Simplification of integrity constraints with aggregates and arithmetic built-ins

Davide Martinenghi

Roskilde University, Computer Science Dept.
P.O.Box 260, DK-4000 Roskilde, Denmark
E-mail: dm@ruc.dk

Abstract. In the context of relational as well as deductive databases, correct and efficient integrity checking is a crucial issue, as, without any guarantee of data consistency, the answers to queries cannot be trusted. To be of any practical use, any method for integrity checking must support aggregates and arithmetic constraints, which are among the most widespread constructs in current database technology. In this paper we propose a method of practical relevance that can be used to simplify integrity constraints possibly containing aggregates and arithmetic expressions. Simplified versions of the integrity constraints are derived at database design time and can be tested before the execution of any update. In this way, virtually no time is spent for optimization or rollbacks at run time. Both set and bag semantics are considered.

1 Introduction

Correct and efficient integrity checking and maintenance are crucial issues in relational as well as deductive databases. Without proper devices that guarantee the consistency of data, the answers to queries cannot be trusted. Integrity constraints are logical formulas that characterize the consistent states of a database. A complete consistency check often requires linear or worse time complexity with respect to the size of the database, which is too costly in any interesting case. To simplify a set of integrity constraints means to derive specialized checks that can be executed more efficiently at each update, employing the hypothesis that the data were consistent before the update itself. Ideally, these tests should be generated at database design time and executed before any update that may violate the integrity, so that expensive rollback operations become unneeded.

The principle of simplification of integrity constraints has been known and recognized for more than twenty years, with the first important results dating back to [24], and further developed by several other authors. However, the common practice in standard databases is still based on ad hoc techniques. Typically, database experts hand-code complicated tests in the application program producing the update requests or, alternatively, design triggers within the database management system that react upon certain update actions. Both methods are prone to errors and not particularly flexible with respect to changes in the schema or design of the database. This motivates the need for automated simplification
methods. Standard principles exist (e.g., partial subsumption [2]), but none of them seems to have emerged and gained ground in current database implementations, as all have significant limitations (see also section 4). In this paper we focus on the treatment of aggregates and arithmetic expressions in the simplification of integrity constraints, but the method we present, which extends [4], is fairly general, as summarized below.

- It uses a compiled approach: the integrity constraints are simplified at design-time and no computation is needed at run-time to optimize the check.
- It gives a pre-test: only consistency-preserving updates will eventually be given to the database and therefore no rollback operations are needed.
- The pre-test is a necessary and sufficient condition for consistency.
- The updates expressible in the language are so general as to encompass additions, deletions, changes, transactions and transactions patterns.
- It consists of transformation operators that also prove useful in other contexts, such as data mining, data integration, abductive reasoning, etc.

To be of any practical use, any simplification procedure must support aggregates and arithmetic constraints, which are among the most widespread constructs in current database technology. However, the problem of the simplification of integrity constraints containing aggregates seems, with few rare exceptions, to have been largely ignored. In fact, the most comprehensive method we are aware of [10] can only produce tests that are sets of instances of the original integrity constraints and does not exploit the fact that those constraints are trusted in the database state before the update.

In this paper we present a series of rewrite rules that allow the decomposition of aggregate expressions into simpler ones that can then be simplified by a constraint solver for arithmetic expressions. The practical significance of these rules is demonstrated with an extensive set of examples.

The paper is organized as follows. The simplification framework is presented in section 2, while its application to integrity constraints with aggregates and arithmetic built-ins is explained and exemplified in section 3. We review existing literature in the field in section 4 and provide concluding remarks in section 5.

2 A framework for simplification of integrity constraints

2.1 The language

We assume a function-free first-order typed language equipped with negation and built-ins for equality (=) and inequality (≠) of terms. The notions of (typed) terms (t, s, . . .), variables (x, y, . . .), constants (a, b, . . .), predicates (p, q, . . .), atoms, literals and formulas in general are defined as usual. The non-built-in predicates are called database predicates, and similarly for atoms and literals.

Clauses are written in the form Head ← Body where the head, if present, is an atom and the body a (perhaps empty) conjunction of literals. We assume in this paper that the clauses are not recursive, i.e., the predicate used in the head
of a clause does not occur in its body (directly in the same clause, or indirectly via other clauses). A denial is a headless clause and a fact is a ground bodiless clause; all other clauses are called rules. Logical equivalence between formulas is denoted by \(\equiv \), entailment by \(|=|\), provability by \(\vdash\). The notation \(\vec{t}\) indicates a sequence of terms \(t_1, \ldots, t_n\) and the expressions \(p(\vec{t})\), \(\vec{s} \equiv \vec{t}\) and \(\vec{s} \neq \vec{t}\) are defined accordingly. We assume that all clauses are range restricted\(^1\), as defined below.

Definition 1 (Range restriction). A variable in a clause is range bound if it occurs in the body of the clause either in a positive database literal or in an equality with a constant or another range bound variable. A clause is range restricted if all variables in it are range bound. A conjunction \(C\) of literals is range restricted if the clause \(\leftarrow C\) is.

Furthermore, the language allows built-in arithmetic constraints (\(<, \leq, >, \geq\)), whose arguments are arithmetic expressions. An arithmetic formula is a formula in which all the predicates are arithmetic constraints. An arithmetic expression is a numeric term, an aggregate term, or a combination of arithmetic expressions via the four operations (+, -, *, /), indicated in infix notation. An aggregate term is an expression of the form \(A[\exists x_1, \ldots, x_n F]\), where \(A\) is an aggregate operator, \(F\) is a disjunction of conjunctions of literals in which each disjunct is range restricted, \(x_1, \ldots, x_n\) (the local variables) are some of the variables in \(F\), and the optional \(x\), if present, is the variable, called aggregate variable, among the \(x_1, \ldots, x_n\) on which the aggregate function is calculated\(^2\). The non-local variables in \(F\) are called the global variables; if \(F\) has no global variables, then the argument of the aggregate, called the key formula, is said to be closed. The aggregate operators we consider are: \(\text{Cnt}\) (count), \(\text{Sum}\), \(\text{Max}\), \(\text{Min}\), \(\text{Avg}\) (average).

Example 1. Given the person relation \(p(name, age)\), \(\text{Avg}(\exists x, y p(x, y))\) is an aggregate term that indicates the average age of all persons, while \(\text{Cnt}(\exists x p(x, 30))\) represents the number of 30 years old persons.

Subsumption is a widely used syntactic principle that has the semantic property that the subsuming formula entails the subsumed one. We give here a definition for denials.

Definition 2 (Subsumption). Given two denials \(D_1, D_2\), \(D_1\) subsumes \(D_2\) (indicated \(D_1 \sqsubseteq D_2\)) iff there is a substitution \(\sigma\) such that each literal in \(D_1\sigma\) occurs in \(D_2\).

Example 2. The denial \(\leftarrow p(x, y) \land q(y)\) subsumes \(\leftarrow p(x, b) \land x \neq a \land q(b)\).

In a database we distinguish three components: the extensional database (the facts), the intensional database (the rules or views) and the constraint theory (the integrity constraints) [16]. The constraint theory can be transformed in an equivalent one that does not contain any intensional predicates [2], and for ease of exposition we shall keep this assumption throughout the paper. For other cases

\(^1\) Other texts use the terms “safe” or “allowed” to indicate the same notion.

\(^2\) Alternatively, a number could be used instead of \(x\) to indicate the position of interest.
where intensional predicates might appear, we refer to the standard principle of unfolding, that consists in replacing such predicates by the extensional predicates they are defined upon. By database state we refer to the union of the extensional and the intensional parts only. As semantics of a database state D, with default negation for negative literals, we take its standard model, as D is here recursion-free and thus stratified. The truth value of a closed formula F, relative to D, is defined as its valuation in the standard model and denoted $D(F)$. (See, e.g., [25] for exact definitions for these and other common logical notions.)

Definition 3 (Consistency). A database state D is consistent with a constraint theory Γ iff $D(\Gamma) = true$.

The semantics of aggregates depends on the semantics underlying the representation of data. Two different semantics are of interest: set semantics, as traditionally used in logic, and bag semantics, typical of database systems. A state D contains, for every database predicate p, a relation p_D; under set semantics p_D is a set of tuples, under bag semantic a bag (or multiset) of tuples, i.e., a set of \langletuple, multiplicity\rangle pairs. Similarly, a range restricted closed formula F defines a new finite relation F_D, called its extension. Under set semantics the extension consists of all different answers that F produces over D; under bag semantics the tuples are the same as for set semantics and the multiplicity of each tuple is the number of times it can be derived over D. We refer to [6, 8] for formal definitions. We note that Max and Min are indifferent of the semantics; for the other aggregates, we use the notation Cnt, Sum, Avg for bag semantics and Cnt_a, Sum_a, Avg_a when referring to the set of distinct tuples.

The method we describe here can handle general forms of update, including additions, deletions and changes. For any predicate p in the database, we can introduce rules that determine how the extension of p is augmented and reduced, respectively indicated with p^+ and p^-, with the only restriction that p^+ and p^- be disjoint and p^+ be defined by range restricted rules.

Definition 4 (Update). A deletion (resp. addition) referring to an extensional predicate p is a rule (resp. range restricted rule) whose head is an atom with a new name p^- (resp. p^+) having the same arity as p. A non-empty bag of deletions and additions U is an update whenever, for every deletion p^- and addition p^+ in the bag, $(D \cup U)(\langle p^+(\vec{x}) \land \neg p^-(\vec{x}) \rangle) = true$ for every state D, where \vec{x} is a sequence of distinct variables matching the arity of p.

For a state D and an update U, the updated state, indicated D^U, refers to the state obtained from D by changing the extension of every extensional predicate p to the extension of the formula $(p(\vec{x}) \land \neg p^-(\vec{x})) \lor p^+(\vec{x})$ in $(D \cup U)$.

Note that, according to definition 4, in both set and bag semantics, when an update U determines the deletion of a tuple $p(\vec{c})$ from a relation p^D in a state D, then all of its occurrences in p^D are removed, i.e., $D^U(p(\vec{c})) = false$. We also allow for special constants called parameters (written in boldface: a, b, ...), i.e., placeholders for constants that permit to generalize updates into update patterns, which can be evaluated before knowing the actual values of the update itself. For example, the notation $\{p^+(a), q^-(a)\}$, where a is a parameter, refers
to the class of update transactions that add a tuple to the unary relation \(p \) and remove the same tuple from the unary relation \(q \). We refer to [4] for precise definitions concerning parameters.

2.2 Semantic notions

We give now a characterization of simplification based on the notion of weakest precondition [9, 18], which is a semantic correctness criterion for a test to be run prior to the execution of the update, i.e., a test that can be checked in the present state but indicating properties of the prospective new state.

Definition 5 (Weakest precondition). Let \(\Gamma \) and \(\Sigma \) be constraint theories and \(U \) an update. \(\Sigma \) is a weakest precondition of \(\Gamma \) with respect to \(U \) whenever \(D(\Sigma) \equiv D^U(\Gamma) \) for any database state \(D \).

The essence of simplification is the optimization of a weakest precondition based on the invariant that the constraint theory holds in the present state.

Definition 6 (Conditional weakest precondition). Let \(\Gamma, \Delta \) be constraint theories and \(U \) an update. A constraint theory \(\Sigma \) is a \(\Delta \)-conditional weakest precondition \((\Delta\text{-CWP}) \) of \(\Gamma \) with respect to \(U \) whenever \(D(\Sigma) \equiv D^U(\Gamma) \) for any database state \(D \) consistent with \(\Delta \).

Typically, \(\Delta \) will include \(\Gamma \), but it may also contain other knowledge, such as further properties of the database that are trusted. The notion of CWP alone is not sufficient to fully characterize the principle of simplification. In [4, 5], an optimality criterion is introduced, which serves as an abstraction over actual computation times without introducing assumptions about any particular evaluation mechanism or referring to any specific database state. For reasons of space, we omit this discussion and approximate optimality with syntactic minimality (minimal number of literals). We note that this is indeed an approximation: in relational databases, for example, a syntactically minimal query does not necessarily evaluate faster than an equivalent non-minimal query in all database states; the amount of computation required to answer a query can be reduced, for instance, by adding a join with a very small relation.

2.3 A simplification procedure without aggregates and arithmetic

We now describe the transformations that compose a simplification procedure for integrity constraints without aggregates and arithmetic built-ins that was introduced in [4]; we will extend it for these cases in section 3. Given an input constraint theory \(\Gamma \) and an update \(U \), it returns a simplified theory to be tested before \(U \) is executed to guarantee that \(\Gamma \) will continue to hold after the update.

Definition 7. For a constraint theory \(\Gamma \) and an update \(U \), the notation \(\text{After}^U(\Gamma) \) refers to a copy of \(\Gamma \) in which all occurrences of an atom of the form \(p(\overline{t}) \) are simultaneously replaced by the unfolding of the formula:

\[
(p(\overline{t}) \land \neg p^-(\overline{t})) \lor p^+(\overline{t}).
\]
We assume that the result of the transformation of definition 7 is always given as a set of denials, which can be produced by using, e.g., De Morgan’s laws. The semantic correctness of After is expressed by the following property.

Theorem 1. For any update U and constraint theory Γ, $After^U(\Gamma)$ is a weakest precondition of Γ with respect to U.

Clearly, After is not in any “normalized” form, as it may contain redundant denials and sub-formulas (such as, e.g., $a \equiv a$). Moreover, the fact that the original integrity constraints hold in the current database state can be used to achieve further simplification. For this purpose, we define a transformation Optimize that exploits a given constraint theory Δ consisting of trusted hypotheses to simplify the input theory Γ. The proposed implementation [23] is here described in terms of sound rewrite rules. An application of a rewrite rule to a constraint theory always produces a smaller theory. Optimize applies the rules as long as possible and thus removes from Γ every denial that is subsumed by another denial in Δ or Γ and all literals that a restricted resolution principle, called folding by resolution, proves to be redundant. Undecidability issues may arise, though, to prove that the resulting theory is indeed minimal; see the end of section 3.2 and [4] for further discussion. In order to guarantee termination, we base the notion of provability, used in the conditions of applicability of the rules, on procedures searching for specific patterns, such as trivially satisfied (in)equalities, and other purely syntactic notions, such as subsumption.

Definition 8. Given two constraint theories Δ and Γ, $\text{Optimize}_\Delta(\Gamma)$ is the result of applying the following rewrite rules on Γ as long as possible. In the following, x is a variable, t is a term, A, B are (possibly empty) conjunctions of literals, L is a literal, σ a substitution, ϕ, ψ are denials, Γ' is a constraint theory.

\[
\begin{align*}
\{\leftarrow x \equiv t \land A\} \cup \Gamma' & \Rightarrow \{\leftarrow A/x\} \cup \Gamma' \\
\{\leftarrow A \land B\} \cup \Gamma' & \Rightarrow \{\leftarrow A\} \cup \Gamma' \text{ if } A \vdash B \\
\{\phi\} \cup \Gamma' & \Rightarrow \Gamma' \text{ if } \exists \psi \in (\Gamma' \cup \Delta) : \psi \sqsubseteq \phi \\
\{\leftarrow A\} \cup \Gamma' & \Rightarrow \Gamma' \text{ if } A \vdash false \\
\{(\leftarrow A \land \neg L \land B)\} \sigma \cup \Gamma' & \Rightarrow \{(\leftarrow A \land B)\sigma\} \cup \Gamma' \text{ if } (\Gamma \cup \Delta) \vdash \{\leftarrow A \land L\}
\end{align*}
\]

The principle of folding by resolution is indicated in the last rule. It can be implemented, e.g., with a data driven procedure that looks in the deductive closure of $(\Gamma \cup \Delta)$ containing denials whose size is not bigger than the biggest denial in Γ.

The operators defined so far can be assembled to define a procedure for simplification of integrity constraints, where the updates always take place from a consistent state.

Definition 9. For two constraint theories Γ and Δ and an update U, we define

\[
\text{Simp}^U_{\Delta}(\Gamma) = \text{Optimize}_{\Delta}(After^U(\Gamma)).
\]

We observe that Simpl preserves range restriction, as all the steps in After and Optimize do. We state now its correctness and refer to [4] for a proof.
Theorem 2. Simp terminates on any input and, for any constraint theories Γ, Δ and update U, Simp^U_Γ(Γ) is a Δ-CWP of Γ with respect to U.

In the following, Simp^U_Γ(Γ) is a shorthand for Simp_U Γ(Γ).

Example 3. Let Γ = \{← p(x) ∧ q(x), p^+(a)\}, where a is a parameter. The simplification is as follows:

After^U(Γ) = \{← q(x) ∧ x = a,
\quad ← p(x) ∧ q(x) \}

Simp^U(Γ) = \{← q(a)\}.

3 Extension to aggregates and arithmetic

3.1 Extension of the simplification framework

The constraint theory output by After holds in the current state if and only if the input theory holds in the updated state. Each predicate in the input theory is therefore replaced by an expression that indicates the extension it would have in the updated state. Unsurprisingly, theorem 1 can be proven also in the presence of aggregates and arithmetic, without modifying definition 7. We always express key formulas as disjunctions of conjunctions of literals; again, this can be done by simple (bag) semantics-preserving transformations such as De Morgan’s laws.

Example 4. Let Γ = \{← Cnt(∃x p(x)) < 10\}, U = \{p^+(a)\}, then:

After^U(Γ) = \{← Cnt(∃x p(x) ∨ x = a) < 10\}.

The new Cnt expression returned by After should indicate an increment by one with respect to the original expression. In order to determine this effect, we need to divide the expression into smaller pieces that can possibly be used during the simplification of weakest preconditions. To do that, we extend definition 8 with a set of sound rewrite rules for aggregates. Note that care must be taken when applying transformations that preserve logical equivalence on aggregates with bag semantics. Consider, for instance, Sum_x (∃x p(x) ∧ x = 1) and Sum_x (∃x (p(x) ∧ x = 1) ∨ (p(x) ∧ x = 1)). Their key formulas are logically equivalent, but in the latter, the tuple p(1) occurs twice as many times. In other words, the results may differ because the number of ways in which the key formula may succeed matters.

With regard to arithmetic constraints and expressions, we base the applicability of these rules on the presence of a standard constraint solver for arithmetic; see, e.g., [7, 19]. We use the notation A ⊑C A’ to indicate that a constraint solver C reduces, in finite time, arithmetic formula A to a simpler formula A’. We now extend the notion of subsumption to denials containing arithmetic constraints.

Definition 10 (Subsumption). Let C be a constraint solver for arithmetic and D_1, D_2 be denials of the form ← C_1 ∧ A_1 and ← C_2 ∧ A_2, respectively, where C_1, C_2 are conjunctions of literals and A_1, A_2 arithmetic formulas. Then D_1 subsumes D_2 with respect to C (indicated D_1 ⊑C D_2) iff there is a substitution σ such that each literal in C_1σ occurs in C_2 and A_2 ∧ ¬A_1σ ⊑C false.
Example 5. Consider the following integrity constraints:

\[
\begin{align*}
\phi &= \leftarrow \text{Cnt}(\exists x \ p(x, y)) < 10 \land q(y) \\
\psi &= \leftarrow \text{Cnt}(\exists x \ p(x, b)) < 9 \land q(b) \land r(z).
\end{align*}
\]

For any constraint solver \(C\) for which

\[
\text{Cnt}(\exists x \ p(x, b)) < 9 \land \text{Cnt}(\exists x \ p(x, b)) \geq 10 \leadsto_C \text{false}
\]

we have \(\phi \subseteq_C \psi\).

To make the definitions more readable, we introduce conditional expressions, i.e., arithmetic expressions written if \(C\) Then \(E_1\) Else \(E_2\), which indicate arithmetic expression \(E_1\) if condition \(C\) holds, \(E_2\) otherwise. Similarly, we introduce two binary arithmetic operators \(\max\) and \(\min\) and define them in terms of conditional expressions. Furthermore, we take liberties in rewrite rules to omit portions of formulas and expressions with leading and trailing ellipses (...) ; they identify the same portions in both sides of the rules. Square brackets in the subscript of an aggregate indicate that the rule applies both with and without the subscript.

Definition 11. Given two constraint theories \(\Delta\) and \(\Gamma\) and a constraint solver for arithmetic \(C\), \(\text{Optimize}_{C\Delta}(\Gamma)\) is the result of applying the following rewrite rules and those of definition 8 on \(\Gamma\) as long as possible, where \(x\) is a local variable, \(y\) a global one, \(\vec{x}\) a (possibly empty) sequence of distinct local variables \(x_1, \ldots, x_n\) different from \(x\), \(A, B, C\) are range restricted conjunctions of literals \((\text{C with no local variables}), E_1, E_2\) arithmetic expressions, \(A_1, A_2, A_3\) arithmetic formulas, \(t, s\) terms, \(c\) a constant, \(F\) a key formula, \(\Gamma^\sigma\) a constraint theory, \(\sigma\) a substitution, \(\text{Agg}\) any aggregate.

Rules for all aggregates

\[
\begin{align*}
\text{Agg}_{[x_i]}(\exists x A \land t \doteq t) &\Rightarrow \text{Agg}_{[x_i]}(\exists x A) \\
\text{Agg}_{[x_i]}(\exists x, x A \land x \doteq x_i) &\Rightarrow \text{Agg}_{[x_i]}(\exists x A\{x/x_i\}) \\
\text{Agg}_{[x_i]}(\exists x, x A \land x \doteq t) &\Rightarrow \text{Agg}_{[x_i]}(\exists x A\{x/t\}) \\
\text{Agg}_{[x_i]}(\exists x A \land y \doteq t) &\Rightarrow \text{If } y \doteq t \text{ Then } \text{Agg}_{[x_i]}(\exists x A\{y/t\}) \text{ Else } \perp^3 \\
\text{Agg}_{[x_i]}(\exists x A) &\Rightarrow \perp \text{ if } A \vdash \text{false}
\end{align*}
\]

Rules for Cnt and Cnt_o

\[
\begin{align*}
\text{Cnt}(\exists x A \lor B) &\Rightarrow \text{Cnt}(\exists x A) + \text{Cnt}(\exists x B) \\
\text{Cnt}_0(\exists x A \lor B) &\Rightarrow \text{Cnt}_0(\exists x A) + \text{Cnt}_0(\exists x B) - \text{Cnt}_0(\exists x A \land B) \\
\text{Cnt}_1(\exists x A \land t \neq s) &\Rightarrow \text{Cnt}_1(\exists x A) - \text{Cnt}_1(\exists x A \land t \doteq s) \\
\text{Cnt}(\text{true}) &\Rightarrow 1 \\
\text{Cnt}_0(C) &\Rightarrow \text{If } C \text{ Then } 1 \text{ Else } 0
\end{align*}
\]

\(^3\) Provided that \(t\) is not a local variable. The \(\perp\) symbol indicates the value that applies to an empty bag of tuples (0 for Cnt, Sum, \(-\infty\) for Max, \(+\infty\) for Min, etc.).
Rules for conditional expressions

Example 6. Consider the aggregates $A_1 = \text{Cnt}(\exists x \ p(x) \land x \neq a)$ and $A_2 = \text{Sum}_x(\exists x \ p(x) \land x \neq a)$, a a numeric parameter. The following rewrites apply:

\[
\begin{align*}
A_1 & \Rightarrow \text{Cnt}(\exists x \ p(x)) - \text{Cnt}(\exists x \ p(x) \land x = a) \Rightarrow \text{Cnt}(\exists x \ p(x)) - \text{Cnt}(p(a)). \\
A_2 & \Rightarrow \text{Sum}_x(p(x)) - \text{Sum}_x(p(x) \land x \neq a) \Rightarrow \text{Sum}_x(p(x)) - a \cdot \text{Cnt}(p(a)).
\end{align*}
\]

Note that the fourth Sum rule in definition 11 indicates that when the value of the aggregate variable is known, the sum will equal that value multiplied by the number of times the aggregate formula succeeds. ☐

The simplification procedure can now be extended with these new rules.

Definition 12. For two constraint theories Γ and Δ, a constraint solver for arithmetic \mathcal{C} and an update U, we define

\[
\text{Simp}_{\mathcal{C}, \Delta}^U(\Gamma) = \text{Optimize}_{\mathcal{C}, \Delta}(\text{After}^U(\Gamma)).
\]

\footnote{Note that when σ is a renaming, the first produced denial is redundant and will be eliminated by the first of these three rules.}
The correctness of SimpC is stated as in theorem 2 for Simp, with the extra assumption that the constraint solver for arithmetic always terminates.

Theorem 3. Given a constraint solver for arithmetic \(C \) that terminates on any input, SimpC terminates on any input and, for any constraint theories \(\Gamma' \) and \(\Delta \) and update \(U \), SimpC\(_U^C(\Gamma') \) is a \(\Delta \)-CW of \(\Gamma' \) with respect to \(U \).

In the following, SimpC\(_U^C(\Gamma') \) is a shorthand for SimpC\(_U^C(\Gamma') \).

3.2 Examples of simplification

We show now a series of examples that demonstrate the behavior of the rules and the simplification procedure in various cases; for readability, we leave out some of the trivial steps.

Example 7 (4 continued). Let \(\Gamma' = \{ \neg \text{Cnt}(\exists x \ p(x)) < 10 \} \), \(U = \{ p^+(a) \} \), then:

\[
\text{SimpC}_U(\Gamma') = \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x) \lor x \equiv a) < 10 \})
\]

\[
= \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x)) + \text{Cnt}(\exists x \ x \equiv a) < 10 \} \\
= \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x)) + 1 < 10 \}) = \text{true}.
\]

The update increments the count of \(p \)-tuples, which was known \((\Gamma') \) to be at least 10 before the update, so this increment cannot undermine the validity of \(\Gamma' \) itself. The last step, obtained via subsumption, allows one to conclude that no check is necessary to guarantee the consistency of the updated database state.\(\square \)

Example 8. Let \(\Gamma' = \{ \neg \text{Cnt}_o(\exists x \ p(x)) \neq 10 \} \) (there must be exactly 10 distinct \(p \)-tuples) and \(U = \{ p^+(a) \} \). With a set semantics, the increment of the count depends on the existence of the tuple \(p(a) \) in the state:

\[
\text{SimpC}_U(\Gamma') = \text{Optimize}_C(\{ \neg \text{Cnt}_o(\exists x \ p(x) \lor x \equiv a) \neq 10 \})
\]

\[
= \text{Optimize}_C(\{ \neg \text{Cnt}_o(\exists x \ p(x)) + 1 - \text{Cnt}_o(p(a)) \neq 10 \} \\
= \text{Optimize}_C(\{ \neg \text{Cnt}_o(\exists x \ p(x)) + 1 - \text{If} \ \text{p(a) Then 1 Else 0} \neq 10 \}) \\
= \text{Optimize}_C(\{ \neg p(a) \land \text{Cnt}_o(\exists x \ p(x)) + 1 - 0 \neq 10 \}) \\
= \{ \neg \text{p(a)} \}.
\]

The arithmetic constraint solver intervenes in the last step using the knowledge from \(\Gamma' \) that the original \(\text{Cnt}_o \) expression is equal to 10.\(\square \)

Example 9. When global variables occur, conditional expressions are used to separate different cases. Let \(\Gamma' = \{ \neg \text{Cnt}(\exists x \ p(x, y)) > 10 \land q(y) \} \) (there cannot be more than 10 \(p \)-tuples whose second argument is in \(q \) and \(U = \{ p^+(a, b) \} \).

\[
\text{SimpC}_U(\Gamma') = \text{Optimize}_C(\text{After}_U^{\Gamma'}(\Gamma'))
\]

\[
= \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x, y)) + \text{Cnt}(\exists x \ x \equiv a \land y \equiv b) > 10 \land q(y) \}) \\
= \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x, y)) + \text{Cnt}(y \equiv b) > 10 \land q(y) \}) \\
= \text{Optimize}_C(\{ \neg \text{Cnt}(\exists x \ p(x, y)) + \text{If} \ y \equiv b \ \text{Then 1 Else 0} > 10 \land q(y) \}) \\
= \text{Optimize}_C(\{ \neg y \equiv b \land \text{Cnt}(\exists x \ p(x, y)) + 1 > 10 \land q(y), \neg y \equiv b \land \text{Cnt}(\exists x \ p(x, y)) + 0 > 10 \land q(y) \}) \\
= \{ \neg \text{Cnt}(\exists x \ p(x, b)) > 9 \land q(b) \}.
\]
In the last step, the second constraint is subsumed by \(\Gamma \) and thus eliminated. \(\square \)

Example 10. We propose now an example with a complex update. Let \(e(x, y, z) \) represent employees of a company, where \(x \) is the name, \(y \) the years of service and \(z \) the salary. The company’s policy is expressed by

\[
\Gamma = \{ \leftarrow e(x, y, z) \land z \geq \text{Max}_z(e(x_l, y_l, z_l)) \land y < 5,
\leftarrow e(x, y, z) \land z \geq \text{Max}_z(e(x_l, y_l, z_l)) \land y > 8 \}
\]

i.e., the seniority of the best paid employee must be between 5 and 8 years, and

\[
U = \{ e^+(x, y_2, z) \leftarrow e(x, y_1, z) \land y_2 = y_1 + 1,
\; e^-(x, y, z) \leftarrow e(x, y, z) \}
\]

is the update transaction that is executed at the end of the year to increase the seniority of all employees. Note that the application of After\(^U\) to a literal of the form \(e(x, y, z) \) generates

\[
(e(x, y, z) \land \neg e(x, y, z)) \lor (e(x, y', z) \land y = y' + 1)
\]

in which the first disjunct is logically equivalent to false and, thus, removed by Optimize\(_C\). Similarly, the aggregate expression is transformed by After\(^U\) into

\[
\text{Max}_z(e(x_l, y'_l, z_l)) \land y_1 = y'_l + 1
\]

which is simplified by Optimize\(_C\) into \(\text{Max}_z(e(x_l, y'_l, z_l)) \) and thus coincides, modulo renaming, with the original one in \(\Gamma \). After the optimization steps described above, After\(^U\) (\(\Gamma \)) is transformed into:

\[
\{ \leftarrow e(x, y', z) \land y \geq y' + 1 \land z \geq \text{Max}_z(e(x_l, y_l, z_l)) \land y < 5,
\leftarrow e(x, y', z) \land y \geq y' + 1 \land z \geq \text{Max}_z(e(x_l, y_l, z_l)) \land y > 8 \}.
\]

The arithmetic constraint solver eliminates \(y \) and generates the arithmetic constraint \(y' < 4 \) for the first denial and \(y' > 7 \) for the second one. Then the first denial is subsumed by the first denial in \(\Gamma \) and we finally obtain:

\[
\text{Simp}^U_C(\Gamma) = \{ \leftarrow e(x, y', z) \land z \geq \text{Max}_z(e(x_l, y_l, z_l)) \land y' > 7 \}.
\]

In all the examples shown in this section the results are minimal, i.e., no smaller theory can be found that is also a conditional weakest precondition with respect to the given update. However, as mentioned in section 2.3, it might be impossible in general to determine whether the obtained result is minimal, as this seems to amount to the query containment problem in DATALOG, which is known to be undecidable. Alternatively, one could enumerate all constraint theories smaller in size than the obtained result, as the set of symbols is finite. However, the problem of determining whether a constraint theory is a conditional weakest precondition seems to be undecidable as well. Furthermore, the quality of the simplification produced by Simp\(_C\) is highly dependent on the precision of the constraint solver for arithmetic, which might be unable to reduce
particular combinations of arithmetic constraints. In this respect, we found that the constraint language of constraint handling rules (CHR, [13]) seems to be particularly suitable for an implementation of the solver. Finally we note that the interaction between the solver and the simplification procedure, characterized by the last three rules of definition 11, captures many interesting cases in which arithmetic-based simplifications are possible, even across different constraints in a theory (last rule), but we cannot exclude that more complex cases escape this definition.

4 Related works

As pointed out in section 1, the principle of simplification of integrity constraints is essential for optimizations in database consistency checking. A central quality of any good approach to integrity checking is the ability to verify the consistency of a database to be updated before the execution of the transaction in question, so that inconsistent states are completely avoided. Several approaches to simplification do not comply with this requirement, e.g., [24, 22, 11, 15]. Among these, we mention the resolution-based principle of partial subsumption [2, 15], which is important in semantic query optimization, although its use for simplification of integrity constraints is rather limited, as transactions are only partly allowed. Other methods, e.g., [17], provide pre-tests that, however, are not proven to be necessary conditions; in other words, if the tests fail, nothing can be concluded about the consistency. Qian presented in [26] a powerful simplification procedure that, however, does not allow more than one update action in a transaction to operate on the same relation and has no mechanism corresponding to parameters, thus requiring to execute the procedure for each update. Most works in the field lack a characterization of what it means for a formula to be simplified. Our view is that a transformed integrity constraint, in order to qualify as “simplified”, must represent a minimum (or a good approximation thereof) in some ordering that reflects the effort of actually evaluating it. We propose a simple ordering based on the number of literals but we have no proof that our algorithm reaches a minimum in all cases. Most simplification methods do not allow recursion. The rare exceptions we are aware of (e.g., [22, 21, 3]) hardly provide useful simplified checks: when recursive rules are present, these methods typically output the same constraints as in the input set. None of the methods described so far can handle aggregates and only [3] considers arithmetic constraints.

The constraint solver for finite domains described in [7] and available in current Prolog systems is able to handle the arithmetic part of most of the examples and rules described in this paper (for integers). An implementation of the solver and the rules that characterize its interaction with the simplification procedure is also possible with the language of constraint handling rules [13], which is an extremely versatile tool for constraint programming. For a survey on constraint solvers and constraint logic programming in general we refer to [19].

In [10] Das extends the simplification method of [22] and applies it to aggregates. However, the hypotheses about the consistency of the database prior
to the update is not exploited; consequently, the simplified test can only be a set of instances of the original constraints. In our example 7, for instance, Das’ method would return the initial constraint theory, whereas we were able to conclude that no check was needed. In [8], the authors describe query optimization techniques and complexity results under set and bag semantics and introduce the important bag-set semantics, i.e., the semantics corresponding to the assumption that database relations are sets, but queries may generate duplicates due to projection. This semantics has been used in subsequent work, e.g., [6], to approach problems concerning queries with aggregates, such as query rewriting using views. A definition of the semantics of SQL with aggregates is given in [1], where it is shown how to translate a subset of SQL into relational calculus and algebra and general strategies for query optimization are investigated for such cases. Further investigation on the semantics of aggregates is given in [20, 12, 28]. In [14] it is shown how to optimize, by propagation, queries with maximum and minimum aggregates in a possibly recursive setting. User-defined and on-line aggregates are described in [27] and their use is demonstrated for data mining and other advanced database applications.

5 Conclusion

We presented a set of rewrite rules that can be applied to a set of integrity constraints containing aggregates and arithmetic expressions in order to obtain simplified tests that serve to ensure the consistency of the database before any update is made. Our approach is a first attempt to simplify aggregate expressions in a systematic way producing a necessary and sufficient condition for consistency. The rules we have presented are of practical relevance, as shown in a number of examples, and should be considered as a starting point for possibly more complete and refined simplification procedures. Although not all details were spelled out, we have shown the interaction with a constraint solver to handle combinations of arithmetic constraints. Future directions include, to name a few, the extension to aggregates with recursion and user-defined aggregates.

Acknowledgements

The author wishes to thank Henning Christiansen and Amos Scisci for many helpful comments and suggestions.

References