightarrow \text{fire}(v) \)
- (LB.(b)) \(\text{fire}(v) \rightarrow \text{Lasted}_{ie}(\text{marked}(P) \land \text{marked}(Q), m_v) \)
- (UB.(b)) \(\text{Lasted}_{ie}(\text{marked}(P) \land \text{marked}(Q), M_v) \rightarrow \text{fire}(v) \)

- but if we allowed for \(m_v \) or \(M_v = 0 \) …
- LB.(a) formalizes the lowerbound for the firing of transition \(v \) in the fragment (a): \(v \) can fire (at the current instant) only if \(s \) fired at least \(m_v \) instants ago. UB.(a) states that if \(s \) fires, then \(v \) must fire within \(M_v \) time units. Similar explanations hold for the remaining axioms.
The following Lemmas are straightforward consequences of the axioms. They illustrate how the above axioms formalize the behavior of timed PNs and will be useful in the proof of the properties of the KRC system.

Lemma 1: With reference to Figure (a):
- (A) \(\text{marked}(P) \rightarrow \exists d \text{ past}(\text{fire}(s),d) \land d \leq M_v \)
- (B) \(\text{fire}(v) \rightarrow \exists d \text{ past}(\text{fire}(s),d) \land m_v \leq d \leq M_v \)
- (C) \(\text{fire}(s) \rightarrow \exists d \text{ futr}(\text{fire}(v),d) \land m_v \leq d \leq M_v \)

Lemma 2: With reference to Figure (b):
- (A) \(\text{fire}(s) \land \text{UpToNow} (\text{marked}(P)) \rightarrow \exists d \text{ futr}(\text{fire}(v),d) \land m_v \leq d \leq M_v \)
 If \(s \) fires at the current time and \(P \) is already marked, then \(v \) will fire not earlier than \(m_v \) and not later than \(M_v \). A symmetric lemma obviously hold w.r.t. place \(Q \) and transition \(r \).
- (B) \(\text{fire}(v) \rightarrow (\text{Some}P_i(\text{fire}(r)) \land \text{Some}P_i(\text{fire}(s))) \)
We still have to formalize system initialization, that is the initial marking. Axiom (Mar) states that a place can be marked exclusively as the consequence of one of its input transitions firing, hence we cannot just say that a marking holds initially (it would lead to contradictions). Instead, we elude the requirement of (Mar) and add a special initializing transition \(\text{it}P \) as input to every place \(P \) that is initially marked. Let \(\text{IT} \) be the set of all initializing transitions and \(\text{TR} \) the set of all the other non-initializing transitions.

\[
\text{Som}
\forall \ \text{it}P \in \text{IT} \ \forall \text{tr} \in \text{TR} \ (\text{fire(it}P) \land \neg \text{fire(tr)} \land \\
\text{AlwF}_e(\neg \text{fire(it}P)) \land \text{AlwP}_e(\neg \text{fire(it}P) \land \neg \text{fire(tr)})) \tag{IM}
\]

that is, at some (initial) time all initializing transitions fire together, no other transition fires at the same time, and after that time initializing transitions never fire again.
• We are now ready for the safety proof of the KRC system:

• Let us first formalize the safety property as a TRIO formula with reference to the KRC TPN figure: quite intuitively, this is the following:

 \[(\text{marked}(\text{In}_\text{I}) \rightarrow \text{marked}(\text{Closed}))\]

(saf)

under the hypothesis that \(d_m > \varepsilon + \gamma\), and that initially:

\[\text{fire}(\text{itArrived}) \land \text{fire}(\text{itOpen}).\]

• i.e., if initially the train is out of R and the gate is open, then, whenever the train will be in region I, the gate will be closed.

• Our job is therefore to prove that (saf) is a theorem in the above axiom system.

• The proof of (saf) will be derived by using the previous lemmas and the following one which states, without proof, an obvious property of the net of the KRC TPN figure:

• Lemma 3: Every transition of the net of Figure KRC TPN can fire at most once.
Safety proof of the KRC TPN

• Assume that at the current instant marked(In_I) holds. Then,
 • marked(In_I) → (by Lemma 1A)

□ ∃t Past(fire(Enter_I), t) ∧ t ≤ h_M, → (by Lemma 1B)
□ ∃t Past(fire(Enter_I)) ∧ ∃p Past(fire(Enter_R), p), t) ∧ d_m ≤ p ≤ d_M ∧ t ≤ h_M → (by Lemma 2.2A, Go_Down could not fire before a firing of Enter_R, then when Enter_R fired q instants in the past, the place Open was still marked. By Lemma 2A, this implies:
 • Past(fire(Go_Down), q- ε), that is, by Lemma 1C:
 • (*) Past(fire(Stop_Down), q- ε - γ).
 • Notice that q - d_m ≥ 0 and d_m > ε + γ, that is Stop_Down fired in the past.
 • By definition, marked(In_I) ↔ (fire(Enter_I) ∧ ¬ fire(Exit_I)) ∨ Since_i(¬ fire(Exit_I), fire(Enter_I)). Since Past(fire(Enter_I), t), with t ≤ h_M, then SomF_i(fire(Exit_I)) but also ¬ fire(Exit_I) because marked(In_I) holds now, and by Lemma 3 AlwP(¬ fire(Exit_I)) holds. Thus, by Lemma 1.B:
 • (**) AlwP_i(¬ fire(Go_Up))
 • By (*) and (**) it follows that, in case q - d_m = 0, fire(Stop_Down) holds, in case q - d_m > 0 Since_i(e(¬ fire(Go_Up), fire(Stop_Down)) holds, that is marked(Closed) holds.
Comments

• The (highly simplified) proof is similar to the “pure TRIO” proof, but closer to operational intuition (?)

• (Advanced comment)
 – Our proof system is well suited to prove properties such as “whatever it will happen, such a requirement -e.g-. invariant- will be guaranteed”.
 – In the case of nondeterministic systems this properties -and related proofs- sharply differ from properties such as “it may happen that the system behaves in such a way to achieve a given -positive or negative- result”.
 – It is hard to prove this type of properties with our proof system
 – Branching logic (not pursued here) has been proposed to overcome such a difficulty
A more general axiomatization

• The problem with 0-time transitions:
 – We lose the traditional notion of system *state as function of time*:
 – Marking = state

 \[\text{Marked} (Q, t) \land \text{Marked} (R, t) \]

 – 0-time loops \(\rightarrow \) Zenoness
 – Nevertheless they are useful abstraction

 \[\text{Time becomes “twofold”}: \]
 • Logical time
 • Metric time
New, more general, hypotheses:

- 1-bounded TPNs (again)
- Input and output conflicts are allowed but at most one place joins any pair of transitions (not such a restriction)
- 0-time transitions allowed but: no loops of transitions with minimum firing time = 0 (non-Zenoness)
 - By this way only a finite sequence of 0-time transition firings can occur contemporarily
- This requires a more general but still simple enough TPNs axiomatization.
The key novelty

- marked(P) as a basic state predicate does not work anymore
- The new basic predicate is \(\text{tokenF}(i, o, d) \):
 - Transition \(i \) fires at the current instant.
 - The token produced by \(i \) enters place P.
 - The same token is consumed by a firing of transition \(o \) after \(d \) time units.
- The firing of transitions is specified by means of \(\text{tokenF} \) instead of \(\text{marked} \)
- FI (Future Implication): \(\text{tokenF}(i, o, d) \rightarrow \text{fire}(i) \land \text{Futr(fire(o), d)} \)
- PF (Past to Future): \(\text{tokenP}(i, o, d) \leftrightarrow \text{Past(tokenF}(i, o, d), d) \)
- (with obvious symmetric properties)
Let us now axiomatize the following (general enough) fragments
Lowerbounds

\[\text{LB.d} \quad \text{fire}(o) \rightarrow \exists d \ (d \geq m_o \land (\text{tokenP}(i_1, o, d) \lor \text{tokenP}(i_2, o, d))) \]

\[\text{LB.c} \quad \text{fire}(o) \rightarrow (\exists d_{i_1} \ (d_{i_1} \geq m_o \land \text{tokenP}(i_1, o, d_{i_1})) \land \exists d_{i_2} \ (d_{i_2} \geq m_o \land \text{tokenP}(i_2, o, d_{i_2}))) \]

.... Exercises ...
(Finite) Upperbounds (1)

\[
\begin{align*}
\left(d_{i1} \geq M_o \land \text{Past}(\text{fire}(i_1), d_{i1}) \right) \\
\land \\
\left(d_{i2} \geq M_o \land \text{Past}(\text{fire}(i_2), d_{i2}) \right)
\end{align*}
\Rightarrow
\begin{align*}
\exists d_o \ (d_o \leq d_{i1} \land \text{Past}(\text{tokenP}(i_1, o, d_{i1} - d_o), d_o)) \\
\lor \\
\exists d_o \ (d_o \leq d_{i2} \land \text{Past}(\text{tokenP}(i_2, o, d_{i2} - d_o), d_o))
\end{align*}
\]
(Finite) Upperbounds (2)

\[\text{UB.d} \equiv \text{UB.d}(i_1, o) \land \text{UB.d}(i_2, o) \]

Where
\[\text{UB.d}(i_1, o) \equiv (d_{i1} \geq M_o \land (\text{Past}(\text{fire}(i_1), d_{i1})) \rightarrow \exists d_o (d_o \leq d_{i1} \land \text{Past}(\text{tokenP}(i_1, o, d_{i1} - d_o), d_o)) \]

And
\[\text{UB.d}(i_2, o) \equiv (d_{i2} \geq M_o \land \text{Past}(\text{fire}(i_2), d_{i2})) \rightarrow \exists d_o (d_o \leq d_{i2} \land \text{Past}(\text{tokenP}(i_2, o, d_{i2} - d_o), d_o)) \]

Equivalently

\[\text{UB.d}(i_1, o)' : \quad \text{fire}(i_1) \rightarrow \exists d (d \leq M_o \land \text{tokenF}(i_1, o, d)) \]
\[\text{UB.d}(i_2, o)' : \quad \text{fire}(i_2) \rightarrow \exists d (d \leq M_o \land \text{tokenF}(i_2, o, d)) \]
Upperbounds (3)

$$\exists d (d \leq M \land (\text{tokenF}(i, o_1, d) \lor \text{tokenF}(i, o_2, d)))$$

Where $M = \min(M_{o_1}, M_{o_2})$

….Exercises: other fragments; infinite upperbounds (both \blacklozenge and ∞) …
Uniqueness axioms

OU(b) (Output Uniqueness): \(\text{tokenF}(i, u, d) \land \text{tokenF}(i, w, e) \rightarrow d=e \land u = w \)

IU(b)(o_1) (Input Uniqueness for o_1): \(\text{tokenP}(i, o_1, d) \land \text{tokenP}(i, o_1, e) \rightarrow d=e \)

IU(b)(o_2) (Input Uniqueness for o_2): \(\text{tokenP}(i, o_2, d) \land \text{tokenP}(i, o_2, e) \rightarrow d=e \)

….Exercises …
Now, about marking

Axiom
(Mar): \(\text{marked}(P) \leftrightarrow (\text{Since}_{\text{ii}}(\neg \text{fire}(v), \text{fire}(s)) \lor (\text{fire}(s) \land \neg \text{fire}(v)) \)

Can be easily generalized to fragments (b), (d).
(Exercise)

But clause “\(\land \neg \text{fire}(v) \)” becomes essential:
marked is a predicate that can hold only in left-closed, right-open, not empty intervals and a place is not marked if a token flows through it in zero time.

However now Mar is not used to specify when transitions fire: how about
\(\text{Lasted}_{\text{ie}}(\text{marked}(P), M_v) \rightarrow \text{fire}(v) \) when \(M_v = 0 \)?

Intuitively, marking becomes a derived concept rather than a basic one.

It remains a little detail …
Exercises

- Revisit the KRC proof with $\varepsilon \rightarrow 0$
- Revisit Lemma 2(A)
A timed version of the dining philosophers

Legend:
- \(\text{start}^E_k \): philosopher \(k \) starts eating
- \(\text{Ph}^E_k \): philosopher \(k \) is eating
- \(\text{end}^E_k \): philosopher \(k \) ends eating
- \(\text{F}^A_k \): fork \(k \) is available
- \(\text{get}^E_k \): philosopher \(k \) gets fork \(h \)
- \(\text{rel}^E_k \): philosopher \(k \) releases fork \(h \)
Let us sketch the proof of deadlock absence

- (DPh.1)
 InitialMarking → AlwF(WithinF(fire(get^{Fi}_i) \lor fire(get^{Fi}_{i+1 \mod 5}),7)

- (DPh.1) actually states a stronger property than deadlock freedom: *every fork* must be picked up within 7 time units starting from any time. This does not mean that a philosopher will eventually eat: for instance, it could happen that every philosopher always picks up the left fork and never picks up the right one; thus DPh.1 implies deadlock freedom but not starvation freedom.

- We adopt two natural methods to master the complexity of the proof of DPh.1. First, its formulation is *parametric* with respect to the number of philosophers and forks. Thanks to the obvious symmetry of the net, we do not need to prove separately for every *i* DPh.1. In practice, such a parameterization could be embedded both in the net and in the TRIO syntax by introducing notions such as array constructors. Second, the proof itself is modularized along the following lines:
• 1. Prove a periodicity property of the net: if a fork is ever picked up, it will be picked up again not less than 2 and no more than 7 time units later.

DPh.2:

\[
\left(\text{fire} \left(\text{get}^{F_i}_i \right) \lor \text{fire} \left(\text{get}^{F_i}_{i+1 \mod 5} \right) \right) \rightarrow \text{Futr} \left(\text{WithinF} \left(\left(\text{fire} \left(\text{get}^{F_i}_i \right) \lor \text{fire} \left(\text{get}^{F_i}_{i+1 \mod 5} \right) \right), 5, 2 \right) \right)
\]

• 2. Prove that DPh.2 and the initial marking, where each Fi stores one token, imply DPh.1.
The proof of DPh.2 is based on the following lemmas.

- **Le.1:** $\text{fire}(\text{get}^{\text{Fi}_i}) \rightarrow \exists d \ (1 \leq d \leq 3 \land (\text{Futr}(\text{fire}(\text{start}^{\text{Ea}_i}),d) \lor \text{Futr}(\text{fire}(\text{rel}^{\text{Fi}_i}),d)))$
- If a fork is picked up, it will be either used to eat or released within 3 time units.
- **Le.2:** $\text{fire}(\text{start}^{\text{Ea}_i}) \rightarrow \exists d (1 \leq d \leq 3 \land \text{Futr}(\text{fire}(\text{end}^{\text{Ea}_i}),d))$
- If a philosopher starts to eat, he will finish not earlier than 1 time unit and not after 3 time units.
- **Le.3:** $\text{fire}(\text{end}^{\text{Ea}_i}) \rightarrow \text{Futr}(\text{fire}(\text{get}^{\text{Fi}_i}) \lor \text{fire}(\text{get}^{\text{Fi}_{i+1 \mod 5}},1))$
- **Le.4:** $\text{fire}(\text{rel}^{\text{Fi}_i}) \rightarrow \text{Futr}(\text{fire}(\text{get}^{\text{Fi}_i}) \lor \text{fire}(\text{get}^{\text{Fi}_{i+1 \mod 5}},1))$
- Whenever a fork is released, either because a philosopher finished to eat (Le.3) or because the time-out has expired (Le.4), it will be picked up again after 1 time unit.
At this point, the proof that the fork will be picked up again not earlier than 2 time units is obvious. Let us therefore focus on the proof that it will be picked up within 7 time units. If philosopher i picks up the fork, he may either start to eat or leave it because the time-out expires (Le.1). In the former case, he will return the fork within 6 time units (Le.2) and the fork will be picked up again after one more time unit either by philosopher i or by philosopher $i+1$ (Le.3). In the latter case, the fork will be available again within 3 time units. In both cases, the fork will be available again for philosophers i and $i+1$ within 6 time units and picked up by either one within 7. A similar reasoning applies to the case where fork i is picked up by philosopher $i+1$, so DPh.2 holds.
Finally, DPh.1 is derived from DPh.2 through the following steps:

- Let γ denote $\text{fire}(\text{get}^{F_i}) \lor \text{fire}(\text{get}^{F_{\text{mod}5}})$, then DPh.2 is rewritten as
- $\text{Alw}(\gamma \rightarrow \text{Futr}(\text{WithinF}(\gamma,5),2))$, by making explicit the universal temporal quantification

1. Let us assume InitialMarking. Then $\rightarrow \text{fire}(\text{it}^{F^\text{Av}_i}) \rightarrow$ hence
2. $\text{Futr}(\gamma, 1) \rightarrow$

 Combined with DPh.2 it implies:
4. $\text{Futr}(\text{AlwF}(\text{WithinF}(\gamma,7)),1) \rightarrow$

 - Furthermore, $\text{Futr}(\gamma;1)$ also implies:
5. $\text{Lasts}(\text{WithinF}(\gamma,1),1)$ because, for any formula ψ,
 - $\text{Futr}(\psi;d)$ implies $\text{Lasts}(\text{WithinF}(\psi;d);d)$. Also notice that, for any formula ψ, $\text{WithinF}(\psi;d)$ subsumes $\text{WithinF}(\psi;d')$, for $d' > d$;
 - hence, 4. and 5. can be combined to establish
6. $\text{Lasts}(\text{WithinF}(\gamma,7),1)$

 - thus
7. $\text{InitialMarking} \rightarrow \text{AlwF}(\text{WithinF}(\gamma,7))$

 - which concludes the proof of (DPh.1).
Comment/question:

What about starvation?
Towards full generalization

tokenF(i, h, P, o, j, d) denotes that:

The h-th firing of transition i occurs,
the token produced by i enters place P,
the same token will be consumed by the j-th firing of transition o after d time units.

$nFire(tr, n)$, to denote that transition tr fires exactly n times,

and $fireth(tr, h)$ to denote that there is an h-th firing of transition tr at the current time.

$marked(P,n)$ denotes that place P contains exactly n tokens

tokenF(i, h, P, o, j, d) \Rightarrow fireth(i, h) \land Futr(fireth(o, j), d)

denoting that the token produced by the h-th firing of i in P will be consumed by
the j-th firing of o at time distance d from the current time

Exercise: token unicity?
The (formal) refinement issue
A short historical perspective of refinement

• The term *stepwise refinement* was proposed in the early 70s in the context of structured programming.

• In general, it means moving gradually from early formulations -of anything- to more and more precise ones by adding details -pieces of information.

• Its generality encompasses several interpretations -not all of them being equivalent:
 – Specifications can be refined towards implementation
 – Specifications -or any other sort of documentation- can be refined just to make them more precise and complete

• Often the term is used rather ambiguously.

• In the context of formal methods it has received precise definitions (e.g. in B method) but often at the expenses of flexibility and applicability.

• Next, ***.
Case study: B: a fairly complete Formal method

- Formalisms can be used for:
 - specifying (defining)
 - implementing (designing, coding)
 - verifying
 - correctness proofs,
 - model checking,
 - but also support to testing, e.g. producing test cases (semi)automatically from specs and/or code

- As such they are not methods

- A method teaches “how to do things”:
 - stepwise refinement
 - structured analysis
 - several OO A/Ds, ...

- A method can be
 - informal
 - fully formal (every action is based on one or more formalisms)
 - partially formalized
 - open to formalization
 - pure or mixed/integrated
 -
• B is a fairly complete formal method
• It is based on predicate transformers (Extensions of Hoare/Dijkstra/and others approaches to “program specification/construction/proof”
• It is based on stepwise refinement (we will need to go fairly deep into the refinement issue)
• It is based on correctness proofs as a major approach to verification
• In some sense it can be seen as one method rooted in Hoare’s et al. Formal approaches.
• It has some major drawbacks (in my opinion mainly due to some lack of flexibility). We will critically evaluate it.
• However it is one of the most noticeable formal methods from the point of view of industrial “success”. Such a success may be explained by:
 – A well established state and documentation based on a long-standing experience
 – The adoption of natural evolution of well studied techniques rather than reinventing “the wheel”
 – The availability of a well engineered (not free!) toolkit
 – Political support
 – (Not by chance “successful” FMs are B in France, Z (and to a lesser extent VDM) in UK and Danmark)
1. The B "language"

- A unifying notation rooted in predicate logic (a` la Hoare/Dijkstra) but extended to cover typical programming language features.
- The B language claims assertions about the state of an abstract machine
- The state is an assignment of values to variables
- The predicate transformer:
 \[S \] R :
 the weakest precondition that must be satisfied before execution of operation S in order to guarantee that after its execution, the postcondition R holds
- The very basic operation: the substitution:
 xx := E \{xx's value in the post condition is replaced by E's value\}
 formally: let R[E/xx] denote the result of substituting in R each free occurrence of xx by E. Then
 [xx := E]R <=> R[E/xx]
- Notice the similarity with Hoare's approach
Other basic substitutions
(elementary assignments of values to variables)

- **Skip**
 \[\text{[skip]} R \iff R\] \{skip has no effect\}

- **Choice from set**
 \[xx : \in S\]
 \[\text{[xx : \in S]} R \iff \text{[@xx'. xx' \in S ==> xx := xx']} R\]
 To be read as:
 xx receives any value in S. Thus, \[\text{[xx : \in S]} R\] holds if and only if for any xx' in \[S\] R holds by substituting xx by xx'.

- **Choice by predicate**
 \[xx : P\]
 \[\text{[xx : P]} R \iff \text{[@xx'. [xx := xx'] P ==> xx := xx']} R\]
 \{xx receives any value satisfying P\}

- **Multiple (parallel) substitution**
 \[xx, yy := E, F\]
 \[\text{[xx, yy := E, F]} R \iff R[E,F/xx,yy]\]
Basic compositions of substitutions

- **Sequential composition:** $G; H$

 $[G; H] R \iff [G][H] R$

- **Preconditioned** $P|G$

 $[P|G] R \iff P \land [G] R$

- **Guarded** $P \implies G$

 $[P \implies G] R \iff P \implies [G] R$

- **Alternate** $G [\cdot] H$

 \{ the precondition guarantees that whether I apply G or H, I obtain R \}

- **Unbounded choice** $\@zz.(G)$

 $[@zz.(G)] R \iff \forall zz.([G] R)$

 \{ for any choice of zz $[G] R$ is the weakest precondition of substitution G to obtain R \}
We now move a first step towards a more "programming oriented" notation. The following extended notation can be seen as a set of abbreviations for the corresponding compositions:

- **BEGIN G END**
 - \(G \)

- **IF P THEN G ELSE H END**
 - \((P \implies G) [\bot] (\neg P \implies H)\)

- **IF P THEN G END**
 - IF P THEN G ELSE skip END

- **CHOICE G OR H END**
 - \(G [\bot] H \)

- **SELECT P THEN G WHEN ... WHEN Q THEN H END**
 - \(P \implies G [\bot] \ldots Q \implies H \)

- **VAR z IN G END**
 - \(@ z . (G) \)

- **ANY z WHERE P THEN G END**
 - \(@ z . (P \implies G) \)

- **LET x BE x = E IN G END**
 - \(@ x . (x = E \implies G) \), where \(x \notin E \)
 - \{x does not occur free in E\}
 - \{x denotes any value of expression E satisfying G\}

Better understanding will be gained through the first following examples.
The while-loop substitution
(definitely towards operational programming ...)

• Let
 – P be a "controlling predicate"
 – S: a substitution
 – V: an arithmetic variant expression, which is a function of the machine state
 – I: an invariant predicate on the machine state

• Then the semantics of the while-loop substitution
 WHILE P DO S VARIANT V INVARIANT I END
 is defined by the following inference rule

\[
I \land P \Rightarrow [S] I, I \Rightarrow V \in N, I \land P \Rightarrow [n:=V][S](V < n), \neg P \land I \Rightarrow R
\]
\[
I \Rightarrow [WHILEPDOSVARIANTV INVARIANTIEND] R
\]

Notice the similarity with the traditional while-loop proof rule with the inclusion of the termination condition
B type system (hints)

- B is strongly typed but not through the traditional type/variable declaration mechanism of classical programming languages. Rather set theory is exploited to assign a type (set) to any variable. The correct use of a variable according to its type must be proved with the same logic deduction mechanisms as other specifications.

- Type assignment is performed through the CONSTRAINTS section of machine definition. Such constraints are of the form
 \(x \in S, x \subset S, x \subseteq S, x = E \), where \(x \) is a variable symbol, \(S \) a set symbol, \(E \) an expression symbol and \(x \notin S, x \notin E \), i.e., \(x \) does not occur free in \(S \) or \(E \).
A first example of B specification

• **MACHINE** SquareRoot

OPERATIONS

- \(\text{sqrt} \leftarrow \text{SquareRoot} (\text{xx}) \)
 \[=_{\text{def}}\] \{is defined as\}

 • **PRE** \(\text{xx} \in \mathbb{N} \)
 THEN

 - **ANY** \(\text{yy} \)

 - **WHERE** \(\text{yy} \in \mathbb{N} \land \text{square}(\text{yy}) \leq \text{xx} \land \text{xx} < \text{square}(\text{yy}+1) \)
 THEN \(\text{sqrt} := \text{yy} \)
 END

 • **END**

 - **DEFINITIONS**

 • \(\text{square}(\text{x}) =_{\text{def}} \text{x}^2 \)

 • **END**
A few explanations/comments

• The name of the machine is SquareRoot
• The DEFINITIONS sections defines auxiliary operations as "macros"
• For the sake of clarity machine variable identifiers are long (2 characters); 1-character identifiers are reserved for dummy variables -such as in the definition of auxiliary operations- and represent arbitrary expressions
 Notice the similarity with the previous convention (overscored identifiers) in Hoare's formalism
• The machine has a single operation SquareRoot. The operation has a single parameter xx and returns the result sqrt (to the left of ←)
• Type assignment arises from set belonging
• := has a semantics similar to the traditional assignment but is not-yet!- assignment. Think in terms of substitution!
• In top level machine specification WHILE-LOOP and sequential composition of substitution are not allowed. This emphasizes that we are talking of specifications not of implementation, though we will use the same language for both.
A second example

• MACHINE UniqueID (maxids)
 CONSTRAINTS maxids \in N
 SETS IDS
 PROPERTIES card(IDS) = maxids
 VARIABLES usedIDS
 INARIANT usedIDS \subseteq IDS
 INITIALIZATION usedIDS :={}
 OPERATIONS
 – newid \leftarrow allocID =_{def}
 • PRE userIDS \neq IDS
 THEN
 – ANY nid
 – WHERE nid \in IDS - usedIDS)
 THEN newid := nid || usedIDS :=usedIDS \cup \{nid\}
 END
 END
 – nids \leftarrow FreeIDS =_{def}
 – BEGIN
 • nids :=card(IDS - usedIDS)
 – END
Further explanations/comments

- The machine has a parameter: the maximum number of identifiers
- The CONSTRAINTS section specifies the type of the parameter
- The "abstract set" IDS specifies the "universe" of identifiers. At this time it is not-yet-defined. It will have to be instantiated during refinement (e.g. integers, strings, ...)
- PROPERTIES section specifies constraints on the abstract set IDS. card is a built-in function with the obvious meaning
- The machine state consists of the single variable usedIDS. The INVARIANT section specifies that userIDS must be a subset of the universe IDS. usedIDS denotes the identifiers already allocated. Hence the natural initialization.
- The machine has two operations, allocID which returns a new (not previously used) identifier; FreeIDS which returns the number of still available identifiers.
- Notice that both specifications use the nondeterministic operator ANY. However, SquareRoot is such that the formula specifying yy defines a unique value. Instead, allocID is allowed to return several different values satisfying the specification; thus, its result is truly nondeterministic. This allows for different possible implementations that satisfy the (top-level) specification.
Some initial summarizing remarks

• Despite the "programming flavor" of the B notation we have built some true specifications, i.e., definitions, as opposed to implementations.

• The distinction between definition and implementation, however, is more a matter of style and relative implications than a formal "definition": a Turing machine "computes" but also "defines" a function; a logic formula -say, specifying the sorting of a list- may look as a definition but may become a true implementation if the logic language -e.g., PROLOG- is interpreted by a machine.

• Next, we go into the core of the B method: coming to implementation through refinement.
A short historical perspective of refinement

- The term *stepwise refinement* was proposed in the early 70s in the context of structured programming.
- In general, it means moving gradually from early formulations -of anything- to more and more precise ones by adding details -pieces of information.
- Its generality encompasses several interpretations -not all of them being equivalent:
 - Specifications can be refined towards implementation.
 - Specifications -or any other sort of documentation- can be refined just to make them more precise and complete.
- Often the term is used rather ambiguously.
- In the context of formal methods it has received precise definitions (such as B's one) but often at the expenses of flexibility and applicability.
- Next, we examine the issue of refinement in B; later we will critically evaluate it.
Refinement in B

• Intuitively, P is refined by Q if Q may satisfactorily substitute P. Satisfactorily does not mean that P and Q are equivalent. Rather, in some sense, that Q "implies" P.
• In B it is convenient to distinguish two types of refinement, though there is no formal definition of such a difference:
 – procedural or algorithmic refinement:
 only the "computational" part of the specification is refined but variables are not changed
 – data refinement:
 the machine state too is changed
A first example of procedural refinement: the SquareRoot

• **REFINEMENT** SquareRootR
REFINES SquareRoot

OPERATIONS
- \(\text{sqrt} \leftarrow \text{SquareRoot}(xx) =_{\text{def}} \)
 - **ANY** \(yy, zz \)
 - **WHERE** \(yy \in \mathbb{N} \land zz \in \mathbb{N} \land \)
 - \(\text{sqinv}(xx, yy, zz) \land zz = yy + 1 \)
 - **THEN** \(\text{sqrt} := yy \)
 - **END**

- **DEFINITIONS**
 - \(\text{square}(x) =_{\text{def}} x \times x; \)
 - \(\text{sqinv}(x,y,z) =_{\text{def}} y < z \land \text{square}(y) \leq x \land x < \text{square}(z) \)

- **END**
Usual explanations/comments

- Since the machine has no state (xx is a parameter, yy and zz are values used to denote a result) the refinement is pure procedural refinement.
- It is "clear" -but we will have to prove it- that
 \[\text{sqinv} (xx, yy, zz) \land zz = yy + 1 \implies \]
 \[\text{square}(yy) \leq xx \land xx < \text{square}(yy+1) \]
- \text{sqinv} in some sense "suggests" an iterative way to get the desired result. In fact, not by chance its identifier "sounds" close to the term \textit{invariant}.
- However, so far, this definition is still in a declarative style, though it is more suggesting an implementation algorithm than the top-level one.
- Let us clearly distinguish between
 - Formal facts:
 - Still while loops and sequential compositions are not used
 - \text{sqinv} is just a predicate
 - "assignment" is used only to define the returned result
 - Feelings, flavors, and intuitions
Data refinement example: the unique identifier machine

- **REFINEMENT** UniqueIDR
- **REFINES** UniqueID
- **PROPERTIES** $\text{IDS} = 1 .. \text{maxids}$
- **VARIABLES** lastID
- **INVARIANT** lastID $\in \mathbb{N} \land \text{usedIDS} = 1 .. \text{lastID}$
- **INITIALIZATION** lastID := 0
- **OPERATIONS**
 - newid $\leftarrow \text{allocID}$ $=_{\text{def}}$
 - **BEGIN** newID := lastID + 1|| lastID := lastID + 1
 {parallel substitution!}
 END;
 - nids $\leftarrow \text{FreeIDS}$ $=_{\text{def}}$
 - **BEGIN**
 - nids := maxids - lastID
 END
Explanations/comments

• This time we have a "decrease of abstraction" both in data and in operations definition
 • The abstract set IDS is replaced by the "concrete" set of natural numbers 1.. maxids
 • We "resolve" nondeterminism by allocating deterministically new identifiers in a sequential way
• As a consequence:
 • The abstract set usedIDS is replaced by 1 .. lastID
 • The state variable is just the number lastID
• The invariant not only states an invariant property of the refining machine, but also "implies" the higher level invariant (this too will be a matter of formal proof)
Refinement and nondeterminism

- If a specification is deterministic then its refinement must have the same "semantics".
 E.g., if an operation defines a function, as in the case of the square root, then its refinement must define the same function.

- However, if the specification is nondeterministic, then asking for semantic equivalence is too much:
 In fact, the implementation of allocID has not the same meaning as the top-level specification but simply "implies" it according to some intuition.

- This intuition will be made formal and precise through suitable proof obligations.
Implementation

• Implementation is a special refinement step: the last one. It must satisfy the following strong constraints:
 • The implementation machine has no state of its own: it "uses" the state of imported machines;
 • To implement the operations the implementation machine must import other (specification) machines;
 • Any parameter of imported machines must be instantiated in the IMPORTS clause;
 • The operations of the implementation machine cannot directly access variables (which belong to imported machines): they can only do that by invoking operations of the imported machines
 • Implementation machines cannot use "abstract substitutions" such as nondeterministic choice and parallel composition;
 • On the contrary they can use sequential composition and the while-loop.
The typical B refinement process

Top-level specification \(\xrightarrow{\text{Refinement}}\) First refined specification \(\xrightarrow{\text{Implement}}\) Implementation

Abstract imported machine 1 (Specification)

Abstract imported machine n (Specification)
Comments

• The notion of implementation follows the principles of encapsulation, information hiding, ADT, ...: e.g. depending only on the interface (specification) of the imported "modules".
• Despite the fact that the language is unique, some features are typical of specification (and excluded in the implementation) and conversely: =====> in some sense the language too is refined through the several steps.
First implementation example: the unique identifier machine

- **IMPLEMENTATION**
 - UniqueIDRI
- **REFINES**
 - UniqueIDR
- **IMPORTS**
 - ID_Nvar 1(maxids)
- **INVARIANT**
 - lastID = ID_Nvar
- **OPERATIONS**
 - newid ← allocID =def
 - **BEGIN**
 - ID_INC_NVAR;
 newID ← ID_VAL_NVAR
 - **END**;
 - nids ← FreeIDS =def
 - **VAR** ll
 - **IN**
 - ll ← ID_VAL_NVAR;
 nids := maxids -ll
 - **END**
 - **END**
Explanations/Remarks

• The imported machine is a renamed instance of a natural number variable machine. Its specification is omitted here as quite natural.
• (The machine Rename_Nvar is available in the standard library of B toolkit. The prefix ID_ identifies this instance of the renamed machine)
• The parameter of the Nvar machine sets the upperbound for the values of the variable
• ID_INC_NV AR increments the value of ID_Nvar
• ID_VAL_NV AR reads the value of ID_Nvar
• Operations may have local temporary variables (not state variables)
• As usual we will have to prove the correctness of the refinement implementation through suitable proof obligations
Second implementation example: the square root machine

- IMPLEMENTATION

 SquareRootRI

 REFINES

 SquareRootR

 IMPORTS

 SquareRootUtils

- OPERATIONS

 - sqrt ← SquareRoot (xx) = \text{def}

 - VAR yy, zz

 IN yy := 0; zz := (xx+1)/2 + 1;

 - WHILE yy + 1 /= zz

 DO yy, zz ← ChooseNewApprox (xx, yy, zz)

 - INVARIANT yy \in \mathbb{N} \land zz \in \mathbb{N} \land \text{sqinv}(xx, yy, zz)

 - VARIANT zz - yy

 END;

 - sqrt := yy

- DEFINITIONS

 - square(x) = \text{def} x * x;

 - sqinv(x,y,z) = \text{def} y < z \land \text{square}(y) \leq x \land x < \text{square}(z)
This time the implementation strongly depends on the imported items.
Thus, we define and implement the imported machine too.

• **MACHINE** SquareRootUtils

• **OPERATIONS**

 - \(yy, zz \leftarrow \text{ChooseNewApprox}(xx, yy0, zz0) \)

 • **PRE** \(xx \in \mathbb{N} \land yy0 \in \mathbb{N} \land zz0 \in \mathbb{N} \land \)
 \(\text{sqinv}(xx, yy0, zz0) \land yy0 + 1 < zz0 \) \(\text{THEN} \)

 • **ANY** \(ww \) \(\\text{WHERE} \) \(ww \in \mathbb{N} \land yy0 < ww \land ww < zz0 \) \(\text{THEN} \)

 • **SELECT** \(\text{sqinv}(xx, ww, zz0) \) \(\text{THEN} \) \(yy, zz := ww, zz0 \)

 WHEN \(\text{sqinv}(xx, yy0, ww) \) \(\text{THEN} \) \(yy, zz := yy0, ww \)

 END

 • **END**

• **END**

• **DEFINITIONS**

 • \(\text{square}(x) =_{\text{def}} x^*x; \)

 \(\text{sqinv}(x,y,z) =_{\text{def}} y < z \land \text{square}(y) \leq x \land x < \text{square}(z) \)

• **END**
REFINEMENT (IMPLEMENTATION) SquareRootUtilsR
REFINES SquareRootUtilsR

OPERATIONS

- yy, zz ← ChooseNewApprox (xx, yy0, zz0) = def

 - VAR ww IN
 - ww := (yy0 + zz0)/2;
 IF ww * ww <= xx
 THEN yy := ww; zz := zz0
 ELSE yy := yy0; zz := ww
 END

 - END

 - END

- With a subtle remark we could "implement" this last refinement by replacing ww * ww <= xx with ww <= xx/ww and relying on the PRE ww /= 0: by this way we would avoid the risk of overflow in the operation ww*ww. Here we neglect these subtleties and we consider the present one as the final implementation.
Comments

• Of course, this refinement process is overdetailed if compared with the complexity of the example (typical "toy example" criticism)
• However, it serves well several illustration purposes
• Also, it shows pretty well the philosophy of the method which emphasizes moving smoothly from specification towards implementation and uses a notation which parallels the process (as opposed to the so-called "dual language approach").
• It is also emphasized the usefulness of concentrating on single -or few- issues at any design step.
• All this is further emphasized with the distinguishing feature of the B method, i.e. pairing design with verification through correctness proofs: every step must be accompanied -at least in principle- by a mathematical proof (well supported by B's toolkit.)
Proof obligations in B (hints)

• Proof obligation: what must be proved to guarantee that the given specification is satisfied.

• In the case of Hoare’s system

\{I \land c\} S \{I\} is a proof obligation to guarantee \{I\} while c do S \{I \land \neg c\}

In the case of structured methods such as B, proofs are structured as well as design.

In a fairly general perspective, we may distinguish between:

- Horizontal proofs
- Vertical proofs

: ----->
Horizontal proofs: properties of components A, B imply global properties of system S

Vertical proofs: properties of refining components AR, BR, and refining system SR imply properties of refined components A, B, and system S, respectively
• In B the distinction between the two types of properties is not as sharp (for a
deeper clarification see:
Kolano, P.Z. “Tools and Techniques for the Design and Systematic Analysis of Real-

• However, it is useful to refer to such a distinction when considering any type
of proof obligation in structured methods that involve both structuring a
complex system into several components and refining them through several
layers.

• We will be happy enough to scratch the surface of B’s proof system (without
the toolkit …)
B’s toolkit automatically generates all proof obligations (they are quite
many!); then it helps proving them: the trivial ones are automatically
verified, for the other ones human interaction is needed.
In case of success proofs are completely certified (formalized)
A typical case of horizontal proof obligations

- **MACHINE**
 - \(M(X, x) \)
- **CONSTRAINTS**
 - \(C \)
- **SETS**
 - \(S; T = \{a, b\} \)
- **CONSTANTS**
 - \(c \)
- **PROPERTIES**
 - \(P \)
- **IN Variant**
 - \(I \)
- **ASSERTIONS**
 - \(J \)
- **INITIALIZATION**
 - \(U \)
- **OPERATIONS**
 - \(u \leftarrow \text{O(W)} = \text{def } \text{PRE Q THEN V END;} \)
- **END**

- Let \(A \) be an abbreviation for \(X \in P(\text{INT}); \)
- B for \(S \in P(\text{INT}) \land T \in P(\text{INT}) \land T = \{a, b\} \land a \neq b \)
 \{ A and B state type properties for used sets \}
- Then the following are the proof obligations for M:
 - \(A \land B \land C \land P \Rightarrow [U] I \)
 \{ The initialization (+ the “basic assumptions) guarantees the invariant \}
 - \(A \land B \land C \land P \land I \Rightarrow J \)
 \{ actually J is a “corollary” of I; inessential here \}
 - \(A \land B \land C \land P \land I \land J \land Q \Rightarrow [V] I \)
 \{ operation(s) O, which applies substitution V under precondition Q, preserves the invariant \}
Another typical horizontal proof obligation (for refining/implementing machines) is the while-loop obligation:

\[
I \land P \Rightarrow [S]I, I \Rightarrow V \in N, I \land P \Rightarrow [n:=V][S](V < n), \neg P \land I \Rightarrow R
\]

\[
I \Rightarrow \{WHILE\}P\{DO\}S\{VARIANT\}TV\{INVARIANT\}I\{END\}\{R\}
\]

We already noticed that it generalizes Hoare’s proof rule -obligation by including termination
An example of “vertical” proof obligation

- Let specification
- MACHINE M
- VARIABLES V
- INVARIANT I
- OPERATIONS
 - \(R \leftarrow \text{Op} =_{\text{def}} \)
 - \(\text{PRE P} \)
 - \(\text{THEN S} \)
 - END
- END

- be refined as
- MACHINE \(M_R \)
- REFINES M
- VARIABLES \(V_R \)
- INVARIANT \(I_R \)
- OPERATIONS
 - \(R \leftarrow \text{Op} =_{\text{def}} \)
 - \(\text{PRE P} \)
 - \(\text{THEN S} \)
 - END
- END

- Then, we must prove:
- \(I \land I_R \land P \Rightarrow P_R \)
 - \{The upper level (UL) precondition and the two invariants imply the lower level (LL) precondition\}
- \(I \land I_R \land P \Rightarrow [S'_R](S(I_R \land R'=R)) \)
 - \{I.e., the refining operation must produce the same result \(R \) as the refined one, under the same assumptions.\}
- Notice that the above obligation is a simplified version of a more general one, that applies only when \(\text{Op} \) is deterministic. Otherwise, we should prove:
 - \(I \land I_R \land P \Rightarrow [S'_R](-S(- (I_R \land R'=R))) \)
 - \{the refining operation does not contradict the refined one\}
- As a matter of style this -and other- proof obligations might be criticized as they “mix UL and LL properties”
In the “official” B theory proof obligations are classified into:

- **Context**: proofs that sets satisfying constraints and properties exist
- **Maintenance of invariant**: proof that the invariant is established by initialization and kept by the operations
- **Satisfaction of refinement relation**: proof that refinement and implementation machines satisfy the refinement constraints
- **Precondition**: proof that preconditions for any invoked machine are satisfied

Now, let us state the following abbreviations:

- **Cst(mch)**: the CONSTRAINTS clause of machine *mch*
- **ctx (context)**: the PROPERTIES clause of machine *mch*
- **inv(mch)**: the INTEGRANT clause of machine *mch*
- **asn(mch)**: the ASSERTIONS clause of machine *mch*
Here are some proof obligations for the UniqueIDR machine

• Initialisation.1
 – \(\text{cst(UniqueIDR)} \land \text{ctx(UniqueIDR)} \Rightarrow 0 \in \mathbb{N}, \text{ i.e.,} \)
 \[
 \text{IDS} = 1..\text{maxids} \Rightarrow 0 \in \mathbb{N} \quad (\text{cst is empty for this machine})
 \]

• Initialisation.2
 – \(\text{cst(UniqueIDR)} \land \text{ctx(UniqueIDR)} \Rightarrow \{\} = 1..0 \)
• allocID.1
 - $\text{cst(UniqueIDR)} \land \text{ctx(UniqueIDR)} \land \text{inv(UniqueIDR)} \land \text{asn(UniqueIDR)}$
 \land pre(allocID) \Rightarrow
 $\text{lastID + 1} \in \text{IDS - usedIDS}$, i.e.,
 $\text{IDS} = 1..\text{maxids} \land \text{lastID} \in \text{N} \land \text{usedIDS} = 1..\text{lastID} \land \text{usedIDS} \neq \text{IDS}$
 \Rightarrow
 $\text{lastID + 1} \in \text{IDS - usedIDS}$

• allocID.2
 - $\text{cst(UniqueIDR)} \land \text{ctx(UniqueIDR)} \land \text{inv(UniqueIDR)} \land \text{asn(UniqueIDR)}$
 \land pre(allocID) \Rightarrow
 $\text{lastID + 1} \in \text{N}$

• allocID.3
 - $\text{cst(UniqueIDR)} \land \text{ctx(UniqueIDR)} \land \text{inv(UniqueIDR)} \land \text{asn(UniqueIDR)}$
 \land pre(allocID) \Rightarrow
 $\text{usedIDS} \cup \{\text{lastID + 1}\} = 1..\text{lastID + 1}$

• FreeIDS.1
 ...

...
Remarks

• Again: (too?) many details … is B a too restrictive language?
• … but automatically generated
• most proofs are trivial
• all are supported by the interactive tool
• some confusion between different layers (UL assertions mixed with LL ones)
• here is a sample of a fully formal proof:
 • ***
The **B** method for reactive systems

- Essentially it consists of describing a collection of communicating abstract machines
- The rationale of the approach is similar to Statechart
- It is not clear (to me) how deep and complete is the formalization of its semantics.
Outdated material

Model checking

…