Calibration of SAR Polarimetric Images by means of a Covariance Matching approach

Alberto Villa, Lorenzo Iannini, Davide Giudici, Andrea Monti-Guarnieri, Stefano Tebaldini

Abstract—In this work, a numerical method optimizer based on Covariance Matching is proposed for SAR polarimetric calibration. The method makes use of the information provided by a Distributed Target and a Corner Reflector in order to jointly estimate the system polarimetric distortion parameters and the Faraday Rotation. A preliminary analysis is conducted to show the expected accuracies and to identify the intrinsic ambiguities of the problem. Results from simulations are shown to assess the accuracy and convergence of the method. Finally, tests have been conducted on stack of repeated full polarimetric ALOS PALSAR images, to check the stability of the retrieved distortion parameters in a realistic case.

Index Terms—Polarimetric calibration, Faraday Rotation, Numerical methods, Covariance Matching.

I. INTRODUCTION

ADAR polarimetry allows the collection of a significant wealth of information, and with respect to single channel SAR sensors, at the expense of a greater system complexity. Polarimetric calibration is a necessary pre-processing step for the correction of distortion interference due to system inaccuracies and atmospheric effects.

The problem can be approached from two different application angles: by a system monitoring viewpoint, when the estimation of system distortion parameters such as cross-talks (CT) and channel imbalances (CI) is targeted, and by an image calibration standpoint, where the efforts are not aimed at retrieving the parameters, rather at removing the joint distortion effect on the data. In either case it is necessary to rely on some reference calibrator. Both the use of Distributed Targets (DT) alone and in combination with one or more calibrators, such as trihedral corner reflectors (CR) and polarimetric active radar calibrators (PARC) have been considered in the literature [1]–[3]. The former solution would appear as the most convenient one, since it avoids the deployment of artificial reflectors. However, the limited amount of information provided by a DT poses relevant challenges for the accurate estimation of the parameters and the use of known point targets is required for complete system monitoring.

Calibration approaches relying exclusively on DT were conceived almost simultaneously with the ones based on calibrated reflectors, and were tested on airborne campaigns in preparation for the SIR-C mission. Sarabandi et al. [4] was one of the first to propose effective DT-based calibration, robust to noise contribution, with the drawback that a good knowledge of the target scattering matrix is required. Quegan proposed in [1] a method exploiting the characteristics of a distributed target, to perform parameter monitoring without the knowledge of the DT scattering matrix. The method was able to provide a full calibration up to a complex factor representing a channel imbalance, which could not be solved. An iterative least squares solution of the problem, based on the initial estimates of the Quegan method, was proposed in [5] to increase the estimation accuracy of the equivalent cross-talk parameters, leading to improvements when the ratio HH/HV is between 5 and 15 dB. A second improvement was presented in [6]. In case of large differences between the noise affecting the polarimetric channels (for example, in case of damages of the sensor electronics), the method provides a refined estimate of the channel imbalance ratio. The use of a DT only appears however inadequate for system monitoring, since single CI cannot be estimated, rather only their ratio, unless the DT scattering values are known.

The influence of the Ionosphere, which can be neglected for airborne systems and high frequency band sensors, poses further challenges for polarimetric calibration. The launch of new satellites at L-band (such as the Argentinian sensor SAOCOM and the Japanese Advanced Land Observing Satellite ALOS II), makes the ionospheric influence retrieval essential to provide a correct calibration [7]. Even if several works have addressed the rotation introduced by Ionosphere (see for example the comparative studies [8], [9]), the joint estimation of system non idealities and Faraday Rotation (FRA) introduced by the Ionosphere is an open point. Several solutions have been proposed, even if limitations are posed by the assumptions done. The possibility to obtain an analytical solution of the system by using a DT only, in the case of symmetric system cross-talks and small FRA values, was presented in [10]. The technique gives consistent results for small, but not null, values of FRA, so that the assumption of the technique is not violated. However, recent studies showed that in modern antenna arrays, the cross-talks cannot be considered as symmetric, with differences reaching up to several dBs (see for example [3], [11]). Moreover, at solar maximum activity, 75% of an L-band satellite orbit is affected by FRA larger than 5° [12]. The use of active calibrators such as PARCs has been investi-

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>Channel Imbalance</td>
</tr>
<tr>
<td>COMET</td>
<td>Covariance Matching Estimation Technique</td>
</tr>
<tr>
<td>CR</td>
<td>Corner Reflector</td>
</tr>
<tr>
<td>CT</td>
<td>Cross-talk</td>
</tr>
<tr>
<td>DT</td>
<td>Distributed Target</td>
</tr>
<tr>
<td>DWP</td>
<td>Distortion Working Point</td>
</tr>
<tr>
<td>FRA</td>
<td>Faraday Rotation Angle</td>
</tr>
<tr>
<td>MNE</td>
<td>Maximum Normalized Error</td>
</tr>
<tr>
<td>PDM</td>
<td>Polarimetric Distortion Matrix</td>
</tr>
<tr>
<td>SCR</td>
<td>Signal to Clutter Ratio</td>
</tr>
</tbody>
</table>

TABLE I
LIST OF ACRONYMS USED IN THE TEXT
gated in several studies (both for high [3] and low frequency [13] systems): transponders offer good quality at the expense of a larger cost of deployment and maintenance. Because of this reason, we focus our attention on the use of CR, which are cheaper, easier to maintain and provide a higher cross-pol isolation. Moreover, a large number of CRs has already been deployed for past missions, and could be eventually re-used for new ones.

Freeman proposed in [14] a technique to estimate channel imbalances and Faraday Rotation. The author recognizes that significant correlations between like- and cross-polarized measurements can be caused by small Faraday rotation angles, which will dominate those caused by cross-talks. The technique [14] assume that cross-talks are low enough to be neglected or already calibrated before FRA estimation. The estimation of both cross-talks and Faraday Rotation was proposed by Touzi and Shimada in [2], where passive corner reflectors were considered, and Shimada in [11], with the use of rain forest plus corner reflectors. In both cases, the ambiguity existent between cross-talks and FRA was solved by assumed that the cross-talks are low enough to be negligible or already calibrated before FRA estimation. The first contribution of this work is the evaluation of the conditioning of the linearized problem, while Section III presents the numerical optimizer based on a Covariance Matching Estimation Technique (COMET) [16] to estimate the distortion parameters. Notice that this requires the stability of amplitude and phase characterizing the system polarimetric distortion contributions.

In conclusion, a large number of techniques stated the difficulty in the joint estimation of cross-talks and Faraday Rotation. However, at the authors best knowledge, little effort has been posed in the possibility to estimate the full polarimetric distortion model through a model analysis. The methods proposed for system monitoring are in general limited by the assumptions done regarding presence/absence of Faraday Rotation or about its value. The first contribution of this work is the evaluation of the conditioning of the linearized model. We identify the ambiguity of the non-linear problem and we provide a model to evaluate the achievable accuracy for each parameter. Once the conditions under which the problem can be solved are found, we propose a numerical optimizer based on a Covariance Matching Estimation Technique (COMET) [16] to estimate the distortion parameters. COMET provides a numerical approach that is optimal in statistical sense, and suited to take advantage of all the information available, like DT, CR etc. It has already been exploited with success in SAR related fields, for example for the polarimetric decomposition of interferometric SAR stacks [17]. The COMET cost function has been considered for detection, since it has been proven that it guarantees results comparable or better than the Generalized Maximum Likelihood Ratio index [16]. The accuracy of the method and the convergence is evaluated on simulated data. Real data from ALOS PALSAR are used to assess the robustness of the approach. The remainder of the paper is as follows. Section II provides a general overview of the polarimetric distortion problem, while Section III presents the numerical optimizer considered in this work. The experiments on simulated and real data are shown in IV and V, and conclusions are drawn in Section VI.

II. THE POLARIMETRIC DISTORTION PROBLEM

The Polarimetric Distortion problem can be illustrated in a first approximation by the following equation [14]:

$$M = A \cdot R \cdot R_F \cdot S \cdot R_F \cdot T + N,$$

where M_{pq} is the measured signal for the polarization pq, A is the radiometric calibration factor, δ_x are the system cross-talks, f_x are the channel imbalances, Ω is the Faraday Rotation Angle and S_{pq} is the target scattering value for the polarization pq. We can write in a compact form:

$$\bar{M} = A \cdot R^T \cdot R_F \cdot S \cdot R_F \cdot T + \bar{N},$$

$$\bar{M} = \begin{bmatrix} M_{HH} & M_{HV} \\ M_{HV} & M_{VV} \end{bmatrix} \bar{S} = \begin{bmatrix} S_{HH} \\ S_{HV} \\ S_{VH} \\ S_{VV} \end{bmatrix} \bar{N} = \begin{bmatrix} N_{HH} \\ N_{HV} \\ N_{VH} \\ N_{VV} \end{bmatrix}$$

we can re-write equation 1 in a more convenient way:

$$\bar{M} = A \cdot H \cdot \bar{S} + \bar{N}$$

where H is the 4×4 Polarimetric Distortion Matrix defined as

$$H(f, \delta, \Omega) = (T^T \otimes R^T) \cdot (R_F^T \otimes R_F),$$

with \otimes representing the Kronecker product.

$$T^T \otimes R^T = \begin{bmatrix} 1 & \delta_2 & \delta_4 & \delta_2 \delta_4 \\ \delta_1 & f_1 & \delta_1 \delta_2 & \delta_1 \delta_4 \delta_2 \delta_4 \\ \delta_3 & \delta_2 \delta_3 & f_2 & \delta_2 \delta_4 \\ \delta_1 \delta_3 & \delta_3 \delta_2 f_1 & \delta_1 f_2 & f_1 f_2 \end{bmatrix}$$
\[
R_r^T \otimes R_F =
\begin{bmatrix}
\cos^2\Omega & \sin\Omega\cos\Omega & -\sin\Omega\cos\Omega & -\sin^2\Omega \\
-\sin\Omega\cos\Omega & \cos^2\Omega & \sin^2\Omega & -\sin\Omega\cos\Omega \\
\sin\Omega\cos\Omega & \sin^2\Omega & \cos^2\Omega & \sin\Omega\cos\Omega \\
-\sin^2\Omega & \sin\Omega\cos\Omega & -\sin\Omega\cos\Omega & \cos^2\Omega
\end{bmatrix}
\]

With regard to the problem cardinality, the overall number of unknowns in the most generic PDM calibration problem amounts to 13. More specifically:
- 4 for the complex channel imbalance parameters
- 8 for the complex cross-talk parameters
- 1 for the real Faraday Rotation Angle

whereas the number of equations depends on the specific site used for the calibration. In the case of a homogeneous Distributed Target (DT), the distortion information can be extracted from the second order statistics of the observation, i.e. the covariance matrix, in order to exploit further information provided by the data. Depending on the a-priori information of the target, a few assumptions have been made about its covariances. The most common ones ([1], [10], [14]) that will be identically adopted in our analysis, are: 1) Reciprocity, \(S_{VH} = S_{HV} \), which is indeed a basic physical property for a monostatic system 2) Reflection symmetry [18], which is proven to be a solid assumption in most conditions (but not for anisotropic scatterers like urban areas) [1], [11].

The covariance of the distorted observation becomes then:
\[
C_M = A^2HC_SC^H + \sigma_N I
\]

where \(H = H(f, \delta, \Omega) \) is the polarimetric distortion matrix, the apex \(H \) stands for Hermitian transpose, \(\sigma_N \) represents the noise contribution and \(C_S \) is the target covariance that can be modelled, by the assumptions made, as follows:
\[
C_S = E[\hat{S}_{DT}\hat{S}_{DT}^H] =
\begin{bmatrix}
\sigma_{hh} & 0 & 0 & \rho^* \\
0 & \sigma_{hv} & \sigma_{vh} & 0 \\
0 & \sigma_{hv} & \sigma_{vh} & 0 \\
\rho & 0 & 0 & \sigma_{vv}
\end{bmatrix}
\]

where \(\sigma_{hh} = C_{hh,hh}, \sigma_{hv} = C_{hv,hv} = C_{vh,vh}, \sigma_{vv} = C_{vv,vv} \) and \(\rho = C_{hh,vv} \). In this case, a total of 16 observables is available (4 real values on the covariance matrix diagonal plus 6 independent out-of-diagonal complex values). However, since \(C_S \) is generally not known in advance, 5 more parameters should be estimated (the real values \(\sigma_{hh}, \sigma_{hv}, \sigma_{vv} \) and the complex value \(\rho \)), leading to a total of 16 observables and 18 unknowns, which represents an ill-posed problem. If the radiometric gain \(A \) is considered, the number of unknowns will sum up to 19. In our analysis, we will always consider the radiometric gain as a parameter to be estimated, since it poses further challenges for the polarimetric calibration which have been seldom approached in the literature.

The use of a target with known scattering matrix, such as a CR can be used to increase the number of measures:
\[
S_{CR} = \sqrt{\sigma_{CR}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

where \(\sigma_{CR} \) is the CR radar cross section, which is known \textit{a priori}. The second order information of the CR can be similarly estimated by resorting to \(C_{CR} = S_{CR}'S_{CR}^H \), where \(S_{CR} \) is the vectorized matrix \(S_{CR} \).

However, it should be noted that even by adding further observables, the problem is expected to be ill-conditioned.

The ambiguity between cross talks + imbalances, and Faraday rotation can be evidenced by rewriting the overall Rx matrix (comprehensive of the \(\delta_1, \delta_2, f_1 \)) as the product of a gain factor, \(k \), a free matrix, and a rotation by an arbitrary angle \(\Omega_a \):
\[
R_r = \begin{bmatrix} 1 & \delta_2 \\ \delta_1 & f_1 \end{bmatrix} = k \begin{bmatrix} 1 & a \\ b & c \end{bmatrix} \begin{bmatrix} \cos \Omega_a & -\sin \Omega_a \\ \sin \Omega_a & \cos \Omega_a \end{bmatrix}
\]

(11)

The second matrix would combine with Faraday rotation getting:
\[
C_r = \begin{bmatrix} 1 & a \\ b & c \end{bmatrix} \begin{bmatrix} \cos \Omega_a & -\sin \Omega_a \\ \sin \Omega_a & \cos \Omega_a \end{bmatrix} = k \begin{bmatrix} 1 & a \\ b & c \end{bmatrix} \begin{bmatrix} \cos (\Omega + \Omega_a) & -\sin (\Omega + \Omega_a) \\ \sin (\Omega + \Omega_a) & \cos (\Omega + \Omega_a) \end{bmatrix}
\]

(12)

Equation (12) proves that an ambiguity exists between Faraday rotation angle and imbalances+cross talks, provided that a complex solution exists for the parameters \(a,b,c \), that represent, respectively the new ambiguous cross-talks and the ambiguous imbalance. That solution can be derived by rewriting (12) as follows:
\[
R_r = k \cdot \cos (\Omega + \Omega_a) \begin{bmatrix} 1 & a \\ b & c \end{bmatrix} \begin{bmatrix} 1 & -t \\ t & 1 \end{bmatrix}
\]

\[
= k_0 \begin{bmatrix} 1 & a \\ b & c \end{bmatrix} \begin{bmatrix} a-t \\ c-bt \\ a+bt \\ c+bt \end{bmatrix}
\]

where \(t = \tan (\Omega + \Omega_a) \) and \(k_0 \) an overall scale term that we ignore, since it can be incorporated in the radiometric gain. The ambiguous CTs and CI would then be the complex solutions of
\[
\delta_2 = \frac{a-t}{1+at} \\
\delta_1 = \frac{b+ct}{1+at} \\
f_1 = \frac{c-bt}{1+at}
\]

These solutions can be shown to exist for \(t \neq 0, t \neq 1/\delta_2, \delta_2 \neq \pm 1 \). In case \(\Omega = 0 \), the first ambiguous cross-talk would be for instance:
\[
a = \frac{t+\delta_2}{1-t\delta_2}
\]

that would be strongly biased even for a slight rotation, \(t \), as \(\delta_2 \) is usually quite small in amplitude. The same argumentation shall be applied to derive the ambiguous CT and CI in the transmission matrix
A. Sensitivity analysis

A theoretical sensitivity analysis has been conducted on the problem so far delineated, to measure the accuracy theoretically achievable by means of numerical optimization. Let us then define \(\mathbf{d} \) as the vector containing the real data of the problem and \(\mathbf{p} \) as the vector containing the model real parameters (see (13) and (14)). For each calibrator set and system distortion setting \(\{ \mathbf{d}_0, \mathbf{p}_0 \} \), the problem well-posedness is investigated by linearizing the system in correspondence of the true values \(\mathbf{p}_0 \), i.e. by computing the Jacobian \(\mathbf{J} \) defined as

\[
\delta \mathbf{d} = \mathbf{J}(\mathbf{p}_0) \cdot \delta \mathbf{p}. \tag{15}
\]

The Singular Value Decomposition (SVD) of the Jacobian provides information about the feasibility of the problem (through the values of the smallest eigenvalues) and the parameters which are affected by ambiguity and estimation problems (with the analysis of the eigenvector components related to the ill-posed eigenvalues). The feasibility of the full system distortion estimation was evaluated for the case of Faraday Rotation not null, to be estimated, with the configuration DT+CR (we already stated that if a DT only is available, the problem is ill-posed). Since the possibility to solve the problem highly depends on the nominal PDM considered, 1,000 tests were run on different Distortion Working Points (DWP), and the average values of the eigenvalues and eigenvectors have been considered (the distortion parameters are randomly chosen in the range of value indicated in Table III). The columns of the matrix model have not been pre-conditioned in order to get the sensitivity of the single parameters to noise. Figure 1 (a) clearly shows that the problem contains an ambiguity, corresponding to the last eigenvalue, the 19th. The eigenvector components have been then represented (each eigenvector has a number of components corresponding to the the number of eigenvalues, that are 19; in case of complex parameters the average between real and imaginary part has been considered) and shown in 1 (b), in a three-dimensional space represented by CI, CT and FRA, and 1 (c-f) in the four bidimensional views.

The last eigenvector component (represented in red) spans the null space, and is clearly visible in the 2D plan CI-FRA. We find confirmation of the ambiguity involving Faraday, CT and, in less measure CI, already identified in (11-12). It can be noticed however that the largest eigenvalues components, in black color, are pointing in Faraday rotation. It means that the parameter is less sensitive to the ambiguity problem with respect to the CT, thanks to the different order of magnitude. An important point to be discussed is whether the knowledge of the FRA rotation may be enough to remove the ambiguity affecting the model. In order to verify it, we performed the same eigenvalues analysis by supposing FRA as a given data and not a parameter to be estimated. The results shown in 1 (a), green line, state that if the FRA is known, the ambiguity is removed, even if some criticality may be posed by the high sensitivity to the noise of the lowest eigenvalues. We investigate then the sensitivity of the problem in the case of known FRA.

Let us consider \(\mathbf{d}_0 \) as the ideal measurement we would have with perfect DT, i.e. infinite number of looks \(N_l \), no clutter on the CR and exact \(\Omega_0 \) information. We then define \(\mathbf{d}(N_l, SCR) \) as the data measurement for finite number of looks \(N_l \), and CR quality specified by its SCR, and \(\mathbf{d}(N_l, SCR, \Delta\Omega) \) as the measurement in presence of an extra Faraday error with respect to the true \(\Omega_0 \), which leads to the deviation \(\Delta\mathbf{d} = \mathbf{d} - \mathbf{d}_0 \). The model uncertainty \(\mathbf{C}_p \) is hence attained by inverting the locally linearized system \(\mathbf{J}_0 \) after data pre-conditioning by the weight matrix \(\mathbf{W}_0 \) according to:

\[
\Delta \mathbf{p} = (\mathbf{J}_0^T \mathbf{W}_0 \mathbf{J}_0)^{-1} \mathbf{J}_0^T \mathbf{W}_0 \cdot \Delta \mathbf{d} = \mathbf{H}_0 \cdot \Delta \mathbf{d} \tag{16}
\]

\[
\mathbf{C}_p = \mathbf{H}_0 \cdot \mathbf{C}_d \cdot \mathbf{H}_0^T \tag{17}
\]

\[
\mathbf{C}_d = \langle \Delta \mathbf{d} \Delta \mathbf{d}^T \rangle \tag{18}
\]

\[
\mathbf{W}_0 = E \left[(\mathbf{d} - \mathbf{d}_0)(\mathbf{d} - \mathbf{d}_0)^T \right] \tag{19}
\]

where \(\mathbf{C}_d \) represents the covariance matrix of the small displacements in the recorded data. While the theoretical \(\mathbf{W}_0 \) is computed through closed-form expressions, \(\mathbf{C}_d \) is empirically evaluated by ensemble averaging of the simulated data. In other words, the weights \(\mathbf{W}_0 \) recall the uncertainty in data measurement that we would expect from our model as a result of a finite \(N_l \), whereas \(\mathbf{C}_d \) is the actual uncertainty in the data, which differs from \(\mathbf{W}_0 \) in case of non-null \(\Delta \Omega \).

The theoretical model sensitivity is attained by perturbing the data of several randomly selected DWPs and by averaging the results. The DWP parameter range and the nominal characteristics of the calibrators adopted are those in Table II. The parameters sensitivity is extracted from the diagonal of \(\mathbf{C}_p \) and allows to understand how the single parameters are influenced by small displacements of the data, i.e., because of noise. For example, following the notations of the equations (14) and (18), the first value of the diagonal provide an estimate of the sensitivity of the absolute gain, the second and third of \(f_1 \) amplitude and phase, the values 3 and 4 provide...
Fig. 1. Eigenvalues and eigenvectors obtained after 1,000 random SVD decompositions (a) Eigenvalues (b) Eigenvectors values for CI, CT, FRA. Each point is associated with the related eigenvector component, whose number is specified by the color. (c) 2D view in the CI-CT plan (d) 2D view in the CT-FRA plan (e) 2D view in the CI-FRA plan (f) 2D view in the distributed target - absolute calibration factor plan
an estimate of the sensitivity of f_2 amplitude and phase, and so on, up to the last value which represents the sensitivity of the Faraday Rotation (in case it has to be estimated) or the imaginary part of the ρ parameter. The results of the analysis are shown in the experimental section and compared to those obtained with the proposed COMET optimizer, as a comparison for correctness of the method.

III. COMET APPROACH FOR POLARIMETRIC CALIBRATION

The use of various numerical optimizers for polarimetric calibration was recently proposed in the literature ([15], [19], [20]). One optimizer not yet proposed, the COMET algorithm, provides a least-squares solution and ensures the asymptotic optimality [16]. For this reason, we propose in this work a COMET-based approach to estimate the polarimetric distortion parameters. COMET is an interesting alternative to maximum likelihood estimators, since it provides similar properties with a generally lower computational cost [21]. In the literature, it was shown that covariance matching approaches are well suited to solve a large number of problems related to signal processing [16], [22].

The first step for the optimization process is represented by the definition of the values of all the parameters indicated by equation (14). Once the parameters are defined, we can compute the matrices H and C_{S}, defined respectively by equations (5) and (9), and consequently estimate the expected covariance C_{inv} for a given distortion parameters configuration, according to the following equation:

$$C_{\text{inv}}(\hat{f}, \hat{\delta}, \hat{\sigma}, \hat{\rho}, \Omega_{\text{est}}) = H(\hat{f}, \hat{\delta}, \Omega_{\text{est}}) \cdot \hat{C}_{S}(\hat{\sigma}, \hat{\rho}) \cdot H^{H}(\hat{f}, \hat{\delta}, \Omega_{\text{est}}) + \sigma_{N} I.$$

The parameters \hat{f}, $\hat{\delta}$, $\hat{\sigma}$, $\hat{\rho}$ represent the estimate of the optimizer, while Ω_{est} is the FRA value externally provided. If the problem is not ambiguous - please refer to Section II for the feasibility study - an exact matching between the expected covariance C_{inv} and the covariance computed from the data is possible only if these parameters are correctly estimated. Following this statement, the error metric considered for the optimizer is given by the following function (we omit the dependencies for notational convenience):

$$e = \| W^{-1/2} \cdot (\hat{C}_{\text{data}} - \hat{C}_{\text{inv}}) \|$$

which takes into account the error between the reconstructed covariance C_{inv} and the measured Sample Covariance Matrix (SCM) C_{data} with the weighting function W, representing the covariance matrix of the SCM elements, expressing the uncertainty due to the limited number of looks in its computation. The weighting function is computed following the formulation of [16]:

$$W = \frac{1}{N} \cdot (C_{\text{data}}^{T} \otimes C_{\text{data}}).$$

The parameter final estimates are then readily obtained by moving towards the e minimum with the use of a Hessian optimizer, i.e. with the formula:

$$\hat{f}, \hat{\delta} = \arg \min_{f, \delta} H(\hat{f}, \hat{\delta}, \Omega_{\text{est}}) \cdot C_{S}(\hat{\sigma}, \hat{\rho}) \cdot W^{-1/2} \cdot (\hat{C}_{\text{data}} - \hat{C}_{\text{inv}}(H, C_{S}))$$

leading to the final output of the numerical optimizer.

The overall scheme of the proposed COMET-based approach is depicted in Fig. 2. The method exploits the information provided by both a DT and a passive CR. Given the input data, the main steps of the method are the following:

- **SCM computation:** firstly, the Sample Covariance Matrix (SCM) of the considered DT is computed. This step is needed to obtain the covariance measures which have to be used for the cost function and the weights computation. Similarly, the contribution of the CR is estimated.
- **Model initialization:** the model is then initialized, by the starting distortion working point (DWP) parameters, for example, those provided by internal calibration. It should be noted that the ambiguity between Faraday Rotation and cross-talk requires the prior knowledge of the FRA or its computation with the assumption of a calibrated image (leading to an approximate FRA value if the assumption is not verified).
- **Cost Function computation:** the cost function is computed by considering equation (21).
- **Distortion Working Parameters (DWP) computation:** the results of the computation are given as input to the numerical optimizer, which iterates until the parameters that minimize the cost function are found, both for the polarimetric distortion and the covariance matrix of the distributed target.
- **Block detection:** a block detection is finally performed. The assumption is that data with wrong results (i.e., not
satisfying the assumptions of the model) will show a high cost function. Therefore, after dividing an image into different blocks and estimating the distortion parameters of each block, the unreliable results (e.g., with cost function higher than a given threshold) are discarded.

The final output is the complete set of polarimetric distortion parameters required.

IV. EXPERIMENTS ON SYNTHETIC DATA

A. Synthetic data set creation

Experiments on data synthetically generated are performed in order to validate the proposed algorithm. Given the input parameters specified in Table II, the procedure to build the synthetic data set is as follows:

- Generation of the data set according to the number of points, backscatter coefficients and co-pol / cross-pol Signal to Noise Ratio.
- Creation of DWP and application to the data. The values are randomly selected in the range specified by Table III.
- Generation of thermal noise and addition to the data set

It should be noted that recent works have shown that the cross-talks can have values lower than those indicated in Table III (see for example [2], [11]). However, several papers in the literature suggest that if the cross-talks have very small values (for example indicated values smaller than -35 dB), they can be neglected, since there is a high probability to have wrong estimations related to noise [14] and -we add- to the Faraday ambiguity itself. In this test we are interested in the investigation of the ability of the numerical optimizer to correctly estimate the cross-talks when they can produce significant changes in the scene. Preliminary tests have shown that when the cross-talks have values smaller than -35 dB, the proposed numerical optimizer estimates very low values of cross-talks gain, confirming the results which will be illustrated in the following.

B. Indexes considered for performance assessment

In order to evaluate the ability of the method to perform a polarimetric calibration two complementary indicators can be considered. From the viewpoint of the system characteristic, each distortion parameter should be evaluated. The metric adopted here is the Root Mean Square Error, evaluated for the gain expressed in dB and the phases expressed in degrees. However, in presence of Faraday Rotation, the distortion matrix is ambiguous, as discussed in Section II. In this case, it would be better to use the Maximum Normalized Error (MNE) [23]:

$$MNE = \sqrt{\lambda_{\text{max}} \cdot \left[A_4^T \cdot \left(H - I \right)^H \cdot \left(H - I \right) \cdot A_4 \right]}$$ \hspace{1cm} (24)

where H represents the polarimetric distortion matrix, I the identity matrix, λ_{max} stands for the largest eigenvalue of the enclosed matrix $[A_4^T \cdot \left(H - I \right)^H \cdot \left(H - I \right) \cdot A_4]$, and A_4 is a binary 4×3 matrix:

$$A_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (25)

This metric is only related to the system characteristics. The index can be conveniently rephrased to compute the worst case error in case of polarimetric distortion by substituting the identity matrix (corresponding to the case where no distortion is present) with the estimated polarimetric distortion matrix, leading to the index adopted in this work:

$$MNE = \sqrt{\lambda_{\text{max}} \cdot \left[A_4^T \cdot \left(H - H_{\text{est}} \right)^H \cdot \left(H - H_{\text{est}} \right) \cdot A_4 \right]}$$ \hspace{1cm} (26)

All the parameters have the same meaning as in (24), the only difference being that the identity matrix I has been substituted by the polarimetric distortion matrix H_{est} estimated.

C. Results

The experiment on synthetic data was performed by considering the information of a DT plus a known point target (a CR). The DT is a rain forest type, and the parameters characterizing it are shown in Table II. The SCR of the CR is set to 26 dB, which appears to be a realistic value for a CR deployed for an L-band satellite. Several Faraday Rotation values tested from 0 to 20 degrees, and for each FRA value 200 experiments with different configurations of polarimetric distortion parameters were tested (in the range of values shown in Table III). The proposed numerical optimizer using the information of a DT+CR (both in case of known FRA or in the case of approximated value with average error of 0.5 degrees) is compared with the results of the sensitivity study presented in Section II. The results are shown in Fig. 3. Several interesting conclusions can be drawn from the first experiment. Firstly, the information provided by a DT plus a CR is able to provide reasonable estimates of the parameters, even with an approximated estimate of the Faraday Rotation. Regarding the system distortion parameters, the use of an approximated value of Faraday Rotation doesn’t affect the estimate of the CI (both in gain and phase). On the other hand, a larger error is noticed for the CT estimates, even if the RMSE is well below 3 dB in amplitude and around 20 degrees in phase, which are
Fig. 3. Parameter estimates RMSE, DT+CR configuration. DT with 10^5 points, SNR = 20 dB co-pol, CR SCR = 26 dB. Magenta: COMET with DT+CR information (continuous line: exact FRA value, dashed line: FRA error = 0.5 degrees). Black: sensitivity analysis (continuous line: exact FRA value, dashed line: FRA error = 0.5 degrees). CI = channel imbalances, CT = cross-talks, FRA = Faraday Rotation Angle.

Fig. 4. Parameter estimates RMSE, DT+CR. (a) FRA = 0 degrees. (b) FRA = 5 degree. Magenta: COMET with DT+CR information (continuous line: exact FRA value, dashed line: FRA error = 0.5 degrees). Black: sensitivity analysis (continuous line: exact FRA value, dashed line: FRA error = 0.5 degrees). CI = channel imbalances, CT = cross-talks.

fair results for the CT values. The larger error is caused by the ambiguity previously shown in Figure 1.

The second test is devoted to the assessment of the importance of the quality of the CR for the parameters estimation. The influence of noise on the achievable results has been tested by considering several values of Signal to Clutter ratio between 10 and 30 dB (with a fix Signal to Noise ratio of 20 dB for the co-pol channels of the DT). The results are shown in Fig. 4 for two different values of Faraday Rotation, 0 degree and 5 degrees. The average value for each system polarimetric distortion parameter is shown (i.e., cross-talks gain and phase). The results confirm the study performed with the sensitivity analysis: the channel imbalances estimation does not suffer from an approximated value of Faraday Rotation in the order of 0.5 degrees, while the cross-talks are much more sensitive. However, even in case of low SCR, the CT estimates show...
reasonable errors. In case of FRA = 5 degrees the maximum error is 4 dB, while in case of null FRA the maximum error is 2 dB. The results obtained by the optimizer tend to the optimal value indicated by the sensitivity study, with very small bias caused by small differences caused mainly by the non-ideality in the DT weights in (22), which is based on the perturbed data, and by convergence issues of the numerical solve, confirming therefore the ability of the proposed approach to obtain the best solution. Finally, the quality of the calibration is analyzed through the MNE. The results are shown in Fig. 5. As for the CI and CT, the MNE largely depends on the quality of the CR which is considered. In case of good quality CR, the MNE is almost constant independently of the FRA value. It is important to notice that, no matter of the FRA and SCR, an error in the FRA value externally provided to the optimizer does not lead to a worsening of the MNE value, since the retrieved PDM is the same in both cases. As a summary of this section, we can conclude that when the problem is well conditioned, the proposed method is able to retrieve the best solution, as stated by the comparison with the sensitivity study results. An error of 0.5 degrees in the FRA externally provided (which is a reasonable accuracy expected from FRA estimation) leads to a decrease of the CT accuracy but does not affect the CI retrieval. Moreover, we can conclude that, when trying to estimate the PDM rather than each distortion parameter, it is not necessary to know the exact value of Faraday Rotation, since the MNE values obtained in the case of approximated FRA are the same as those obtained with the exact value.

D. Algorithm convergence

We investigate the ability of the numerical optimizer to solve the calibration problem, given different starting point errors for the parameters. The value of the Faraday Rotation is fixed in order to obtain a univocal solution, and no noise is considered. Please notice that the test is devoted to the investigation of the convergence of the algorithm (i.e., if the algorithm is able to retrieve the solution, when the problem is well conditioned) and not the performances in case of noise or FRA retrieval error. Because of this reason, we have considered the FRA value as known a priori, so that a unique solution exists. The test setup is the following: the system polarimetric distortion parameters were randomly chosen in the range shown in Table III, for a total of 1000 simulations, so that a large number of different configurations can be tested. Different values of starting point errors have been tested for the parameters, with the assumption that the starting error of all the parameters is proportional. The reason for this assumption is to ensure the independence of the parameters retrieval: i.e., if the optimizer will receive in input a cross-talk with very low starting error and channel imbalances with very large errors, it will likely produce a wrong estimation of the cross-talks, due to the different conditions of the PDM. However, this error should not be related to the initial cross-talk starting error, rather to the whole PDM starting error. The test is conducted by considering a DT plus a CR. The results in Fig. 6 show that the algorithm is robust, providing a correct estimate even in the case of very large initial errors. All the parameters which have to be optimized converge to the final solution independently of the starting point.

E. Result detection

In order to verify the reliability of the obtained solution, a detection must be performed. The detection aims at finding a parameter related to the quality of the solution and defining a threshold for the parameter. If the detection parameter is larger than the defined threshold, the solution is considered as unreliable.

Ottersen proposed for the COMET approach a detection technique based on the optimized cost value, which has proven to be robust when compared to other indicators as the well-known Generalized-Likelihood Ratio [16]. Figure 7 (a) shows the relationship between the final cost value and the MNE, obtained from the all the experiments conducted on the synthetic data (based on the verified assumption that similar cost values correspond to similar MNE value, independently of the experiment). The direct relationship between these two quantities is clear, confirming that a low cost function provides a lower MNE solution, and stating therefore the suitability of the cost value to be used for result detection.

Fig. 5. Maximum normalized error. Left: SCR = 26 dB. Center: FRA = 0 degree. Right: FRA = 5 degrees. COMET with DT+CR information (black line: exact FRA value, magenta line: FRA error = 0.5 degrees).
The second point to be addressed is the selection of a reasonable threshold E_{th} to define which solutions can be considered as reliable, according to the relation
\[
e \lesssim_{H_1} E_{th},
\]
where E_{th} the threshold indicating if a solution is acceptable or not, H_1 the case of an acceptable solution (cost value smaller than selected threshold) and H_0 the case of a solution to be rejected (cost value larger than selected threshold).

To select a proper threshold for the solution detection, we build the theoretical relationship between the MNE and the COMET cost function by considering different values of channel imbalances.

Based on the results exposed in [23], the MNE suggested for a good calibration corresponds to -20 dB. This result is equivalent to 0.3 dB of residual channel imbalances gain and 2 degrees of phase (as stated in [23]). To define a proper threshold for detection, we build the probability of good calibration for a given cost, considering a data set well calibrated if the resulting MNE is lower than -20 dB. Figure 7 (b) shows the results obtained for different cost values. For example, for a probability of good calibration larger than 80%, the cost value for the detection should be lower than 500.

V. EXPERIMENTS ON REAL DATA

The final experiment is conducted on a real data set, acquired by the L-band satellite PALSAR. The stack includes 11 full-polarimetric level 1.1 images acquired between 2006 and 2010. The data were acquired over the area around Munich, and contain both urban areas and agricultural fields. Full polarimetric products PALSAR products (i.e. PLR L1.1 and PLR L1.5 products) are provided with cross-talk and channel imbalance corrected, while Faraday Rotation is not removed. The stability of the methodology is therefore investigated in this test. Since no CR or other known targets are present in the image, the full set of parameters cannot be estimated. The values of two cross-talks are set to the values obtained with the technique [10] (which are in the order of -40 dB), so
that the algorithm is able to retrieve without ambiguities the remaining parameters by considering a DT only. Each scene is divided into 552 blocks (46 azimuth times 12 range blocks, each of dimension 400 x 100 pixels), and the optimizer is run on each single block. As it can be seen from Figure 8, the areas not occupied by a DT (i.e., the center-left urban areas), show higher values of cross-talks, since the assumptions of the model are not verified. This problem is reflected in a higher COMET cost obtained at the end of the optimization.

Figure 9 shows the bidimensional histograms relating the cross-talks gains with the COMET cost. It can be noticed that low cost values (corresponding to a good optimization index) correspond to very low cross-talk values and a lower estimate dispersion. As previously stated in [16], we have verified also that the Generalized Likelihood ratio leads to similar conclusions, and therefore we have adopted the COMET cost function as a detection. Looking at fig. 9, the value of 200 appears to be a reasonable threshold for the parameters detection. The average results of the parameters estimated for each image after the detection are shown in Figure 10. It can be noticed that, as expected, the cross-talks are below -40 dB in all the cases. The channel imbalance values are close to one while the phases show small variations around zero degrees. The differences with respect to the calibrated conditions (channel imbalances equal to one with null phase) are expected to be caused by a misalignment between the
nominal polarimetric correction factor used by the processor to calibrate the data and the real values of the sensor.

VI. CONCLUSION

The problem of polarimetric data calibration and system monitoring for retrieval of distortion parameters has been investigated in this paper. The retrieval of distortion parameters from fully polarimetric data has been first discussed from a theoretical point of view and then approached by an innovative numeric method, based on the statistically optimal covariance matching. The ambiguity affecting the distortion parameters has been completely identified in the non-linear problem, and confirmed by the systematic eigenvalues analysis of the forward problem, based on linearization for ten thousands different working points. The ambiguity, involving Faraday rotation and cross talks, and in lower measure channel imbalances, cannot be solved but by assuming a-priori information. The following conclusions can be drawn:

- The ambiguity is not relevant as for calibration, but prevents a proper monitoring of the acquisition parameters, say CT cannot be univocally estimated from data, unless specific configurations are given (like for symmetric CT, or known FRA).
- Faraday rotation is less affected by the ambiguity wrt cross-talks thanks to the different order of magnitude, as shown by the first eigenvector whose associated eigenvalue is better than all the others. On the other hand, the slightest uncertainty in FRA completely jeopardizes the estimate of CT.
- Cross-talks and channel imbalances can be estimated, from distributed target and corner reflector, with a sensitivity that is 8-10 dB lower.

The theoretical analysis clearly determined the need for robust a-priori information to remove the ambiguity of the problem. Consequently, the sensitivity of the estimation of each element of the PDM has then been derived in some conditions of interest, where the ambiguity has been removed. A novel numerical method, based on covariance matching, was proposed to estimate the PDM, and then perform polarimetric calibration. The method has proven to be robust and converging with all the starting points usually assumed. The method does not need any approximation about Faraday rotations (small/large), and has an accuracy that compares with the theoretical sensitivity derived from the linearized analysis. The stability of measures, verified on real data, has been found consistent with the results obtained with the analysis of synthetic data.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Prof. Fabio Rocca for the contribution to the work, in particular for the fruitful discussions on the model conditioning and sensitivity. They would also like to thank the reviewers for comments which led us to better investigate the theoretical analysis of the problem.

REFERENCES