
A Practical Introduction to Data

Structures and Algorithm Analysis -

JAVA Edition

slides derived from material
by Cli�ord A. Sha�er

1

The Need for Data Structures
[A primary concern of this course is e�ciency.]

Data structures organize data
) more e�cient programs . [You might

believe that faster computers make it unnecessary to be

concerned with e�ciency. However...]

� More powerful computers) more complex
applications.

� YET More complex applications demand
more calculations.

� Complex computing tasks are unlike our
everyday experience. [So we need special

training]

Any organization for a collection of records can
be searched, processed in any order, or
modi�ed. [If you are willing to pay enough in time delay.

Ex: Simple unordered array of records.]

� The choice of data structure and algorithm
can make the di�erence between a program
running in a few seconds or many days.

2

E�ciency

A solution is said to be e�cient if it solves the
problem within its resource constraints . [Alt:

Better than known alternatives (\relatively" e�cient)]

� space [These are typical contraints for programs]

� time
[This does not mean always strive for the most e�cient

program. If the program operates well within resource

constraints, there is no bene�t to making it faster or smaller.]

The cost of a solution is the amount of
resources that the solution consumes.

3

Selecting a Data Structure

Select a data structure as follows:

1. Analyze the problem to determine the
resource constraints a solution must meet.

2. Determine the basic operations that must
be supported. Quantify the resource
constraints for each operation.

3. Select the data structure that best meets
these requirements.

[Typically want the \simplest" data struture that will meet

requirements.]

Some questions to ask: [These questions often help

to narrow the possibilities]

� Are all data inserted into the data structure
at the beginning, or are insertions
interspersed with other operations?

� Can data be deleted? [If so, a more complex

representation is typically required]

� Are all data processed in some well-de�ned
order, or is random access allowed?

4

Data Structure Philosophy

Each data structure has costs and bene�ts.

Rarely is one data structure better than
another in all situations.

A data structure requires:

� space for each data item it stores, [Data +

Overhead]

� time to perform each basic operation,

� programming e�ort. [Some data

structures/algorithms more complicated than others]

Each problem has constraints on available
space and time.

Only after a careful analysis of problem
characteristics can we know the best data
structure for the task.

Bank example:

� Start account: a few minutes

� Transactions: a few seconds

� Close account: overnight

5

Goals of this Course

1. Reinforce the concept that there are costs
and bene�ts for every data structure. [A

worldview to adopt]

2. Learn the commonly used data structures.
These form a programmer's basic data
structure \toolkit." [The \nuts and bolts" of the

course]

3. Understand how to measure the
e�ectiveness of a data structure or
program.
� These techniques also allow you to judge

the merits of new data structures that
you or others might invent. [To prepare

you for the future]

6

De�nitions

A type is a set of values.

[Ex: Integer, Boolean, Float]

A data type is a type and a collection of
operations that manipulate the type.

[Ex: Addition]

A data item or element is a piece of
information or a record.

[Physical instantiation]

A data item is said to be a member of a data
type.

[]

A simple data item contains no subparts.

[Ex: Integer]

An aggregate data item may contain several
pieces of information.

[Ex: Payroll record, city database record]

7

Abstract Data Types

Abstract Data Type (ADT): a de�nition for a
data type solely in terms of a set of values and
a set of operations on that data type.

Each ADT operation is de�ned by its inputs
and outputs.

Encapsulation : hide implementation details

A data structure is the physical
implementation of an ADT.

� Each operation associated with the ADT is
implemented by one or more subroutines in
the implementation.

Data structure usually refers to an
organization for data in main memory.

File structure : an organization for data on
peripheral storage, such as a disk drive or tape.

An ADT manages complexity through
abstraction: metaphor . [Hierarchies of labels]

[Ex: transistors ! gates ! CPU. In a program, implement an

ADT, then think only about the ADT, not its implementation]

8

Logical vs. Physical Form

Data items have both a logical and a physical
form.

Logical form: de�nition of the data item within
an ADT. [Ex: Integers in mathematical sense: + , �]

Physical form: implementation of the data item
within a data structure. [16/32 bit integers: overow]

{ Sub routines

Data T yp e

ADT:

� T yp e

� Op erations

Data Items:

Logical F o rm

Physical F o rm

Data Items:

Data Structure:

{ Sto rage Space

[In this class, we frequently move above and below \the line"

separating logical and physical forms.]

9

Problems

Problem : a task to be performed.

� Best thought of as inputs and matching
outputs.

� Problem de�nition should include
constraints on the resources that may be
consumed by any acceptable solution. [But

NO constraints on HOW the problem is solved]

Problems , mathematical functions

� A function is a matching between inputs
(the domain) and outputs (the range).

� An input to a function may be single
number, or a collection of information.

� The values making up an input are called
the parameters of the function.

� A particular input must always result in the
same output every time the function is
computed.

10

Algorithms and Programs

Algorithm : a method or a process followed to
solve a problem. [A recipe]

An algorithm takes the input to a problem
(function) and transforms it to the output. [A

mapping of input to output]

A problem can have many algorithms.

An algorithm possesses the following properties:

1. It must be correct . [Computes proper function]

2. It must be composed of a series of
concrete steps . [Executable by that machine]

3. There can be no ambiguity as to which
step will be performed next.

4. It must be composed of a �nite number of
steps.

5. It must terminate .

A computer program is an instance, or
concrete representation, for an algorithm in
some programming language.

[We frequently interchange use of \algorithm" and \program"

though they are actually di�erent concepts]

11

Mathematical Background
[Look over Chapter 2, read as needed depending on your

familiarity with this material.]

Set concepts and notation [Set has no duplicates,

sequence may]

Recursion

Induction proofs

Logarithms [Almost always use log to base 2. That is our

default base.]

Summations

12

Algorithm E�ciency

There are often many approaches (algorithms)
to solve a problem. How do we choose between
them?

At the heart of computer program design are
two (sometimes conicting) goals:

1. To design an algorithm that is easy to
understand, code and debug.

2. To design an algorithm that makes e�cient
use of the computer's resources.

Goal (1) is the concern of Software
Engineering.

Goal (2) is the concern of data structures and
algorithm analysis.

When goal (2) is important, how do we
measure an algorithm's cost?

13

How to Measure E�ciency?

1. Empirical comparison (run programs).

[Di�cult to do \fairly." Time consuming.]

2. Asymptotic Algorithm Analysis.

Critical resources:

� Time

� Space (disk, RAM)

� Programmer's e�ort

� Ease of use (user's e�ort).

Factors a�ecting running time:

� Machine load

� OS

� Compiler

� Problem size or Speci�c input values for
given problem size

For most algorithms, running time depends on
\size" of the input.

Running time is expressed as T (n) for some
function T on input size n.

14

Examples of Growth Rate

Example 1: [As n grows, how does T (n) grow?]

static int largest(int[] array) { // Find largest val
// all values >=0

int currLargest = 0; // Store largest val
for (int i=0; i<array.length; i++) // For each elem
if (array[i] > currLargest) // if largest

currLargest = array[i]; // remember it
return currLargest; // Return largest val

}

[Cost: T (n) = c1n + c2 steps]

Example 2: Assignment statement [Constant cost]

Example 3:

sum = 0;
for (i=1; i<=n; i++)

for (j=1; j<=n; j++)
sum++;

[Cost: T (n) = c1n2 + c2 Roughly n2 steps, with sum being n2 at

the end. Ignore various overhead such as loop counter

increments.]

15

Growth Rate Graph
[2n is an exponential algorithm. 10n and 20n di�er only by a

constant.]

0

100

200

300

400

10 n

20 n

2 n

2

5 n log n

2

n

0 5 10 15

0

10 20 30 40 50

Input size n

10 n

20 n

5 n log n2 n

2

2

n

0

200

400

600

800

1000

1200

1400

16

Important facts to remember

� for any integer constants a; b > 1 na grows
faster than log bn

[any polynomial is worse than any power of any

logarithm]

� for any integer constants a; b > 1 na grows
faster than log nb

[any polynomial is worse than any logarithm of any

power]

� for any integer constants a; b > 1 an grows
faster than nb

[any exponential is worse than any polynomial]

17

Best, Worst and Average Cases

Not all inputs of a given size take the same
time.

Sequential search for K in an array of n
integers:

� Begin at �rst element in array and look at
each element in turn until K is found.

Best Case: [Find at �rst position: 1 compare]

Worst Case: [Find at last position: n compares]

Average Case: [(n + 1) =2 compares]

While average time seems to be the fairest
measure, it may be di�cult to determine.

[Depends on distribution. Assumption for above analysis:

Equally likely at any position.]

When is worst case time important?

[algorithms for time-critical systems]

18

Faster Computer or Algorithm?

What happens when we buy a computer 10
times faster? [How much speedup? 10 times. More

important: How much increase in problem size for same time?

Depends on growth rate.]

T (n) n n0 Change n0=n
10n 1; 000 10 ; 000 n0= 10 n 10
20n 500 5; 000 n0= 10 n 10
5n log n 250 1; 842

p
10n<n 0< 10n 7:37

2n2 70 223 n0=
p

10n 3:16
2n 13 16 n0= n + 3 ��

[For n2 , if n = 1000 , then n0 would be 1003]

n: Size of input that can be processed in one
hour (10,000 steps).

n0: Size of input that can be processed in one
hour on the new machine (100,000 steps).

[Compare T (n) = n2 to T (n) = n log n. For n > 58 , it is faster to

have the �(n log n) algorithm than to have a computer that is

10 times faster.]

19

Asymptotic Analysis: Big-oh

De�nition: For T (n) a non-negatively valued
function, T (n) is in the set O(f (n)) if there
exist two positive constants c and n0 such that
T (n) � cf (n) for all n > n 0.

Usage: The algorithm is in O(n2) in [best,
average, worst] case.
Meaning: For all data sets big enough (i.e.,
n > n 0), the algorithm always executes in less
than cf (n) steps [in best, average or worst
case].

[Must pick one of these to complete the statement. Big-oh

notation applies to some set of inputs.]

Upper Bound.

Example: if T (n) = 3 n2 then T (n) is in O(n2).

Wish tightest upper bound:
While T (n) = 3 n2 is in O(n3), we prefer O(n2).

[It provides more information to say O(n2) than O(n3)]

20

Big-oh Example

Example 1. Finding value X in an array. [Average

case]

T (n) = csn=2. [cs is a constant. Actual value is irrelevant]

For all values of n > 1, csn=2 � csn.
Therefore, by the de�nition, T (n) is in O(n) for
n0 = 1 and c = cs.

Example 2. T (n) = c1n2 + c2n in average case

c1n2 + c2n � c1n2 + c2n2 � (c1 + c2) n2 for all
n > 1.

T (n) � cn2 for c = c1 + c2 and n0 = 1.

Therefore, T (n) is in O(n2) by the de�nition.

Example 3: T (n) = c. We say this is in O(1).
[Rather than O(c)]

21

Big-Omega

De�nition: For T (n) a non-negatively valued
function, T (n) is in the set
(g(n)) if there
exist two positive constants c and n0 such that
T (n) � cg(n) for all n > n 0.

Meaning: For all data sets big enough (i.e.,
n > n 0), the algorithm always executes in more
than cg(n) steps.

Lower Bound.

Example: T (n) = c1n2 + c2n.

c1n2 + c2n � c1n2 for all n > 1.
T (n) � cn2 for c = c1 and n0 = 1.

Therefore, T (n) is in
(n2) by the de�nition.

Want greatest lower bound.

22

Theta Notation

When big-Oh and
 meet, we indicate this by
using � (big-Theta) notation.

De�nition: An algorithm is said to be �(h(n))
if it is in O(h(n)) and it is in
(h(n)).

[For polynomial equations on T (n) , we always have � . There

is no uncertainty, a \complete" analysis.]

Simplifying Rules:

1. If f (n) is in O(g(n)) and g(n) is in O(h(n)),
then f (n) is in O(h(n)).

2. If f (n) is in O(kg(n)) for any constant
k > 0, then f (n) is in O(g(n)). [No constant]

3. If f 1(n) is in O(g1(n)) and f 2(n) is in
O(g2(n)), then (f 1 + f 2)(n) is in
O(max(g1(n), g2(n))). [Drop low order terms]

4. If f 1(n) is in O(g1(n)) and f 2(n) is in
O(g2(n)) then f 1(n) f 2(n) is in
O(g1(n) g2(n)). [Loops]

23

Running Time of a Program
[Asymptotic analysis is de�ned for equations. Need to convert

program to an equation.]

Example 1: a = b;

This assignment takes constant time, so it is
�(1). [Not �(c) { notation by tradition]

Example 2:

sum = 0;
for (i=1; i<=n; i++)

sum += n;

[�(n) (even though sum is n2)]

Example 3:

sum = 0;
for (j=1; j<=n; j++) // First for loop

for (i=1; i<=j; i++) // is a double loop
sum++;

for (k=0; k<n; k++) // Second for loop
A[k] = k;

[First statement is �(1) . Double for loop is
P

i = �(n2) . Final

for loop is �(n) . Result: �(n2) .]

24

More Examples

Example 4.

sum1 = 0;
for (i=1; i<=n; i++) // First double loop

for (j=1; j<=n; j++) // do n times
sum1++;

sum2 = 0;
for (i=1; i<=n; i++) // Second double loop

for (j=1; j<=i; j++) // do i times
sum2++;

[First loop, sum is n2 . Second loop, sum is (n + 1)(n) =2. Both

are �(n2) .]

Example 5.

sum1 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=n; j++)
sum1++;

sum2 = 0;
for (k=1; k<=n; k*=2)

for (j=1; j<=k; j++)
sum2++;

[First is
P log n

k=1
n = �(n log n) . Second is

P log n� 1
k=0

2k = �(n) .]

25

Binary Search

40Key

P osition 0 2 3 4 5 6 7 8

26 29 36

10 11 12 13 14 15

11 13 21 41 45 51 54

1

56 65 72 77

9

83

static int binary(int K, int[] array,
int left, int right) {

// Return position in array (if any) with value K
int l = left-1;
int r = right+1; // l and r are beyond array bounds

// to consider all array elements
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Look at middle of subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

invocation of binary
int pos = binary(43, ar, 0, 15);

Analysis: How many elements can be examined
in the worst case? [�(log n)]

26

Other Control Statements

while loop: analyze like a for loop.

if statement: Take greater complexity of
then/else clauses.

[If probabilities are independent of n.]

switch statement: Take complexity of most
expensive case.

[If probabilities are independent of n.]

Subroutine call: Complexity of the subroutine.

27

Analyzing Problems

Use same techniques to analyze problems, i.e.
any possible algorithm for a given problem
(e.g., sorting)

Upper bound: Upper bound of best known
algorithm.

Lower bound: Lower bound for every possible
algorithm .

[The examples so far have been easy in that exact equations

always yield � . Thus, it was hard to distinguish
 and O.

Following example should help to explain the di�erence {

bounds are used to describe our level of uncertainty about an

algorithm.]

Example: Sorting

1. Cost of I/O:
(n)

2. Bubble or insertion sort: O(n2)

3. A better sort (Quicksort, Mergesort,
Heapsort, etc.): O(n log n)

4. We prove later that sorting is
(n log n)

28

Multiple Parameters
[Ex: 256 colors (8 bits), 1000 � 1000 pixels]

Compute the rank ordering for all C (256) pixel
values in a picture of P pixels.

for (i=0; i<C; i++) // Initialize count
count[i] = 0;

for (i=0; i<P; i++) // Look at all of the pixels
count[value(i)]++; // Increment proper value count

sort(count); // Sort pixel value counts

If we use P as the measure, then time is
�(P log P).

But this is wrong because we sort colors
More accurate is �(P + C log C).
If C << P , P could overcome C log C

29

Space Bounds

Space bounds can also be analyzed with
asymptotic complexity analysis.

Time: Algorithm
Space: Data Structure

Space/Time Tradeo� Principle:
One can often achieve a reduction in time is
one is willing to sacri�ce space, or vice versa.

� Encoding or packing information
Boolean ags

� Table lookup
Factorials

Disk Based Space/Time Tradeo� Principle:
The smaller you can make your disk storage
requirements, the faster your program will run.
(because access to disk is typically more costly
than "any" computation)

30

Algorithm Design methods:

Divide et impera

Decompose a problem of size n into (one or
more) problems of size m < n

Solve subproblems, if reduced size is not
"trivial", in the same manner, possibly
combining solutions of the subproblems to
obtain the solution of the original one ...

... until size becomes "small enough" (typically
1 or 2) to solve the problem directly (without
decomposition)

Complexity can be typically analyzed by means
of recurrence equations

31

Recurrence Equations(1)

we have already seen the following

T(n) = aT(n=b)+ cnk , for n > 1
T(1) = d,

Solution of the recurrence depends on the ratio
r = bk=a

T(n) = �(n log ba), if a > b k

T(n) = �(nk log n), if a = bk

T(n) = �(nk), if a < b k

Complexity depends on

� relation between a and b, i.e., whether all
subproblems need to be solved or only some
do

� value of k, i.e., amount of additional work
to be done to partition into subproblems
and combine solutions

32

Recurrence Equations(2)

Examples

� a = 1 ; b = 2 (two halves, solve only one),
k = 0 (constant partition+combination
overhead): e.g., Binary search: T(n) =
�(log n) (extremely e�cient!)

� a = b = 2 (two halves) and (k=1)
(partitioning+combination �(n)) T(n) =
�(n log n); e.g., Mergesort;

� a = b (partition data and solve for all
partitions) and k = 0 (constant
partition+combining) T(n) = �(n log ba) =
�(n), same as linear/sequential processing
(E.g., �nding the max/min element in an
array)

Now we'll see

1. max/min search as an example of linear
complexity

2. other kinds of recurrence equations
� T(n)=T(n � 1)+ n leads to quadratic

complexity: example bubblesort;
� T(n)= aT(n � 1)+ k leads to exponential

complexity: example Towers of Hanoi

33

MaxMin search(1)

"Obvious" method: sequential search

public class MinMaxPair {
public int min;
public int max;

}

public static MinMaxPair minMax (float [] a) {
//guess a[0] as min and max
MaxMinPair p = new MaxMinPair(); p.min = p.max = 0;
// search in the remaining part of the array
for (int i = 1; i<a.length; i++) {

if (a[i]<a[p.min]) p.min = i;
if (a[i]>a[p.max]) p.max = i;

}
return p;

}

Complexity is T(n)=2(n � 1)=�(n)

Divide et impera approach: split array in two,
�nd MinMax of each, choose overall min among
the two mins and max among the two maxs

34

MaxMin search(2)

public static MinMaxPair minMax (float [] a,
int l, int r) {

MaxMinPair p = new MinMaxPair();
if(l==r) {p.min = p.max = r; return p;}
if (l==r-1) {

if (a[l]<a[r]) {
p.min=l; p.max=r;

}
else {
p.min=r; p.max=l;
}
return p;

}
int m = (l+r)/2;
MinMaxPair p1 = minMax(a, l, m);
MinMaxPair p2 = minMax(a, m+1, r);
if (a[p1.min]<a[p2.min]) p.min=p1.min else p.min=p2.min ;
if (a[p1.max]>a[p2.max]) p.max=p1.max else p.max=p2.max ;
return p;

}

Asymptotic complexity analyzable by means of
recurrence
T(n) = aT(n=b)+ cnk , for n > 1
T(1) = d,

We have a = b and k = 0 hence T(n) = �(n),
apparently no improvement: we need a more
precise analysis

35

MaxMin search(3)
16

88

4 4 4 4

2 2 2 2 2 2 2 2

of elements
of the array slice depth of the

recursion

Assume for simplicity n is a power of 2. Here is
the tree of recursive calls for n = 16. There are

� n=2 leaf nodes, each of which takes 1
comparison

� n=2 � 1 internal nodes each of which takes
2 comparison

� hence #comparisons =
2(n=2 � 1) + n=2 = (3 =2) n � 2, a 25%
improvement wrt linear search

36

bubblesort as a

divide et impera algorithm

To sort an array of n element, put the smallest
element in �rst position, then sort the
remaining part of the array.

Putting the smallest element to �rst position
requires an array traversal (�(n) complexity)

static void bubsort(Elem[] array) { // Bubble Sort
for (int i=0; i<array.length-1; i++) // Bubble up

//take i-th smallest to i-th place
for (int j=array.length-1; j>i; j--)

if (array[j].key() < array[j-1].key())
DSutil.swap(array, j, j-1);

}

15

i=0 1 2 3 4 5 6

42

20

17

13

28

14

23

13

42

20

17

14

28

15

13

14

42

20

17

15

28

23

13

14

20

42

15

17

23

28

13

14

15

20

42

17

23

28

13

14

15

17

20

42

23

28

13

14

15

17

20

23

42

13

14

15

17

20

23

28

4223 28

37

Towers of Hanoi

Move stack of rings form one pole to another,
with following constraints

� move one ring at a time

� never place a ring on top of a smaller one

Divide et impera approach: move stack of n � 1
smaller rings on third pole as a support, then
move largest ring, then move stack of n � 1
smaller rings from support pole to destination
pole using start pole as a support

static void TOH(int n,
Pole start, Pole goal, Pole temp) {

if (n==1) System.out.println("move ring from pole " +
+ start + " to pole " + goal);

else {
TOH(n-1, start, temp, goal);
System.out.println("move ring from pole " +

+ start + " to pole " + goal);
TOH(n-1, temp, goal, start);

}
}

Time complexity as a function of the size n of
the ring stack: T(n)=2 n-1

38

Exponential complexity

of Towers of Hanoi

Recurrence equation is T(n)=2T(n � 1)+1 for
n > 1, and T(1)=1.

A special case of the more general recurrence
T(n)= aT(n � 1)+ k, for n > 1, and T(1)= k.

It is easy to show that the solution is
T(n)= k

P n� 1
i =0 ai hence T(n)=�(an)

Why? A simple proof by induction.

Base: T(1)= k= k
P 0

i =0 ai

Induction:

T(n + 1)= aT(n)+ k=

= ak
P n� 1

i =0 ai + k = k
P n

i =1 ai + k = k
P n

i =0 ai =

= k
P (n+1) � 1

i =0 ai

In the case of Towers of Hanoi a = 2 ; k = 1,
hence T(n)=

P n� 1
i =0 2 i = 2 n-1

39

Lists
[Students should already be familiar with lists. Objectives: u se

alg analysis in familiar context, compare implementations.]

A list is a �nite, ordered sequence of data
items called elements .

[The positions are ordered, NOT the values.]

Each list element has a data type.

The empty list contains no elements.

The length of the list is the number of
elements currently stored.

The beginning of the list is called the head ,
the end of the list is called the tail .

Sorted lists have their elements positioned in
ascending order of value, while unsorted lists
have no necessary relationship between element
values and positions.

Notation: (a0; a1; :::; an� 1)

What operations should we implement?

[Add/delete elem anywhere, �nd, next, prev, test for empty.]

40

List ADT

interface List { // List ADT
public void clear(); // Remove all Objects
public void insert(Object item); // Insert at curr pos
public void append(Object item); // Insert at tail
public Object remove(); // Remove/return curr
public void setFirst(); // Set to first pos
public void next(); // Move to next pos
public void prev(); // Move to prev pos
public int length(); // Return curr length
public void setPos(int pos); // Set curr position
public void setValue(Object val); // Set current value
public Object currValue(); // Return curr value
public boolean isEmpty(); // True if empty list
public boolean isInList(); // True if curr in list
public void print(); // Print all elements
} // interface List

[This is an example of a Java interface. Any Java class using

this interface must implement all of these functions. Note

that the generic type \Object" is being used for the element

type.]

41

List ADT Examples

List: (12 ; 32 ; 15)

MyLst.insert(element);

[The above is an example use of the insert function.

\element" is an object of the list element data type.]

Assume MyLst has 32 as current element:

MyLst.insert(99);

[Put 99 before current element, yielding (12, 99, 32, 15).]

Process an entire list:

for (MyLst.setFirst(); MyLst.isInList(); MyLst.next())
DoSomething(MyLst.currValue());

42

Array-Based List Insert

Insert 23:

12 20 38 13 12 20 8 3

3820121323

13

(a) (b)

(c)

50 1 2 4 43210

1 2 3 4 5

5

0

3

[Push items up/down. Cost: �(n) .]

43

Array-Based List Class

class AList implements List { // Array-based list

private static final int defaultSize = 10;

private int msize; // Maximum size of list
private int numInList; // Actual list size
private int curr; // Position of curr
private Object[] listArray; // Array holding list

AList() { setup(defaultSize); } // Constructor
AList(int sz) { setup(sz); } // Constructor

private void setup(int sz) { // Do initializations
msize = sz;
numInList = curr = 0;
listArray = new Object[sz]; // Create listArray

}

public void clear() // Remove all Objects from list
{numInList = curr = 0; } // Simply reinitialize values

public void insert(Object it) { // Insert at curr pos
Assert.notFalse(numInList < msize, "List is full");
Assert.notFalse((curr >=0) && (curr <= numInList),

"Bad value for curr");
for (int i=numInList; i>curr; i--) // Shift up

listArray[i] = listArray[i-1];
listArray[curr] = it;
numInList++; // Increment list size

}

44

Array-Based List Class (cont)

public void append(Object it) { // Insert at tail
Assert.notFalse(numInList < msize, "List is full");
listArray[numInList++] = it; // Increment list size

}

public Object remove() { // Remove and return Object
Assert.notFalse(!isEmpty(), "No delete: list empty");
Assert.notFalse(isInList(), "No current element");
Object it = listArray[curr]; // Hold removed Object
for(int i=curr; i<numInList-1; i++) // Shift down

listArray[i] = listArray[i+1];
numInList--; // Decrement list size
return it;

}

public void setFirst() { curr = 0; } // Set to first
public void prev() { curr--; } // Move curr to prev
public void next() { curr++; } // Move curr to next
public int length() { return numInList; }
public void setPos(int pos) { curr = pos; }
public boolean isEmpty() { return numInList == 0; }

public void setValue(Object it) { // Set current value
Assert.notFalse(isInList(), "No current element");
listArray[curr] = it;

}

public boolean isInList() // True if curr within list
{ return (curr >= 0) && (curr < numInList); }

} // Array-based list implementation

45

Link Class

Dynamic allocation of new list elements.

class Link { // A singly linked list node
private Object element; // Object for this node
private Link next; // Pointer to next node
Link(Object it, Link nextval) // Constructor

{ element = it; next = nextval; }
Link(Link nextval) { next = nextval; } // Constructor
Link next() { return next; }
Link setNext(Link nextval) { return next = nextval; }
Object element() { return element; }
Object setElement(Object it) { return element = it; }

}

46

Linked List Position

(b)

tailcurrhead

20 23 12 15

(a)

head curr tail

1512102320

[Naive approach: Point to current node. Current is 12. Want

to insert node with 10. No access available to node with 23.

How can we do the insert?]

15

tailcurrhead

20 23 12 15

(a)

head curr tail

20 23 10 12

(b)

[Alt implementation: Point to node preceding actual current

node. Now we can do the insert. Also note use of header

node.]

head

curr tail

47

Linked List Implementation

public class LList implements List { // Linked list
private Link head; // Pointer to list header
private Link tail; // Pointer to last Object in list
protected Link curr; // Position of current Object

LList(int sz) { setup(); } // Constructor
LList() { setup(); } // Constructor
private void setup() // allocates leaf node

{ tail = head = curr = new Link(null); }

public void setFirst() { curr = head; }
public void next()

{ if (curr != null) curr = curr.next(); }

public void prev() { // Move to previous position
Link temp = head;
if ((curr == null) || (curr == head)) // No prev

{ curr = null; return; } // so return
while ((temp != null) && (temp.next() != curr))

temp = temp.next();
curr = temp;

}

public Object currValue() { // Return current Object
if (!isInList() || this.isEmpty()) return null;
return curr.next().element();

}

public boolean isEmpty() // True if list is empty
{ return head.next() == null; }

} // Linked list class

48

Linked List Insertion

curr

2

... ...

curr

23 12

Insert 10: 10

(a)

... ...

23 12

3

(b)

10

1

// Insert Object at current position
public void insert(Object it) {

Assert.notNull(curr, "No current element");
curr.setNext(new Link(it, curr.next()));
if (tail == curr) // Appended new Object

tail = curr.next();
}

49

Linked List Remove

it

...

...

curr

...

curr

...

(a)

23

2

1

(b)

15

1510

10

23

public Object remove() { // Remove/return curr Object
if (!isInList() || this.isEmpty()) return null;
Object it = curr.next().element(); // Remember value
if (tail == curr.next()) tail = curr; // Set tail
curr.setNext(curr.next().next()); // Cut from list
return it; // Return value

}

50

Freelists

System new and garbage collection are slow.

class Link { // Singly linked list node with freelist
private Object element; // Object for this Link
private Link next; // Pointer to next Link
Link(Object it, Link nextval)
{ element = it; next = nextval; }
Link(Link nextval) { next = nextval; }
Link next() { return next; }
Link setNext(Link nextval) { return next = nextval; }
Object element() { return element; }
Object setElement(Object it) { return element = it; }

// Extensions to support freelists
static Link freelist = null; // Freelist for class

static Link get(Object it, Link nextval) {
if (freelist == null)//free list empty: allocate

return new Link(it, nextval);
Link temp = freelist; //take from the freelist
freelist = freelist.next();
temp.setElement(it);
temp.setNext(nextval);
return temp;

}
void release() {

// add current node to freelist
element = null; next = freelist; freelist = this;

}
}

51

Comparison of List Implementations

Array-Based Lists: [Average and worst cases]

� Insertion and deletion are �(n).

� Array must be allocated in advance.

� No overhead if all array positions are full.

Linked Lists:

� Insertion and deletion �(1);
prev and direct access are �(n).

� Space grows with number of elements.

� Every element requires overhead.

Space \break-even" point:

DE = n(P + E); n =
DE

P + E

n: elements currently in list
E: Space for data value
P: Space for pointer
D: Number of elements in array (�xed in the
implementation)

[arrays more e�cient when full, linked lists more e�cient wi th

few elements]

52

Doubly Linked Lists

Simplify insertion and deletion: Add a prev
pointer.

15

currhead tail

20 23 12

class DLink { // A doubly-linked list node
private Object element; // Object for this node
private DLink next; // Pointer to next node
private DLink prev; // Pointer to previous node
DLink(Object it, DLink n, DLink p)
{ element = it; next = n; prev = p; }
DLink(DLink n, DLink p) { next = n; prev = p; }
DLink next() { return next; }
DLink setNext(DLink nextval) { return next=nextval; }
DLink prev() { return prev; }
DLink setPrev(DLink prevval) { return prev=prevval; }
Object element() { return element; }
Object setElement(Object it) { return element = it; }

}

53

Doubly Linked List Operations

23

... ...

curr

20 12

Insert 10:

(a)

10

... ...

curr

20

4 5

23 12

(b)

1

10

3 2

// Insert Object at current position
public void insert(Object it) {

Assert.notNull(curr, "No current element");
curr.setNext(new DLink(it, curr.next(), curr));
if (curr.next().next() != null)

curr.next().next().setPrev(curr.next());
if (tail == curr) // Appended new Object

tail = curr.next();
}

public Object remove() { // Remove/return curr Object
Assert.notFalse(isInList(), "No current element");
Object it = curr.next().element(); // Remember Object
if (curr.next().next() != null)

curr.next().next().setPrev(curr);
else tail = curr; // Removed last Object: set tail
curr.setNext(curr.next().next()); // Remove from list
return it; // Return value removed

}

54

Circularly Linked Lists

� Convenient if there is no last nor �rst
element (there is no total order among
elements)

� The "last" element points to the "�rst",
and the �rst to the last

� tail pointer non longer needed

� Potential danger: in�nite loops in list
processing

� but head pointer can be used as a marker

55

Stacks

LIFO: Last In, First Out

Restricted form of list: Insert and remove only
at front of list.

Notation:

� Insert: PUSH

� Remove: POP

� The accessible element is called TOP.

56

Array-Based Stack

De�ne top as �rst free position.

class AStack implements Stack{ // Array based stack class
private static final int defaultSize = 10;
private int size; // Maximum size of stack
private int top; // Index for top Object
private Object [] listarray; // Array holding stack
AStack() { setup(defaultSize); }
AStack(int sz) { setup(sz); }

public void setup(int sz)
{ size = sz; top = 0; listarray = new Object[sz]; }

public void clear() { top = 0; } // Clear all Objects

public void push(Object it) // Push onto stack
{ Assert.notFalse(top < size, "Stack overflow");

listarray[top++] = it; }

public Object pop() // Pop Object from top
{ Assert.notFalse(!isEmpty(), "Empty stack");

return listarray[--top]; }

public Object topValue() // Return top Object
{ Assert.notFalse(!isEmpty(), "Empty stack");

return listarray[top-1]; }

public boolean isEmpty() { return top == 0; }
};

57

Linked Stack

public class LStack implements Stack {
// Linked stack class

private Link top; // Pointer to list header

public LStack() { setup(); } // Constructor
public LStack(int sz) { setup(); } // Constructor

private void setup() // Initialize stack
{ top = null; } // Create header node

public void clear() { top = null; } // Clear stack

public void push(Object it) // Push Object onto stack
{ top = new Link(it, top); }

public Object pop() { // Pop Object from top
Assert.notFalse(!isEmpty(), "Empty stack");
Object it = top.element();
top = top.next();
return it;

}

public Object topValue() // Get value of top Object
{ Assert.notFalse(!isEmpty(), "No top value");

return top.element(); }

public boolean isEmpty() // True if stack is empty
{ return top == null; }
} // Linked stack class

58

Array-based vs linked stacks

� Time: all operations take constant time for
both

� Space: linked has overhead but is exible;
array has no overhead but wastes space
when not full

Implementation of multiple stacks

� two stacks at opposite ends of an array
growing in opposite directions

� works well if their space requirements are
inversely correlated

top2top1

59

Queues

FIFO: First In, First Out

Restricted form of list:
Insert at one end, remove from other.

Notation:

� Insert: Enqueue

� Delete: Dequeue

� First element: FRONT

� Last element: REAR

60

Array Queue Implementations

Constraint: all elements

1. in consecutive positions

2. in the initial (�nal) portion of the array

If both (1) and (2) hold: rear element in pos 0,
dequeue costs �(1), enqueue costs �(n)
Similarly if in �nal portion of the array and/or
in reverse order
If only (1) holds (2 is released)

� both front and rear move to the "right"
(i.e., increase)

� both enqueue and dequeue cost �(1)

front

front rear

20 5 12 17

(a)

rear

(b)

12 17 3 30 4

"Drifting queue" problem: run out of space
when at the highest posistions
Solution: pretend the array is circular,
implemented by the modulus operator, e.g.,
front = (front + 1) % size

61

Array Q Impl (cont)

A more serious problem: empty queue
indistinguishable from full queue

[Application of Pigeonhole Principle: Given a �xed (arbitrar y)

position for front, there are n + 1 states (0 through n elements

in queue) and only n positions for rear. One must distinguish

between two of the states.]

front

rear

front

rear

(a) (b)

20

5

12

17

12

17

3

30

4

2 solutions to this problem

1. store # elements separately from the queue

2. use a n + 1 elements array for holding a
queue with n elements an most

Both solutions require one additional item of
information
Linked Queue: modi�ed linked list.

[Operations are �(1)]

62

Binary Trees

A binary tree is made up of a �nite set of
nodes that is either empty (then it is an empty
tree) or consists of a node called the root
connected to two binary trees, called the left
and right subtrees , which are disjoint from
each other and from the root.

B

G I

D E F

H

A

C

[A has depth 0. B and C form level 1. The tree has height 4.

Height = max depth + 1.]

63

Notation

(left/right) child of a node: root node of the
(left/right) subtree

if there is no left (right) subtree we say that
left/(right) subtree is empty

edge : connection between a node and its child
(drawn as a line)

parent of a node n: the node of which n is a
child

path from n1 to nk : a sequence n1 n2 ... nk ,
k > = 1, such that, for all 1 < = i < k , n i is
parent of n i +1

length of a path n1 n2 ... nk is k � 1 () length
of path n1 is 0)

if there is a path from node a to node d then

� a is ancestor of d

� d is descendant of a

64

Notation (Cont.)

hence

- all nodes of a tree (except the root) are
descendant of the root

- the root is ancestor of all the other nodes
of the tree (except itself)

depth of a node: length of a path from the
root () the root has depth 0)

height of a tree: 1 + depth of the deepest
node (which is a leaf)

level d of a tree: the set of all nodes of depth
d () root is the only node of level 0)

leaf node: has two empty children

internal node (non-leaf): has at least one
non-empty child

65

Examples

B

G I

D E F

H

A

C

- A: root

- B, C: A's children

- B, D: A's subtree

- D, E, F: level 2

- B has only right child (subtree)

- path of length 3 from A to G

- A, B, C, E, F internal nodes

- D, G, H, I leaves

- depth of G is 3, height of tree is 4

66

Full and Complete Binary Trees

Full binary tree: each node either is a leaf or is
an internal node with exactly two non-empty
children.

Complete binary tree: If the height of the tree
is d, then all levels except possibly level d � 1
are completely full. The bottom level has
nodes �lled in from the left side.

(a) full but not complete
(b) complete but not full
(c) full and complete

(b)(a)

(c)

[NB these terms can be hard to distinguish

Question: how many nodes in a complete binary tree?

A complete binary tree is "balanced", i.e., has minimal height
given number of nodes

A complete binary tree is full or almost full or "almost full"

(at most one node with one son)]

67

Making missing children explicit

 A

B

A

B

A

B EMPTY

A

B EMPTY

for a (non-)empty subtree we say the node has
a (non-)NULL pointer

68

Full Binary Tree Theorem

Theorem: The number of leaves in a
non-empty full binary tree is one more than the
number of internal nodes.

[Relevant since it helps us calculate space requirements.]

Proof (by Mathematical Induction):

� Base Case : A full binary tree with 0
internal node has 1 leaf node.

� Induction Hypothesis : Assume any full
binary tree T containing n � 1 internal
nodes has n leaves.

� Induction Step : Given a full tree T with
n � 1 internal nodes () n leaves), add two
leaf nodes as children of one of its leaves)
obtain a tree T' having n internal nodes
and n + 1 leaves.

69

Full Binary Tree Theorem Corollary

Theorem : The number of empty subtrees in a
non-empty binary tree is one more than the
number of nodes in the tree.

Proof : Replace all empty subtrees with a leaf
node. This is a full binary tree, having #leaves
= #empty subtrees of original tree.

alternative Proof :

- by de�nition, every node has 2 children,
whether empty or not

- hence a tree with n nodes has 2 n children

- every node (except the root) has 1 parent
) there are n � 1 parent nodes (some

coincide)
) there are n � 1 non-empty children

- hence #(empty children) = #(total
children) - #(non-empty children) =
2n � (n � 1) = n + 1.

70

Binary Tree Node ADT

interface BinNode { // ADT for binary tree nodes
// Return and set the element value
public Object element();
public Object setElement(Object v);

// Return and set the left child
public BinNode left();
public BinNode setLeft(BinNode p);

// Return and set the right child
public BinNode right();
public BinNode setRight(BinNode p);

// Return true if this is a leaf node
public boolean isLeaf();

} // interface BinNode

71

Traversals

Any process for visiting the nodes in some
order is called a traversal .

Any traversal that lists every node in the tree
exactly once is called an enumeration of the
tree's nodes.

Preorder traversal: Visit each node before
visiting its children.

Postorder traversal: Visit each node after
visiting its children.

Inorder traversal: Visit the left subtree, then
the node, then the right subtree.

NB: an empty node (tree) represented by
Java's null (object) value

void preorder(BinNode rt) // rt is root of subtree
{

if (rt == null) return; // Empty subtree
visit(rt);
preorder(rt.left());
preorder(rt.right());

}

72

Traversals (cont.)

This is a lef t � to � right preorder: �rst visit lef t
subtree, then the right one.

Get a right � to � lef t preorder by switching last
two lines

To get inorder or postorder, just rearrange the
last three lines.

73

Binary Tree Implementation

B

A

C

F

G H I

ED

[Leaves are the same as internal nodes. Lots of wasted

space.]

�

c�

+�

a

4

x

�

x

2

[Example of expression tree: (4 x � (2 x + a)) � c. Leaves are

di�erent from internal nodes.]

74

Two implementations of BinNode

class LeafNode implements BinNode { // Leaf node
private String var; // Operand value

public LeafNode(String val) { var = val; }
public Object element() { return var; }
public Object setElement(Object v)

{ return var = (String)v; }
public BinNode left() { return null; }
public BinNode setLeft(BinNode p) { return null; }
public BinNode right() { return null; }
public BinNode setRight(BinNode p) { return null; }
public boolean isLeaf() { return true; }

} // class LeafNode

class IntlNode implements BinNode { // Internal node
private BinNode left; // Left child
private BinNode right; // Right child
private Character opx; // Operator value

public IntlNode(Character op, BinNode l, BinNode r)
{ opx = op; left = l; right = r; } // Constructor

public Object element() { return opx; }
public Object setElement(Object v)

{ return opx = (Character)v; }
public BinNode left() { return left; }
public BinNode setLeft(BinNode p) {return left = p;}
public BinNode right() { return right; }
public BinNode setRight(BinNode p)

{ return right = p; }
public boolean isLeaf() { return false; }

} // class IntlNode

75

Two implementations (cont)

static void traverse(BinNode rt) { // Preorder
if (rt == null) return; // Nothing to visit
if (rt.isLeaf()) // Do leaf node

System.out.println("Leaf: " + rt.element());
else { // Do internal node

System.out.println("Internal: " + rt.element());
traverse(rt.left());
traverse(rt.right());

}
}

76

A note on polymorphism and

dynamic binding

The member function isLeaf() allows one to
distinguish the \type" of a node

- leaf

- internal

without need of knowing its subclass
This is determined dynamically by the JRE
(Java Runtime Environment)

77

Space Overhead

From Full Binary Tree Theorem:
Half of pointers are NULL.

If leaves only store information, then overhead
depends on whether tree is full.

All nodes the same, with two pointers to
children:

Total space required is (2 p + d) n.
Overhead: 2 pn.

If p = d, this means 2 p=(2 p+ d) = 2 =3 overhead.

[The following is for full binary trees:]

Eliminate pointers from leaf nodes:

n
2 (2 p)

n
2 (2 p) + dn

=
p

p + d

[Half the nodes have 2 pointers, which is overhead.]

This is 1/2 if p = d.
2p=(2 p + d) if data only at leaves) 2/3
overhead.

Some method is needed to distinguish leaves
from internal nodes. [This adds overhead.]

78

Array Implementation
[This is a good example of logical representation vs. physical

implementation.]

For complete binary trees.

4

2

5 6

8 9 10 11

3

7

(a)

1

0

Node 0 1 2 3 4 5 6 7 8 9 10 11

� Parent(r) = [(r � 1) =2 if r 6= 0 and r < n .]

� Leftchild(r) = [2r + 1 if 2r + 1 < n:]

� Rightchild(r) = [2r + 2 if 2r + 2 < n:]

� Leftsibling(r) = [r � 1 if r is even, r > 0 and r < n .]

� Rightsibling(r) = [r + 1 if r is odd, r + 1 < n .]

[Since the complete binary tree is so limited in its shape,
(only one shape for tree of n nodes), it is reasonable to
expect that space e�ciency can be achieved.

NB: left sons' indices are always odd, right ones' even, a

node with index i is leaf i� i > n:of:nodes= 2 (Full Binary

Tree Theorem)]

79

Binary Search Trees

Binary Search Tree (BST) Property

All elements stored in the left subtree of a node
whose value is K have values less than K . All
elements stored in the right subtree of a node
whose value is K have values greater than or
equal to K .

[Problem with lists: either insert/delete or search must be

�(n) time. How can we make both update and search

e�cient? Answer: Use a new data structure.]

42

7

2

32

42

40

120

120

7

2

42

32

24 37

40

(a)

37

42

(b)

24

80

BinNode Class

interface BinNode { // ADT for binary tree nodes
// Return and set the element value
public Object element();
public Object setElement(Object v);

// Return and set the left child
public BinNode left();
public BinNode setLeft(BinNode p);

// Return and set the right child
public BinNode right();
public BinNode setRight(BinNode p);

// Return true if this is a leaf node
public boolean isLeaf();

} // interface BinNode

We assume that the datum in the nodes
implements interface Elem with a method key
used for comparisons (in searching and sorting
algorithms)

interface Elem {
public abstract int key();

} // interface Elem

81

BST Search

public class BST { // Binary Search Tree implementation
private BinNode root; // The root of the tree

public BST() { root = null; } // Initialize root
public void clear() { root = null; }
public void insert(Elem val)

{ root = inserthelp(root, val); }
public void remove(int key)

{ root = removehelp(root, key); }
public Elem find(int key)

{ return findhelp(root, key); }
public boolean isEmpty() { return root == null; }

public void print() {
if (root == null)

System.out.println("The BST is empty.");
else {

printhelp(root, 0);
System.out.println();

}
}

private Elem findhelp(BinNode rt, int key) {
if (rt == null) return null;
Elem it = (Elem)rt.element();
if (it.key() > key) return findhelp(rt.left(), key);
else if (it.key() == key) return it;
else return findhelp(rt.right(), key);

}

82

BST Insert

private BinNode inserthelp(BinNode rt, Elem val) {
if (rt == null) return new BinNode(val);
Elem it = (Elem) rt.element();
if (it.key() > val.key())

rt.setLeft(inserthelp(rt.left(), val));
else

rt.setRight(inserthelp(rt.right(), val));
return rt;

}

7

37

24

2

32

35

42

40 42

120

83

Remove Minimum Value

private BinNode deletemin(BinNode rt) {
if (rt.left() == null)

return rt.right();
else {

rt.setLeft(deletemin(rt.left()));
return rt;

}
}

private Elem getmin(BinNode rt) {
if (rt.left() == null)

return (Elem)rt.element();
else return getmin(rt.left());

}

20

rt

10

5

9

84

BST Remove

private BinNode removehelp(BinNode rt, int key) {
if (rt == null) return null;
Elem it = (Elem) rt.element();
if (key < it.key())

rt.setLeft(removehelp(rt.left(), key));
else if (key > it.key())

rt.setRight(removehelp(rt.right(), key));
else {

if (rt.left() == null)
rt = rt.right();

else if (rt.right() == null)
rt = rt.left();

else {
Elem temp = getmin(rt.right());
rt.setElement(temp);
rt.setRight(deletemin(rt.right()));

}
}
return rt;

}

2

37 40

24

7 32

42

40 42

120

85

Cost of BST Operations

Find: the depth of the node being found

Insert: the depth of the node being inserted

Remove: the depth of the node being removed,
if it has < 2 children, otherwise depth of node
with smallest value in its right subtree

Best case: balanced (complete tree): �(log n)

Worst case (linear tree): �(n)

That's why it is important to have a balanced
(complete) BST

Cost of constructing a BST by means of a
series of insertions

- if elements inserted in in order of increasing
value

P n
i =1 i = �(n2)

- if inserted in "random" order almost good
enough for balancing the tree, insertion cost
is in average �(log n), for a total �(n log n)

86

Heaps

Heap: Complete binary tree with the
Heap Property :

� Min-heap: all values less than child values.

� Max-heap: all values greater than child
values.

The values in a heap are partially ordered .

Heap representation: normally the array based
complete binary tree representation.

87

Building the Heap
[Max Heap

NB: for a given set of values, the heap is not unique]

3

(a)

1 7

5 6

(b)

1 7

1 3 5

6

4 5 6 7 34 2 1

65 74

2 3 4

2

2

(a) requires exchanges (4-2), (4-1), (2-1),
(5-2), (5-4), (6-3), (6-5), (7-5), (7-6).

(b) requires exchanges (5-2), (7-3), (7-1),
(6-1).

[How to get a good number of exchanges? By induction.

Heapify the root's subtrees, then push the root to the correct

level.]

88

The siftdown procedure

To place a generic node in its correct position

Assume subtrees are Heaps

If root is not greater than both children, swap
with greater child

Reapply on modi�ed subtree
 1

5 7

4 2 6 3

7

5 1

4 2 6 3

7

5 6

4 2 1 3

Shift it down by exchanging it with the greater
of the two sons, until it becomes a leaf or it is
greater than both sons.

89

Max Heap Implementation

public class MaxHeap {
private Elem[] Heap; // Pointer to the heap array
private int size; // Maximum size of the heap
private int n; // Number of elements now in heap

public MaxHeap(Elem[] h, int num, int max)
{ Heap = h; n = num; size = max; buildheap(); }

public int heapsize() // Return current size of heap
{ return n; }

public boolean isLeaf(int pos) // TRUE if pos is leaf
{ return (pos >= n/2) && (pos < n); }

// Return position for left child of pos
public int leftchild(int pos) {

Assert.notFalse(pos < n/2, "No left child");
return 2*pos + 1;

}

// Return position for right child of pos
public int rightchild(int pos) {

Assert.notFalse(pos < (n-1)/2, "No right child");
return 2*pos + 2;

}

public int parent(int pos) { // Return pos for parent
Assert.notFalse(pos > 0, "Position has no parent");
return (pos-1)/2;

}

90

Siftdown

For fast heap construction:

� Work from high end of array to low end.

� Call siftdown for each item.

� Don't need to call siftdown on leaf nodes.

public void buildheap() // Heapify contents of Heap
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

private void siftdown(int pos) { // Put in place
Assert.notFalse((pos >= 0) && (pos < n),

"Illegal heap position");
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) && (Heap[j].key() < Heap[j+1].key()))

j++; // j now index of child with greater value
if (Heap[pos].key() >= Heap[j].key()) return;
DSutil.swap(Heap, pos, j);
pos = j; // Move down

}
}

91

Cost for heap construction

log nX

i =1
(i � 1)

n

2 i = �(n) :

[(i � 1) is number of steps down, n=2 i is number of nodes at

that level.]

cfr. eq(2.7) p.28:
P n

i =1
i

2 i = 2 � n+2
2n

notice that
P log n

i =1 (i � 1) n
2 i � n

P n
i =1

i
2 i

Cost of removing root is �(log n)

Remove element too (root is a special case
thereof)

92

Priority Queues

A priority queue stores objects, and on request
releases the object with greatest value.

Example: Scheduling jobs in a multi-tasking
operating system.

The priority of a job may change, requiring
some reordering of the jobs.

Implementation: use a heap to store the
priority queue.

To support priority reordering, delete and
re-insert. Need to know index for the object.

// Remove value at specified position
public Elem remove(int pos) {

Assert.notFalse((pos >= 0) && (pos < n),
"Illegal heap position");

DSutil.swap(Heap, pos, --n); // Swap with last value
while (Heap[pos].key() > Heap[parent(pos)].key())

DSutil.swap(Heap, pos, parent(pos)); // push up
if (n != 0) siftdown(pos); // push down
return Heap[n];

}

93

General Trees

A tree T is a �nite set of nodes such that it is
empty or there is one designated node r called
the root of T , and the remaining nodes in
(T � f r g) are partitioned into n � 0 disjoint
subsets T1, T2, ..., Tk , each of which is a tree.

[Note: disjoint because a node cannot have two parents.]

S

1

S

2

Children of V

Subtree ro oted at V

Siblings of V

Ancesto rs of V

R

Ro ot

P a rent of V

P

V

C

1

C

2

95

General Tree ADT
[There is no concept of \left" or \right" child. But, we can

impose a concept of \�rst" (leftmost) and \next" (right).]

public interface GTNode {
public Object value();
public boolean isLeaf();
public GTNode parent();
public GTNode leftmost_child();
public GTNode right_sibling();
public void setValue(Object value);
public void setParent(GTNode par);
public void insert_first(GTNode n);
public void insert_next(GTNode n);
public void remove_first(); // remove first child
public void remove_next(); // remove right sibling

}

public interface GenTree {
public void clear();
public GTNode root();
public void newroot(Object value, GTNode first,

GTNode sib);
}

96

General Tree Traversal

[preorder traversal]

static void print(GTNode rt) { // Preorder traversal
if (rt.isLeaf()) System.out.print("Leaf: ");
else System.out.print("Internal: ");
System.out.println(rt.value());
GTNode temp = rt.leftmost_child();
while (temp != null) {

print(temp);
temp = temp.right_sibling();

}
}

F

R

A

C D E

B

[RACDEBF]

97

General Tree Implementations

Lists of Children

1

Index V al P a r

0

1

2

3

4

5

6

7

R

A

C

B

D

F

E

3

2 4 6

5

0

1

0

1

3

1

[Hard to �nd right sibling.]

98

Leftmost Child/Right Sibling

F

R

0

Left V al P a r Right

1

3

6

8

R

A

B

C

D

E

X 7

2

1

1

1

0

0 2

4

5

R

0

R X

BA

C D E F

[Note: Two trees share same array.]

C

1

1

1

7

2

0R

0

XR

BA

D E F

1 R 8

3 A 2

6 B

C 4

D 5

E

F

X

Left V al P a r Right

-1

0

7

R

0

0

99

Linked Implementations

E

V al Size

R 2

A 3 B 1

C 0 D 0 E 0 F 0

(b)(a)

A

F

B

R

C D

[Allocate child pointer space when node is created.]

R

R

BA

(b)

C D E F

(a)

A B

FEDC

100

Sequential Implementations

List node values in the order they would be
visited by a preorder traversal.

Saves space, but allows only sequential access.

Need to retain tree structure for reconstruction.

For binary trees: Use symbol to mark NULLlinks.

B

A

C

D E F

G H I

AB=D==CEG===F H==I==

101

Sequential Implementations (cont.)

Full binary trees: Mark leaf or internal.

B

A

C

D E F

G H I

[Need NULL mark since this tree is not full.]

A 0B 0=DC 0E 0G=F 0HI

General trees: Mark end of each subtree.

F

R

A

C D E

B

RAC) D) E)) BF)))

102

Convert to Binary Tree

Left Child/Right Sibling representation
essentially stores a binary tree.

Use this process to convert any general tree to
a binary tree.

A forest is a collection of one or more general
trees.

(b)

ro ot

(a)

[Dynamic implementation of \Left child/right sibling."]

103

K-ary Trees

Every node has a �xed maximum number of
children

�xed # children) easy to implement, also in
array

K high) potentially many empty subtrees)
di�erent implementation for leaves becomes
convenient

Full and complete K-ary trees similar to binary
trees

full, not complete complete, not full

full and complete

Theorems on # empty subtrees and on relation
between # internal nodes and # leaves similar
to binary trees

104

Graphs

graph G = (V ; E): a set of vertices V, and a
set of edges E; each edge in E is a connection
between a pair of vertices in V, which are called
adjacent vartices.

vertices written jV j; # edges written jE j.
0 � j E j � j V j2 .

A graph is

- sparse if it has "few" edges

- dense if it has "many" edges

- complete all possible edges

- undirected as in �gure (a)

- directed as in �gure (b)

- labeled (�gure (c))if it has labels on
vertices

- weighted (�gure (c))if it has (numeric)
labels on edges

1

(b) (c)

0

3

4

1

2

7

1

2

3

4

(a)

105

Graph De�nitions (Cont)

A sequence of vertices v1; v2; :::; vn forms a path
of length n � 1 () length = # edges) if there
exist edges from vi to vi +1 for 1 � i < n .

A path is simple if all vertices on the path are
distinct.

In a directed graph

� a path v1; v2; :::; vn forms a cycle if n > 1
and v1 = vn . The cycle is simple if, in
addition, v2; :::; vn are distinct

� a cycle v; v is a self-loop

� a directed graph with no self-loops is simple

In an undirected graph

� a path v1; v2; :::; vn forms a (simple) cycle if
n > 3 and v1 = vn (and, in addition, v2; :::; vn
are distinct)
{ hence the path ABA is not a cycle, while

ABCA is a cycle

106

Graph De�nitions (Cont)

Subgraph S = (V S; ES) of a graph G = (V ; E):
V S � V and E S � E and both vertices of any
edge in E S are in V S

An undirected graph is connected if there is at
least one path from any vertex to any other.

The maximal connected subgraphs of an
undirected graph are called
connected components .

A graph without cycles is acyclic .

A directed graph without cycles is a
directed acyclic graph or DAG.

A free tree is a connected, undirected graph
with no cycles. Equivalently, a free tree is
connected and has jV � 1j edges.

107

Connected Components

A graph with (composed of) 3 connected
components

70 2

4

1 3

6

5

108

Graph Representations

Adjacency Matrix : space required �(jV j2).
Adjacency List : space required �(jV j + jE j).

1

(c)

(a) (b)

0

4

2

1 3

0

1

2

3

4

1

3

4

2

1

4

0

1

2

3

4

0 1 2 3 4

1 1

1

1

1

2

(a) (b)

(c)

0

1

2

3

0

1

2

3

4

0 1 2 3 4

1 1

1 1 1

11

11

1 1 1

4

0

1

2

3

4

1

0

3

1

0

4

3

4

2

1

4

[Instead of bits, the graph could store edge, weights.]

109

Graph Representatiosn (cont)

Adjacency list e�cient for sparse graphs (only
existing edges coded)

Matrix e�cient for dense graphs (no pointer
overload)

Algorithms visiting each neighbor of each
vertex more e�cient on adjacency lists,
especially for sparse graphs

110

Graph Interface

interface Graph { // Graph class ADT
public int n(); // Number of vertices
public int e(); // Number of edges
// Get first edge having v as vertex v1
public Edge first(int v);
// Get next edge having w.v1 as the first edge
public Edge next(Edge w);
public boolean isEdge(Edge w); // True if edge
public boolean isEdge(int i, int j); // True if edge
public int v1(Edge w); // Where from
public int v2(Edge w); // Where to
public void setEdge(int i, int j, int weight);
public void setEdge(Edge w, int weight);
public void delEdge(Edge w); // Delete edge w
public void delEdge(int i, int j); // Delete (i, j)
public int weight(int i, int j); // Return weight
public int weight(Edge w); // Return weight

// Set Mark of vertex v
public void setMark(int v, int val);

// Get Mark of vertex v
public int getMark(int v);

} // interface Graph

Edges have a double nature:
seen as pairs of vertices or as aggregate
objects.

Vertices identi�ed by an integer i , 0 � i � j V j

111

Implementation: Edge Class

interface Edge { // Interface for graph edges
public int v1(); // Return the vertex it comes from
public int v2(); // Return the vertex it goes to

} // interface Edge

// Edge class for Adjacency Matrix graph representation
class Edgem implements Edge {

private int vert1, vert2; // The vertex indices

public Edgem(int vt1, int vt2) //the constructor
{ vert1 = vt1; vert2 = vt2; }

public int v1() { return vert1; }
public int v2() { return vert2; }

} // class Edgem

112

Implementation: Adjacency Matrix

class Graphm implements Graph { // Adjacency matrix
private int[][] matrix; // The edge matrix
private int numEdge; // Number of edges
public int[] Mark; // The mark array, initially all 0

public Graphm(int n) { // Constructor
Mark = new int[n];
matrix = new int[n][n];
numEdge = 0;

}

public int n() { return Mark.length; }
public int e() { return numEdge; }

public Edge first(int v) { // Get first edge
for (int i=0; i<Mark.length; i++)

if (matrix[v][i] != 0)
return new Edgem(v, i);

return null; // No edge for this vertex
}

public Edge next(Edge w) { // Get next edge
if (w == null) return null;
for (int i=w.v2()+1; i<Mark.length; i++)

if (matrix[w.v1()][i] != 0)
return new Edgem(w.v1(), i);

return null; // No next edge;
}

Class Graphm implements interface Graph
Class Edgem implements interface Edge

113

Adjacency Matrix (cont)

public boolean isEdge(Edge w) { // True if an edge
if (w == null) return false;
else return matrix[w.v1()][w.v2()] != 0;

}

public boolean isEdge(int i, int j) // True if edge
{ return matrix[i][j] != 0; }

public int v1(Edge w) {return w.v1();} // Where from
public int v2(Edge w) {return w.v2();} // Where to

public void setEdge(int i, int j, int wt) {
Assert.notFalse(wt!=0, "Cannot set weight to 0");
if (matrix[i][j] == 0) numEdge++;
matrix[i][j] = wt;

}

public void setEdge(Edge w, int weight) // Set weight
{ if (w != null) setEdge(w.v1(), w.v2(), weight); }

public void delEdge(Edge w) { // Delete edge w
if (w != null)

if (matrix[w.v1()][w.v2()] != 0)
{ matrix[w.v1()][w.v2()] = 0; numEdge--; }

}

public void delEdge(int i, int j) { // Delete (i, j)
if (matrix[i][j] != 0)

{ matrix[i][j] = 0; numEdge--; }
}

NB: matrix[i][j]==0 i� there is no edge (i,j)
If there is no edge (i,j) then
weight(i,j)=Integer.MAX VALUE (INFINITY)

114

Adjacency Matrix (cont 2)

public int weight(int i, int j) { // Return weight
if (matrix[i][j] == 0) return Integer.MAX_VALUE;
else return matrix[i][j];

}

public int weight(Edge w) { // Return edge weight
Assert.notNull(w,"Can't take weight of null edge");
if (matrix[w.v1()][w.v2()] == 0)

return Integer.MAX_VALUE;
else return matrix[w.v1()][w.v2()];

}

public void setMark(int v, int val)
{ Mark[v] = val; }

public int getMark(int v) { return Mark[v]; }
} // class Graphm

115

Graph Traversals

Some applications require visiting every vertex
in the graph exactly once.

Application may require that vertices be visited
in some special order based on graph topology.

Example: Arti�cial Intelligence

� Problem domain consists of many \states."

� Need to get from Start State to Goal State.

� Start and Goal are typically not directly
connected.

To insure visiting all vertices:

void graphTraverse(Graph G) {
for (v=0; v<G.n(); v++)

G.setMark(v, UNVISITED); // Initialize mark bits
//next for needed to cover all the graph in case
//of graph composed of several connected components
for (v=0; v<G.n(); v++)

if (G.getMark(v) == UNVISITED)
doTraverse(G, v);

}

[Two traversals we will talk about: DFS, BFS.]

116

Depth First Search

static void DFS(Graph G, int v) { // Depth first search
PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (Edge w = G.first(v); G.isEdge(w); w = G.next(w))

if (G.getMark(G.v2(w)) == UNVISITED)
DFS(G, G.v2(w));

PostVisit(G, v); // Take appropriate action
}

Cost: �(jV j + jE j).

E

(a) (b)

A B

D

F

A B

C

D

F

E

C

[The directions are imposed by the traversal. This is the

Depth First Search Tree.]

If PreVisit simply prints and PostVisit does
nothing then DFS prints
A C B F D E

117

Breadth First Search

Like DFS, but replace stack with a queue.
Visit the vertex's neighbors before continuing
deeper in the tree.

static void BFS(Graph G, int start) {
Queue Q = new AQueue(G.n()); // Use a Queue
Q.enqueue(new Integer(start));
G.setMark(start, VISITED);
while (!Q.isEmpty()) { // Process each vertex on Q

int v = ((Integer)Q.dequeue()).intValue();
PreVisit(G, v); // Take appropriate action
for (Edge w=G.first(v); G.isEdge(w); w=G.next(w))

if (G.getMark(G.v2(w)) == UNVISITED) {
G.setMark(G.v2(w), VISITED);
Q.enqueue(new Integer(G.v2(w)));

}
PostVisit(G, v); // Take appropriate action

}
}

If PreVisit simply prints and PostVisit does
nothing then BFS prints A C E B D F

F

(a) (b)

B

C

A

E

C

B

F

D

A

E

D

118

Topological Sort

Problem: Given a set of jobs, courses, etc.
with prerequisite constraints, output the jobs in
an order that does not violate any of the
prerequisites. (NB: the graph must be a DAG)

J6

J1 J2

J3 J4

J5 J7

static void topsort(Graph G) { // Topo sort: recursive
for (int i=0; i<G.n(); i++) // Initialize Mark array

G.setMark(i, UNVISITED);
for (int i=0; i<G.n(); i++) // Process all vertices

if (G.getMark(i) == UNVISITED)
tophelp(G, i); // Call helper function

}

static void tophelp(Graph G, int v) { // Topsort helper
G.setMark(v, VISITED);
for (Edge w = G.first(v); G.isEdge(w); w = G.next(w))

if (G.getMark(G.v2(w)) == UNVISITED)
tophelp(G, G.v2(w));

printout(v); // PostVisit for Vertex v
}

[Prints in reverse order: J7, J5, J4, J6, J2, J3, J1

It is a DFS with a PreVisit that does nothing]

119

Queue-based Topological Sort

static void topsort(Graph G) { // Topo sort: Queue
Queue Q = new AQueue(G.n());
int[] Count = new int[G.n()];
int v;
for (v=0; v<G.n(); v++) Count[v] = 0; // Initialize
for (v=0; v<G.n(); v++) // Process every edge

for (Edge w=G.first(v); G.isEdge(w); w=G.next(w))
Count[G.v2(w)]++; // Add to v2's count

for (v=0; v<G.n(); v++) // Initialize Queue
if (Count[v] == 0) // Vertex has no prereqs

Q.enqueue(new Integer(v));
while (!Q.isEmpty()) { // Process the vertices

v = ((Integer)Q.dequeue()).intValue();
printout(v); // PreVisit for Vertex V
for (Edge w=G.first(v); G.isEdge(w); w=G.next(w)) {

Count[G.v2(w)]--; // One less prerequisite
if (Count[G.v2(w)] == 0) // This vertex now free

Q.enqueue(new Integer(G.v2(w)));
}

}
}

120

Sorting

Each record is stored in an array and contains a
�eld called the key .

Linear (i.e., total) order: comparison.

[a < b and b < c) a < c .]

The Sorting Problem

Given a sequence of records R1; R2; :::; R n with
key values k1; k2; :::; k n , respectively, arrange the
records into any order s such that records
Rs1 ; Rs2 ; :::; R sn have keys obeying the property
ks1 � ks2 � ::: � ksn .

[Put keys in ascending order.]

NB: there can be records with the same key

A sorting algorithm is stable if after sorting
records with the same key have the same
relative position as before
Measures of cost:

� Comparisons

� Swaps (when records are large)

121

Sorting (cont)

Assumptions: for every record type there are
functions

- R.key returns the key value for record R

- DSutil.swap(array, i, j) swaps records in
positions i and j of the array

Measure of the "degree of disorder" of an array
in the number of INVERSIONS
8el = a[i];
inversions = # elements > el which are in a
position j < i

#inversions for the entire array =
=

P
#inversions of each array element

For a sorted array #inversions = 0

For an array with elements in decreasing order
#inversions = �(n2)

122

Insertion Sort

static void inssort(Elem[] array) { // Insertion Sort
for (int i=1; i<array.length; i++) // Insertrecord

for (int j=i; (j>0) &&
(array[j].key()<array[j-1].key()); j--)

DSutil.swap(array, j, j-1);
}

15

i=1 3 4 5 6

42

20

17

13

28

14

23

15

20

42

17

13

28

14

23

15

2

17

20

42

13

28

14

23

15

13

17

20

42

28

14

23

13

17

20

28

42

14

23

13

14

17

20

28

42

23

13

14

17

20

23

28

42

13

14

15

17

20

23

28

42

7

15 15 15

Best Case: [0 swaps, n � 1 comparisons]

Worst Case: [n2=2 swaps and compares]

Average Case: [n2=4 swaps and compares: # inner loop

iterations for an element in position n = #inversione = n=2 in

the average]

[At each iteration takes one element to its place and does only

that; it works only on the sorted portion of the array]

[Nearly best performance when input "nearly sorted") used

in conjunction with mergesort and quicksort small array

segments]

123

Bubble Sort

static void bubsort(Elem[] array) { // Bubble Sort
for (int i=0; i<array.length-1; i++) // Bubble up

for (int j=array.length-1; j>i; j--)
if (array[j].key() < array[j-1].key())

DSutil.swap(array, j, j-1);
}

[Using test \ j > i " saves a factor of 2 over \ j > 0".]

15

i=0 1 2 3 4 5 6

42

20

17

13

28

14

23

13

42

20

17

14

28

15

13

14

42

20

17

15

28

23

13

14

20

42

15

17

23

28

13

14

15

20

42

17

23

28

13

14

15

17

20

42

23

28

13

14

15

17

20

23

42

13

14

15

17

20

23

28

4223 28

Best Case: [n2=2 compares, 0 swaps]

Worst Case: [n2=2 compares, n2=2 swaps]

Average Case: [n2=2 compares, n2=4 swaps]

[At each iteration takes the smallest to its place, but it moves
also other ones;

NB: it works also on the unsorted part of the array;

No redeeming features to this sort.]

124

Selection Sort

static void selsort(Elem[] array) { // Selection Sort
for (int i=0; i<array.length-1; i++) { // Select i'th

int lowindex = i; // Remember its index
for (int j=array.length-1; j>i; j--) // Find least

if (array[j].key() < array[lowindex].key())
lowindex = j; // Put it in place

DSutil.swap(array, i, lowindex);
}

}

[Select the value to go in the i th position.]

42

i=0 1 2 3 4 5 6

42

20

17

13

28

14

23

15

13

20

17

42

28

14

23

15

13

14

17

42

28

20

23

15

13

14

15

42

28

20

23

17

13

14

15

17

28

20

23

42

13

14

15

17

20

28

23

42

13

14

15

17

20

23

28

42

13

14

15

17

20

23

28

Best Case: [0 swaps (n � 1 as written), n2=2 compares.]

Worst Case: [n � 1 swaps, n2=2 compares]

Average Case: [O(n) swaps, n2=2 compares]

[It minimizes # swaps]

125

Pointer Swapping

(b)

Key = 42

Key = 5

Key = 42

Key = 5

(a)

[For large records.]

This is what done in Java, when records are
objects

126

Exchange Sorting

Summary

Insertion Bubble Selection
Comparisons:

Best Case �(n) �(n2) �(n2)
Average Case �(n2) �(n2) �(n2)

Worst Case �(n2) �(n2) �(n2)

Swaps:
Best Case 0 0 �(n)

Average Case �(n2) �(n2) �(n)
Worst Case �(n2) �(n2) �(n)

127

Mergesort

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List l1 = half of the items from inlist;
List l2 = other half of the items from inlist;
return merge(mergesort(l1), mergesort(l2));

}

Analyze �rst the algorithm for merging sorted
sublists

� examine �rst element of each sublist

� pick the smaller element (it is the smallest
overall)

� remove it from its sublist and put it in the
output list

� when one sublist is exhausted, pick from
the other

Complexity of merging two sorted sublist: �(n)

36

36 20 17 13 28 14 23 15

2823151436201713

20 36 13 17 14 28 15 23

13 14 15 17 20 23 28

128

Mergesort Implementation

Mergesort is tricky to implement.
Main question: how to represent lists?

Linked lists

� merging does not require direct access,
but...

� splitting requires a list traversal (�(n)),
whether list size is known (take as two
sublists the �rst and second halves) or
unknown (assign elements alternating
between the two lists)

Lists represented by arrays

� splitting very easy (�(1)) if array bounds
are known

� merging easy (�(n)) only if sub-arrays
merged into a second array (hence double
the space requirement!)

� avoid the need for a distinct additional array
for each recursive call by f irst copying
sub-arrays into auxiliary array and then
merging them back to the original array
(hence can use only one array for the
overall process)

129

Mergesort Implementation (2)

static void mergesort(Elem[] array, Elem[] temp,
int l, int r) {

if (l == r) return; // One element list
int mid = (l+r)/2; // Select midpoint
mergesort(array, temp, l, mid); // Ssort first half
mergesort(array, temp, mid+1, r); // Sort second half
merge(array, temp, l, mid, mid+1, r);

}

static void merge(Elem[] array, Elem[] temp,
int l1, int r1, int l2, int r2) {

for (int i=l1; i<=r2; i++) // Copy subarrays
temp[i] = array[i];

// Do the merge operation back to array
int i1 = l1; int i2 = l2;
for (int curr=l1; curr<=r2; curr++) {

if (i1 > r1) // Left sublist exhausted
array[curr] = temp[i2++];

else if (i2 > r2) // Right sublist exhausted
array[curr] = temp[i1++];

// else choose least of the two front elements
else if (temp[i1].key() < temp[i2].key())

array[curr] = temp[i1++]; // Get smaller val
else array[curr] = temp[i2++];

}
}

130

Complexity of Mergesort

Ad hoc analysis

� depth of recursion is log n

� at each recursion depth i
{ 2 i recursive calls
{ each recursive call has array length n=2 i ,

hence...
{ total length of merged arrays is n at

every depth

� therefore total cost is T(n) = �(n log n)

Alternative analysis: use recurrence equation

T(n) = aT(n=b)+ cnk = 2T(n=2)+ cn, T(1)= d

We have a = b = 2, k = 1 and therefore a = bk ,
hence

T(n) = �(n log n)

131

Heapsort

Heapsort uses a max-heap.

static void heapsort(Elem[] array) { // Heapsort
MaxHeap H = new MaxHeap(array, array.length,

array.length);
for (int i=0; i<array.length; i++) // Now sort

H.removemax(); // Put max value at end of heap
}

Cost of Heapsort: [�(n log n)]

Cost of �nding k largest elements: [�(k log n + n) .

Time to build heap: �(n) .

Time to remove least element: �(log n) .]

[Compare to sorting with BST: this is expensive in space

(overhead), potential bad balance, BST does not take

advantage of having all records available in advance.]

[Heap is space e�cient, balanced, and building initial heap is

e�cient.]

132

Heapsort Example

83

Original Numb ers

Build Heap

Remove 88

Remove 85

Remove 83

73

88 60

48

88

6048

85

72

6 48

60 42 57

83

72 60

6

42 48

73

6 60 42 48

88 85 83 72 73 42 57 6 48 60

73 6 57 88 60 42 83 72 48 85

85 73 83 72 60 42 57 6 48 88

83 73 57 72 60 42 48 6 85 88

73 72 57 6 60 42 48 83 85 88

6 57

85

8572

42 83

72 73 42 57

6

72 57

73 83

73 57

133

Empirical Comparison
[MS Windows { CISC]

Algorithm 10 100 1000 10,000
Insert. Sort .10 9.5 957.9 98,086
Bubble Sort .13 14.3 1470.3 157,230
Select. Sort .11 9.9 1018.9 104,897
Shellsort .09 2.5 45.6 829
Quicksort .15 1.8 23.6 291
Quicksort/O .10 1.6 20.9 274
Mergesort .12 2.4 36.8 505
Mergesort/O .08 1.8 28.0 390
Heapsort { 50.0 60.0 880
Radix Sort/1 .87 8.6 89.5 939
Radix Sort/4 .23 2.3 22.5 236
Radix Sort/8 .19 1.2 11.5 115

[UNIX { RISC]

Algorithm 10 100 1000 10,000
Insert. Sort .66 65.9 6423 661,711
Bubble Sort .90 85.5 8447 1,068,268
Select. Sort .73 67.4 6678 668,056
Shellsort .62 18.5 321 5,593
Quicksort .92 12.7 169 1,836
Quicksort/O .65 10.7 141 1,781
Mergesort .76 16.8 234 3,231
Mergesort/O .53 11.8 189 2,649
Heapsort { 41.0 565 7,973
Radix Sort/1 7.40 67.4 679 6,895
Radix Sort/4 2.10 18.7 160 1,678
Radix Sort/8 4.10 11.5 97 808

[Clearly, n log n superior to n2 . Note relative di�erences on

di�erent machines.]

134

Upperbound and Lowerbound for a

Problem

Upperbound : asymptotic cost of the fastest
known algorithm

lowerbound best possible e�ciency of any
possible (known or unknown) algorithm

open problem : upperbound di�erent from
(greater than) lowerbound

closed problem : upperbound equal to
lowerbound

135

Sorting Lower Bound

Want to prove a lower bound sorting problem
based on key comparison.

Sorting I/O takes
(n) time. (no algorithm
can take less than I/O time)

Sorting is O(n log n).

Will now prove
(n log n) lower bound.

Form of proof:

- Comparison based sorting can be modeled
by a binary tree.

- The tree must have
(n!) leaves (because
there are n! permutations of n elements).

- The tree cannot be less than
(n log n)
levels deep (a tree with k nodes has at least
log k levels).

this comes from the fact that
log n! = �(n log n)

which is due to Stirling's approximation of n!:
n! �

p
2�n

�
n
e

� n

from which log n! � n log n

136

Decision Trees

YZX

Y es No

Y es No Y es No

Y es No Y es No

A[1] < A[0]?

A[2] < A[1]? A[2] < A[1]?

A[1] < A[0]?A[1] < A[0]?

(Y < X?)

(Z < X?) (Z < Y?)

(Z < X?)(Z < Y?)

XYZ

XYZ

XZY

YXZ

YZX

ZXY

ZYX

YXZ

YXZ

YZX

ZYX

XYZ

XYZ

XZY

ZXY

YXZ XZY

XZY

ZXY

XYZ

ZXY XZY

YZX

YZX

ZYX

ZYX

[Illustration of Insertion sort. Lower part of table shows

possible output (sorted version of input array) after each

check]

There are n! permutations, and at least 1 node
for each permutation.

Where is the worst case in the decision tree?

137

Primary vs. Secondary Storage

review following sections of textbook

9.1 on Primary vs secondary storage

9.2 on Disk & Tape drives

9.3 on Bu�ers and Bu�er Pools

138

Bu�er Pools

A series of bu�ers used by an application to
cache disk data is called a bu�er pool .

Virtual memory uses a bu�er pool to imitate
greater RAM memory by actually storing
information on disk and \swapping" between
disk and RAM.

Caching Same technique to imitate greater
CACHE memory by storing info on RAM and
swapping between RAM and CACHE.

Organization for bu�er pools: which one to use
next?

� First-in, First-out: Use the �rst one on the
queue.

� Least Frequently Used (LFU): Count bu�er
accesses, pick the least used.

� Least Recently Used (LRU):
Keep bu�ers on linked list.
When a bu�er is accessed, bring to front.
Reuse the one at the end.

139

Programmer's View of Files

Logical view of �les:

� An array of bytes.

� A �le pointer marks the current position.

Three fundamental operations:

� Read bytes from current position (move �le
pointer).

� Write bytes to current position (move �le
pointer).

� Set �le pointer to speci�ed byte position.

140

Java File Functions

RandomAccessFile(String name, String mode)

close()

read(byte[] b)

write(byte[] b)

seek(long pos)

141

External Sorting

Problem: Sorting data sets too large to �t in
main memory.

� Assume data stored on disk drive.

To sort, portions of the data must be brought
into main memory, processed, and returned to
disk.

An external sort should minimize disk accesses.

142

Model of External Computation

Secondary memory is divided into equal-sized
blocks (512, 2048, 4096 or 8192 bytes are
typical sizes).

The basic I/O operation transfers the contents
of one disk block to/from main memory.

Under certain circumstances, reading blocks of
a �le in sequential order is more e�cient.
(When?) [1) Adjacent logical blocks of �le are physically

adjacent on disk. 2) No competition for I/O head.]

Typically, the time to perform a single block
I/O operation is su�cient to Quicksort the
contents of the block.

Thus, our primary goal is to minimize the
number of block I/O operations.

Most workstations today must do all sorting on
a single disk drive.

143

Key Sorting

Often records are large while keys are small.

� Ex: Payroll entries keyed on ID number.

Approach 1: Read in entire records, sort them,
then write them out again.

Approach 2: Read only the key values, store
with each key the location on disk of its
associated record.

If necessary, after the keys are sorted the
records can be read and re-written in sorted
order.

[But, this is not usually done. (1) It is expensive (random

access to all records). (2) If there are multiple keys, there is

no \correct" order.]

144

External Sort: Simple Mergesort

Quicksort requires random access to the entire
set of records.
Better: Modi�ed Mergesort algorithm

� Process n elements in �(log n) passes.

1. Split the �le into two �les.

2. Read in a block from each �le.

3. Take �rst record from each block, output
them in sorted order.

4. Take next record from each block, output
them to a second �le in sorted order.

5. Repeat until �nished, alternating between
output �les. Read new input blocks as
needed.

6. Repeat steps 2-5, except this time the
input �les have groups of two sorted
records that are merged together.

7. Each pass through the �les provides larger
and larger groups of sorted records.

A group of sorted records is called a run .

145

Problems with Simple Mergesort

Runs of length 1

Runs of length 4Runs of length 2

28

17 20 36

15 23

20

13 17

36 14

15

23

15

36 17 28

20 13 14 14

1328

23

Is each pass through input and output �les
sequential? [yes]

What happens if all work is done on a single
disk drive? [Competition for I/O head eliminates

advantage of sequential processing.]

How can we reduce the number of Mergesort
passes? [Read in a block (or several blocks) and do an

in-memory sort to generate large initial runs.]

In general, external sorting consists of two
phases:

1. Break the �le into initial runs.

2. Merge the runs together into a single sorted
run.

146

Breaking a �le into runs

General approach:

� Read as much of the �le into memory as
possible.

� Perform and in-memory sort.

� Output this group of records as a single run.

147

General Principals of External

Sorting

In summary, a good external sorting algorithm
will seek to do the following:

� Make the initial runs as long as possible.

� At all stages, overlap input, processing and
output as much as possible.

� Use as much working memory as possible.
Applying more memory usually speeds
processing.

� If possible, use additional disk drives for
more overlapping of processing with I/O,
and allow for more sequential �le
processing.

148

Search

Given: Distinct keys k1, k2, ... kn and
collection T of n records of the form

(k1; I 1) ; (k2; I 2) ; :::; (kn ; I n)

where I j is information associated with key kj
for 1 � j � n.

Search Problem : For key value K , locate the
record (kj ; I j) in T such that kj = K .

Exact match query : search records with a
speci�ed key value.

Range query : search records with key in a
speci�ed range.

Searching is a systematic method for locating
the record (or records) with key value kj = K .

A successful search is one in which a record
with key kj = K is found.

An unsuccessful search is one in which no
record with kj = K is found (and presumably
no such record exists).

149

Approaches to Search

1. Sequential and list methods (lists, tables,
arrays).

2. Direct access by key value (hashing).

3. Tree indexing methods.

[recall: sequences : duplicate key values allowed; sets no key

duplication]

150

Searching Ordered Arrays

Sequential Search

Binary Search

static int binary(int K, int[] array,
int left, int right) {

// Return position of element (if any) with value K
int l = left-1;
int r = right+1; // l and r are beyond array bounds
while (l+1 != r) { // Stop when l and r meet

int i = (l+r)/2; // Look at middle of subarray
if (K < array[i]) r = i; // In left half
if (K == array[i]) return i; // Found it
if (K > array[i]) l = i; // In right half

}
return UNSUCCESSFUL; // Search value not in array

}

40Key

P osition 0 2 3 4 5 6 7 8

26 29 36

10 11 12 13 14 15

11 13 21 41 45 51 54

1

56 65 72 77

9

83

Improvement: Dictionary Search , expected
record position computed from key value; value
of key found there used as in binary search

151

Lists Ordered by Frequency

Order lists by (expected) frequency of
occurrence) Perform sequential search.

Cost to access �rst record: 1; second record: 2

Expected (i.e., average) search cost:

Cn = 1 p1 + 2 p2 + ::: + npn

[pi is probability of i th record being accessed.]

Example: all records have equal frequency

Cn =
nX

i =1
i=n = (n + 1) =2:

Example: Exponential frequency

pi =

(
1=2 i if 1 � i � n � 1
1=2n� 1 if i = n

[Second line is to make proabilities sum to 1.]

Cn �
nX

i =1
(i=2 i) � 2:

[very good performance, because assumption (exp. freq.) is

strong]

152

Zipf Distributions

Applications:

� Distribution for frequency of word usage in
natural languages.

� Distribution for populations of cities, etc.

De�nition: Zipf frequency for item i in the
distribution for n records as 1 =iH n .

[H n =
P n

i =1
1
i � log e n.]

Cn =
nX

i =1
i=i H n = n=H n � n= log e n

80/20 rule: 80% of the accesses are to 20% of
the records.

For distributions following the 80/20 rule,

Cn � 0:122 n:

153

Self-Organizing Lists

Self-organizing lists modify the order of records
within the list based on the actual pattern of
record access.

Based on assumption that past searches
provide good indication of future ones

This is a heuristic similar to those for
managing bu�er pools.

� Order by actual historical frequency of
access. (Similar to LFU bu�er pool
replacement strategy.) [COUNT method: slow

reaction to change]

� Move-to-Front : When a record is found,
move it to the front of the list. [Not worse

than twice \best arrangement"; easy to implement with

linked lists, not arrays]

� Transpose : When a record is found, swap
it with the record ahead of it. [A pathological,

though unusual case: keep swapping last two elements.]

154

Advantages of self-organizing lists

� do not require sorting

� cost of insertion and deletion low

� no additional space

� simple (hence easy to implement)

155

Example of Self-Organizing Tables

Application: Text compression.

Keep a table of words already seen, organized
via Move-to-Front Heuristic.

If a word not yet seen, send the word.
Otherwise, send the (current) index in the
table.

[NB: sender and receiver maintain identical lists, so they agree

on indices]

The car on the left hit the car I left.

The car on 3 left hit 3 5 I 5.

156

Hashing

Hashing : The process of mapping a key value
to a position in a table.

A hash function maps key values to positions
It is denoted by h .

A hash table is an array that holds the
records. It is denoted by T .

[NB: records not necessarily ordered by key value or frequenc y]

The hash table has M slots, indexed from 0 to
M � 1.

For any value K in the key range and some
hash function h ,
h (K) = i; 0 � i < M , such that T [i].key() = K .

157

Hashing (continued)

Hashing is appropriate only for sets (no
duplicates).

Good for both in-memory and disk based
applications.

[Very good for organizing large databases on disk]

Answers the question \What record, if any, has
key value K ?"

[Not good for range queries.]

Trivial Example: Store the n records with keys
in range 0 to n � 1.

� Store the record with key i in slot i .

� Use hash function h(K) = K:

Typically, there are however many more values
in the key range than slots in the hash table

158

Collisions

More reasonable example:

� Store about 1000 records with keys in
range 0 to 16,383.

� Impractical to keep a hash table with
16,384 slots.

� We must devise a hash function to map the
key range to a smaller table.

Given: hash function h and keys k1 and k2.
� is a slot in the hash table.
If h(k1) = � = h(k2), then k1 and k2 have a
collision at � under h .

Perfect Hashing : hash function devised so
that there are no collisions

Often impractical, sometimes expensive but
worthwhile

It works when the set is very stable (e.g., a
database on a CD)

159

Collisions (cont)

Search for the record with key K :

1. Compute the table location h(K).

2. Starting with slot h(K), locate the record
containing key K using (if necessary) a
collision resolution policy .

Collisions are inevitable in most applications.

� Example: 23 people are likely to share a
birthday (p = 1

2).

Example: store 200 students, in a table T with
365 records, using hash function h: birthday

160

Hash Functions

A hash function MUST return a value within
the hash table range.

To be practical, a hash function SHOULD
evenly distribute the records stored among the
hash table slots.

Ideally, the hash function should distribute
records with equal probability to all hash table
slots. In practice, success depends on the
distribution of the actual records stored.

If we know nothing about the incoming key
distribution, evenly distribute the key range
over the hash table slots.

If we have knowlege of the incoming
distribution, use a distribution-dependant hash
function.

161

Hash Functions (cont.)

Reasons why data values are poorly distributed

- Natural distributions are exponential (e.g.,
populations of cities)

- collected (e.g., measured) values are often
somehows skewed (e.g., rounding when
measuring)

- coding and alphabets introduce uneven
distributions (e.g., words in natural
language have �rst letter poorly distributed)

162

Example Hash Functions

static int h(int x) {
return(x % 16);

}

This function is entirely dependant on the lower
4 bits of the key, likely to be poorly distributed.

Mid-square method : square the key value,
take the middle r bits from the result for a
hash table of 2 r slots.

[Works well because all bits contribute to the result.]

Sum the ASCII values of the letters and take
results modulo M .
static int h(String x, int M) {

int i, sum;
for (sum=0, i=0; i<x.length(); i++)

sum += (int)x.charAt(i);
return(sum % M);

}

[Only good if the sum is large compared to the size of the

table M .]

[This is an example of a folding method]

[NB: order of characters in the string is immaterial]

163

Open Hashing

What to do when collisions occur?
Open hashing treats each hash table slot as a
bin.

Open: collisions result in storing values outside
the table

Each slot is the head of a linked list

9877

0

1

2

3

4

5

6

7

8

9

9530

10572007

1000

3013

9879

164

Open Hashig Performance

Factors inuencing performance

- how records are ordered in a slot's list (e.g.,
by key value or frequency of access)

- ration N=M (records/slots)

- distribution of record key values

NB: Open Hash table must be kept in main
memory (storing on disk would defeat the
purpose of hashing)

165

Bucket Hashing

Divide the hash table slots into buckets.

� Example: 8 slots/bucket.

Include an overow bucket.

Records hash to the �rst slot of the bucket,
and �ll bucket. Go to overow if necessary.

When searching, �rst check the proper bucket.
Then check the overow.

166

Closed Hashing

Closed hashing stores all records directly in the
hash table.

Each record i has a home position h(ki).

If i is to be inserted and another record already
occupies i 's home position, then another slot
must be found to store i .

The new slot is found by a
collision resolution policy .

Search must follow the same policy to �nd
records not in their home slots.

167

Collision Resolution

During insertion, the goal of collision resolution
is to �nd a free slot in the table.

Probe Sequence : the series of slots visited
during insert/search by following a collision
resolution policy.

Let � 0 = h(K). Let (� 0; � 1; :::) be the series of
slots making up the probe sequence.

void hashInsert(Elem R) { // Insert R into hash table T
int home; // Home position for R
int pos = home = h(R.key());// Initial pos on sequence
for (int i=1; T[pos] != null; i++) {

// Find next slot: p() is the probe function
pos = (home + p(R.key()), i)) % M;
Assert.notFalse(T[pos].key() != R.key(),

"Duplicates not allowed");
}
T[pos] = R; // Insert R

}

168

Collision Resolution (cont.)

// p(K, i) probe function returns offset from home position
// for ith slot of probe sequence of K
ELEM hashSearch(int K) { // Search for record w/ key K

int home; // Home position for K
int pos = home = h(K); // Initial pos on sequence
for (int i = 1; (T[pos] != null) &&

T[pos].key() != K); i++)
pos = (home + p(K, i)) % M; // Next pos on sequence

if (T[pos] == null) return null; // K not in hash table
else return T[pos]; // Found it

}

169

Linear Probing

Use the probe function

int p(int K, int i) { return i; }

This is called linear probing .

Linear probing simply goes to the next slot in
the table.

If the bottom is reached, wrap around to the
top.

To avoid an in�nite loop, one slot in the table
must always be empty.

170

Linear Probing Example

Assuming hash function h(x) = x mod 11

(a)

0

1

2

4

3

5

6

7

9

10

1001

9537

3016

9874

9875

0

1

2

3

4

5

6

7

8

9

10

1001

9537

3016

9874

2009

9875

1052

(b)

8 2009

Primary Clustering : Records tend to cluster
in the table under linear probing since the
probabilities for which slot to use next are not
the same.

[notation: prob(x) is the probability that next element goes to

position x]

[For (a): prob(3) = 4/11, prob(4) = 1/11, prob(5) = 1/11,

prob(6) = 1/11, prob(10) = 4/11.]

[For (b): prob(3) = 8/11, prob(4,5,6) = 1/11 each.]

[small clusters tend to merge) long probe sequences]

171

Improved Linear Probing

Instead of going to the next slot, skip by some
constant c.

Warning: Pick M and c carefully.

The probe sequence SHOULD cycle through all
slots of the table.

[If M = 10 with c = 2 , then we e�ectively have created 2 hash

tables (evens vs. odds).]

Pick c to be relatively prime to M .

There is still some clustering.

� Example: c = 2. h(k1) = 3. h(k2) = 5.

� The probe sequences for k1 and k2 are
linked together.

172

Pseudo Random Probing

The ideal probe function would select the next
slot on the probe sequence at random.

An actual probe function cannot operate
randomly. (Why?)

[Execution of random procedure cannot be duplicated when

searching]

Pseudo random probing :

� Select a (random) permutation of the
numbers from 1 to M � 1:

r 1; r 2; :::; r M � 1

� All insertions and searches use the same
permutation.

Example: Hash table of size M = 101

� r 1 = 2 ; r 2 = 5 ; r 3 = 32.

� h(k1) = 30 ; h(k2) = 28.

� Probe sequence for k1 is: [30, 32, 35, 62]

� Probe sequence for k2 is: [28, 30, 33, 60]

[The two probe sequences diverge immediately]

173

Quadratic Probing

Set the i 'th value in the probe sequence as

(h(K) + i 2) mod M:

Example: M = 101.

� h(k1) = 30, h(k2) = 29.

� Probe sequence for k1 is:

[30, 31, 34, 39] =

[30, 30+1 2 ; 30 + 2 2 ; 30 + 3 2]

� Probe sequence for k2 is:

[29, 30, 33, 38] =

[29, 29+1 2 ; 29 + 2 2 ; 29 + 3 2] =

Problem: not all slots in the hash table are
necessarily in the probe serquence

174

Double Hashing

Pseudo random probing eliminates primary
clustering.

If two keys hash to same slot, they follow the
same probe sequence. This is called
secondary clustering .

To avoid secondary clustering, need a probe
sequence to be a function of the original key
value, not just the home position.

Double hashing :

p(K; i) = i � h2(K) for 0 � i � M � 1:]

Be sure that all probe sequence constants are
relatively prime to M [just like in improved linear

probing] .

Example: Hash table of size M = 101

� h(k1) = 30 ; h(k2) = 28 ; h(k3) = 30.

� h2(k1) = 2 ; h2(k2) = 5 ; h2(k3) = 5.

� Probe sequence for k1 is: [30, 32, 34, 36]

� Probe sequence for k2 is: [28, 33, 38, 43]

� Probe sequence for k3 is: [30, 35, 40, 45]

175

Analysis of Closed Hashing

The expected cost of hashing is a function of
how full the table is

The load factor is � = N=M where N is the
number of records currently in the table.

Expected # accesses (NB: accesses are due to
collisions) vs �

- solid lines: random probing

- dashed lines: linear probing

1

2

3

4

5

DeleteInsert

0 .2 .4 .6 .8 1.0

176

Deletion

1. Deleting a record must not hinder later
searches.

2. We do not want to make positions in the
hash table unusable because of deletion.

Both of these problems can be resolved by
placing a special mark in place of the deleted
record, called a tombstone .

A tombstone will not stop a search, but that
slot can be used for future insertions.

Unfortunately, tombstones do add to the
average path length.

Solutions:

1. Local reorganizations to try to shorten the
average path length.

2. Periodically rehash the table (by order of
most frequently accessed record).

177

Indexing

Goals:

� Store large �les.

� Support multiple search keys.

� Support e�cient insert, delete and range
queries.

Entry sequenced �le: Order records by time
of insertion. [Not practical as a database organization.]

Use sequential search.

Index �le : Organized, stores pointers to actual
records. [Could be a tree or other data structure.]

Primary key : A unique identi�er for records.
May be inconvenient for search.

Secondary key : an alternate search key, often
not unique for each record. Often used for
search key.

178

Linear Indexing

Linear Index : an index �le organized as a
simple sequence of key/record pointer pairs
where the key values are in sorted order.

Features:

� If the index is too large to �t in main
memory, a second level index may be used.

� Linear indexing is good for searching
variable length records.

� Linear indexing is poor for insert/delete.

179

Tree Indexing

Linear index is poor for insertion/deletion.

Tree index can e�ciently support all desired
operations (typical of a database):

� Insert/delete

� Multiple search keys [Multiple tree indices.]

� Key range search

Storing a (BST) tree index on disk causes
additional problems:

1. Tree must be balanced. [Minimize disk accesses.]

2. Each path from root to a leaf should cover
few disk pages.

Use bu�er pool to store recently accessed
pages; exploit locality of reference

But only mitigates the problem

180

Tree indexing (cont.)

Rebalance a BST after insertion/deletion can
require much rearranging

Example of insert(1)

4

5

3

2 4 6

7 2

1 3 5

6

7

(a) (b)

181

2-3 Tree

A 2-3 Tree has the following shape properties:

1. A node contains one or two keys.

2. Every internal node has either two children
(if it contains one key) or three children (if
it contains two keys).

3. All leaves are at the same level in the tree,
so the tree is always height balanced.

The 2-3 Tree also has search tree properties
analogous to BST

1. values in left subtree < �rst node value

2. values in center subtree � �rst node value

3. values in center subtree < second node
value (if existing)

4. (if both existing) values in right subtree �
�rst node value

182

2-3 Tree(cont.)

The advantage of the 2-3 Treeover the BST is
that it can be updated at low cost.

- always insert at leaf node

- search position for key to be inserted

- if there is room (1 free slot) then �nished

- otherwise must add a node (split operation)

- from 1 node with 2 keys get 2 nodes with 1
key and promote middle valued key

- recursively, insert promoted key into parent
node

- if splitting repeated until root of the tree
then its depth increases (but tree remains
balanced)

24

18 33

12 23 30 48

10 15 20 21 31 45 47 50 52

183

2-3 Tree Insertion

52

12

10 15

14

15 20 21

18 33

23 30

24 31

48

45 47 50

[Insert 14]

55

18 33

12

10 15

23 30

20 21 24 31

48 52

45 47 50

[Insert 55. Always insert at leaf node.]

184

2-3 Tree Splitting

[Insert 19 into node 20-21) split and promote 20 into node

23-30) split and promote 23, this becomes new root, tree is

1 level deeper]

[NB: All operations are local to original search path.]

(c)

23 30 20

23

30

20

(a) (b)

19 21 24 31 19 21 24 31

23

18

12

10 15 19

20

21 24

30

31

33

48

45 47 50 52

185

B-Trees

The B-Tree is a generalization of the 2-3 Tree.

The B-Tree is now the standard �le
organization for applications requiring insertion,
deletion and key range searches.

1. B-Trees are always balanced.

2. B-Trees keep related records on a disk
page, which takes advantage of locality of
reference.

3. B-Trees guarantee that every node in the
tree will be full at least to a certain
minimum percentage. This improves space
e�ciency while reducing the typical number
of disk fetches necessary during a search or
update operation.

186

B-Trees (Continued)

A B-Tree of order m has the following
properties.

� The root is either a leaf or has at least two
children.

� Each node, except for the root and the
leaves, has between dm=2e and m children.

� All leaves are at the same level in the tree,
so the tree is always height balanced.

NB: A 2-3 Tree is a B-Tree of order 3

A B-Tree node is usually selected to match the
size of a disk block.

A B-Tree node could have hundreds of children
) depth is � log 100 n.

A block implemented in a disk block

A pointer implemented by a disk block
reference

187

B-Tree Example

Search in a B-Tree is a generalization of search
in a 2-3 Tree.

1. Perform a binary search on the keys in the
current node. If the search key is found,
then return the record. If the current node
is a leaf node and the key is not found,
then report an unsuccessful search.

2. Otherwise, follow the proper branch and
repeat the process.

A B-Tree of order 4

Example: search for record with key 47

60

24

15 20 33 45 48

10 12 18 21 23 30 31 38 47 50 52

188

B-Tree Insertion

Obvious extension of 2-3 Tree insertion

NB: split and promote process ensures all nodes
are half full

Example: node with 4 keys + add one key

SPLIT) promote middle key + 2 nodes with
2 keys each

189

B + -Trees

The most commonly implemented form of the
B-Tree is the B + -Tree.

Internal nodes of the B + -Tree do not store
records { only key values to guide the search.

Leaf nodes store records or pointers to records.

A leaf node may store more or less records than
an internal node stores keys.

Requirement: leaf nodes always half full.

Leaf nodes doubly linked in a list) can
traverse it in any order) very good for range
queries.

Search: similar to B-Tree search: must always
go to the leaf (internal nodes do not store
records)

190

B + -Tree Example: search

[Assume leaves can store 5 values, internal notes 3 (4

children).]

[Example: search key 33]

22

33

18 23

23 30 31 33 45 47

48

48 50 5210 12 15 18 19 20 21

191

B + -Tree Insertion

Insertion similar to B-Tree insertion:

- �nd leaf that should contain inserted key

- if not full, insert and �nish

- else split and promote a copy of least
valued key of the newly formed right node

192

B + -Tree Example: Insertion
[Note special rule for root: May have only two children.]

52

33

(b)(a)

10 12 23 33 48 10 12 23

18 48

10 12 15

(c)

(d)

33

33

18 23 48

10 12 15 18 20 21 23 30 31 33 45 47 48 50 52

33 48 50

18 20 21 23 31 33 45 47 48 50

[(b) Add 50.] [Add 45, 52, 47 (split), 18, 15, 31 (split), 21,

20.]

[Add 30 (split).]

193

B + -Tree Deletion

- locate level N containing key to be deleted

- if more than half full, remove and �nish

- else (underow) must restructure the tree
- if possible get spare values from adjacent

siblings () possibly keys in parent node
must be updated)

- if siblings cannot give values (they are
only half full)
- N goves its values to them and is

removed (possible because its siblings
are only half full and N is
underowing)

- this can cause underow in the parent
node () propagate upwards, possibly
eventually causing two chindren or root
to merge and tree to lose one level)

194

B + -Tree Example: Deletion
[Simple delete { delete 18 from original example.] [NB: do

not need to delete 18 from internal node: it is a placeholder,

can still be used to guide the search]

52

33

18 23 48

10 12 15 23 30 3119 20 21 22 33 45 47 48 50

[Delete of 12 form original example: Borrow from sibling.]

52

33

19 23 48

10 15 18 19 20 21 22 23 30 31 33 45 47 48 50

195

B-Tree Space Analysis

B + -Tree nodes are always at least half full.

The B � -Tree splits two pages for three, and
combines three pages into two. In this way,
nodes are always 2/3 full.

Improves performance, makes implementation
very complex

Tradeo� between space utilization and
e�ciency and complexity of impolementation

Asymptotic cost of search, insertion and
deletion of records from B-Trees, B + -Trees and
B � -Trees is �(log n). (The base of the log is
the (average) branching factor of the tree.)

Ways to reduce the number of disk fetches:

� Keep the upper levels in main memory.

� Manage B + -Tree pages with a bu�er pool.

196

B-Tree Space Analysis: Examples

Example: Consider a B + -Tree of order 100
with leaf nodes containing 100 records.
1 level B + -Tree: [Max: 100]

2 level B + -Tree: [Min: 2 leaves of 50 for 100 records.

Max: 100 leaves with 100 for 10,000 records.]

3 level B + -Tree: [Min: 2 � 50 nodes of leaves for 5000

records. Max: 100 3 = 1 ; 000 ; 000 records.]

4 level B + -Tree: [Min: 250,000 records (2 * 50 * 50 *

50). Max: 100 million records (100 * 100 * 100 * 100).]

197

