Quantum Computing: From Circuit To Architecture

Nicholas Mainardi
Email: nicholas.mainardi@polimi.it
home.deib.polimi.it/nmainardi

8th September 2017
This talk is mainly based on portions of the course held by Carmen G. Almudever (TU Delft) at Acaces summer school (Fiuggi, 9-14th July 2017), enriched with some material by myself

Outline

1. Qu-bit definition
2. Quantum gates
3. Multi-states
4. Example: Teleportation
5. Quantum Algorithms
6. Quantum Processor
7. Compilation
8. Quantum Computers Architecture
Qu-Bit: Definition

Classical Bit

Bit is either 0 or 1:

\[|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle \]

Since \[|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \] and \[|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \] \[|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix} \]
Qu-Bit: Definition

Classical Bit

Bit is either 0 or 1:

Quantum Bit

The bit is in a superposition state: it is both 0 and 1

A qu-bit ψ is defined as: $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ \quad \alpha_0, \alpha_1 \in \mathbb{C}$

Since $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ \Rightarrow $|\psi\rangle = \begin{bmatrix} \alpha_0 \\ \alpha_1 \end{bmatrix}$
Qu-Bit: Measurement

What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = [\alpha_0 \ \alpha_1]$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0, 1\}$, such that:

- $\Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $\Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

$|\psi\rangle$ 0 or 1

The superposition state is destroyed after measurement!

We cannot directly measure the superposition, only probabilistic estimation.
Qu-Bit: Measurement

What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = [\alpha_0 \quad \alpha_1]$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0, 1\}$, such that:

- $Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

\[|\psi\rangle \rightarrow \begin{cases} 0 & \text{or} \ 1 \end{cases} \]

\[\downarrow \]

The superposition state is destroyed after measurement!
What do α_0 and α_1 actually mean?

Measurement

Consider a qu-bit $|\psi\rangle = [\alpha_0 \alpha_1]$. Define the measurement as a function $M(|\psi\rangle)$ with range $\{0, 1\}$, such that:

- $Pr(M(|\psi\rangle) = 0) = |\alpha_0|^2$
- $Pr(M(|\psi\rangle) = 1) = |\alpha_1|^2$

Therefore, it must be $|\alpha_0|^2 + |\alpha_1|^2 = 1$

\[
|\psi\rangle \rightarrow 0 \text{ or } 1
\]

The superposition state is destroyed after measurement!

We cannot directly measure the superposition, only probabilistic estimation.
Qu-Bit: A Real World Example
Crystal of Tourmaline: Classical World

- **Interaction with plane-polarized light:**
 1. Light polarized perpendicularly w.r.t. the crystal axis ⇒ The light goes through the crystal
 2. Light polarized parallel w.r.t. the crystal axis ⇒ The light is filtered by the crystal
 3. Light polarized with angle α w.r.t. the crystal axis ⇒ A fraction $\sin^2 \alpha$ goes through
Qu-Bit: A Real World Example

Crystal of Tourmaline: Classical World

- Interaction with plane-polarized light:
 1. Light polarized perpendicularly w.r.t. the crystal axis ⇒ The light goes through the crystal
 2. Light polarized parallel w.r.t. the crystal axis ⇒ The light is filtered by the crystal
 3. Light polarized with angle α w.r.t. the crystal axis ⇒ A fraction $\sin^2 \alpha$ goes through

Crystal of Tourmaline: Quantum World

- Interaction with a single plane-polarized photon:
 1. Photon polarized perpendicularly w.r.t. the crystal axis ⇒ The photon is detected after the crystal
 2. Photon polarized parallel w.r.t. the crystal axis ⇒ The photon is not detected after the crystal
 3. Photon polarized with angle α w.r.t. the crystal axis ⇒ A photon perpendicularly polarized is detected $\sin^2 \alpha$ times, no photon detected otherwise
Qu-Bit: A Real World Example

From Physic World to Qu-Bit

Qu-bit ⇔ the polarization direction of a single photon

\[|0\rangle \text{ photon polarized perpendicular w.r.t. the crystal axis} \]

\[|1\rangle \text{ photon polarized parallel w.r.t. the crystal axis} \]

Superposition state? a photon polarized with angle \(\alpha \) w.r.t. the crystal axis:

\[|\psi\rangle = \sin \alpha |0\rangle + \cos \alpha |1\rangle \]

Measurement

- The qu-bit is 0 with probability \(\sin^2 \alpha \)
- The qu-bit is 1 with probability \(\cos^2 \alpha \)
- The qu-bit is destroyed: no longer polarized with angle \(\alpha \)
Quantum Gates

- Qu-bits are vectors in \mathbb{C} \Rightarrow Gates are matrices in \mathbb{C}
- Properties? Unitary Operations!
- Generic gate U: $UU^* = U^*U = I \Rightarrow |\det(U)| = 1$

\downarrow

Quantum gates are reversible!
Quantum Gates

- Qu-bits are vectors in $\mathbb{C} \Rightarrow$ Gates are matrices in \mathbb{C}
- Properties? Unitary Operations!
- Generic gate U:

 $$UU^* = U^*U = I \Rightarrow \left| \det(U) \right| = 1$$

 \downarrow

 Quantum gates are reversible!

Main Single Qu-Bit Gates

- Bit Flip Gate: $X \Rightarrow \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- Identity Gate: $I \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- Phase Flip Gate: $Z \Rightarrow \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- Hadamar Gate: $H \Rightarrow \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
Quantum Gates: Hadamar

Hadamar Gate Effect

\[|\psi_{\text{out}}\rangle = H |\psi_{\text{in}}\rangle, \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

\[|\psi_{\text{in}}\rangle = |0\rangle \quad |\psi_{\text{in}}\rangle = |1\rangle \]

\[|\psi_{\text{out}}\rangle = H|0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \]

\[|\psi_{\text{out}}\rangle = H|1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \]

\[\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = |+\rangle \quad \text{and} \quad \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |\pm\rangle \]

are 2 relevant states. Why?
Quantum Gates: Hadamard

Hadamar Gate Effect

\[|\psi_{\text{out}}\rangle = H |\psi_{\text{in}}\rangle, \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

\[|\psi_{\text{in}}\rangle = |0\rangle \quad \text{and} \quad |\psi_{\text{in}}\rangle = |1\rangle \]

\[|\psi_{\text{out}}\rangle = H |0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \]

\[|\psi_{\text{out}}\rangle = H |1\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \]

\[\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = |+\rangle \quad \text{and} \quad \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |--\rangle \quad \text{are 2 relevant states. Why?} \]

\[\downarrow \]

For both of them, \[|\alpha_0|^2 = |\alpha_1|^2 = \frac{1}{2} \]
Quantum Circuits

From Gates to Circuits

\[
|\psi_{\text{in}}\rangle \xrightarrow{U_1} U_1 |\psi_{\text{in}}\rangle \xrightarrow{U_2} U_2 U_1 |\psi_{\text{in}}\rangle \xrightarrow{U_3} U_3 U_2 U_1 |\psi_{\text{in}}\rangle = |\psi_{\text{out}}\rangle
\]

Reversibility: The way back!

\[
|\psi_{\text{in}}\rangle = U_1^* U_2^* U_3^* |\psi_{\text{out}}\rangle
\]
Quantum Circuits

Examples

$$|0\rangle \quad H \quad Z \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = X |0\rangle \quad = |1\rangle$$

$$|1\rangle \quad H \quad X \quad H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = Z |1\rangle \quad = - |1\rangle$$
Multi Qu-Bit State

- Concise representation of superposition of multiple bits
- Real computational power of quantum computers!
- We need to introduce a new algebraic operation: the tensor product ☞

Tensor Product

Given $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B \in \mathbb{C}^{n \times m}$, the tensor product is defined as:

$$T = A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix}$$

Example: $A = \begin{bmatrix} 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix}$, $T = \begin{bmatrix} 2 \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} & 3 \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 2 & 8 \\ 10 & 4 \\ 3 & 12 \\ 15 & 6 \end{bmatrix}$
Multi Qu-Bit State

- Concise representation of superposition of multiple bits
- Real computational power of quantum computers!
- We need to introduce a new algebraic operation: the tensor product \otimes

Tensor Product

Given $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ and $B \in \mathbb{C}^{n \times m}$, the tensor product is defined as:

$$T = A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{bmatrix}$$

Example: $A = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 4 \\ 5 & 2 \end{bmatrix}$

$$T = \begin{bmatrix} 2 & 1 & 4 \\ 5 & 2 \\ 3 & 1 & 4 \end{bmatrix} \times \begin{bmatrix} 2 & 8 \\ 10 & 4 \\ 3 & 12 \\ 15 & 6 \end{bmatrix}$$
Multi Qu-Bit State

- The superposition state may apply to multiple qu-bits.
- Instead of the 2 kets $|0\rangle$ and $|1\rangle$, there is a ket for each possible combination of bits.
- The coefficients are related to the measurement probability of the corresponding combination.

2 Qu-bits State

$$|\psi\rangle = \alpha_0 |00\rangle + \alpha_1 |01\rangle + \alpha_2 |10\rangle + \alpha_3 |11\rangle$$

$$|\alpha_0|^2 + |\alpha_1|^2 + |\alpha_2|^2 + |\alpha_3|^2 = 1$$

Vector representation? \Rightarrow tensor product between single qu-bit kets

- $|00\rangle = |0\rangle \otimes |0\rangle = [1 \ 0] \otimes [1 \ 0] = [1 \ 1 \ 0 \ 0] = [1 \ 0 \ 0 \ 0]$
- $|10\rangle = |1\rangle \otimes |0\rangle = [0 \ 1] \otimes [1 \ 0] = [0 \ 1 \ 0 \ 0] = [0 \ 0 \ 1 \ 0]$
- $|\psi_2\rangle = |\psi_0\rangle \otimes |\psi_1\rangle = [\alpha_0 \ \alpha_1] \otimes [\beta_0 \ \beta_1] = [\alpha_0 \ \beta_0 \ \beta_1 \ \alpha_1 \ \beta_0 \ \beta_1]$

$$= [\alpha_0 \beta_0 \ \alpha_0 \beta_1 \ \alpha_1 \beta_0 \ \alpha_1 \beta_1]$$
Multi Qu-Bit: Quantum Circuit

2 Qu-bits Circuit

|ψ₀⟩ —— \boxed{H} —— |ψ_{out}⟩ = ??

|ψ₁⟩ —— \boxed{X} ——

- The gates operate on the multi qu-bit |ψ_{in}⟩ = |ψ₀⟩ \otimes |ψ₁⟩
- To apply the gates, we need to combine them in a 2 qu-bit gate. How?
- Tensor Product!

\[
|ψ_{out}\rangle = (H \otimes X)|ψ_{in}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ -1 & 0 \\ -1 & 0 \end{bmatrix}
\]

\[
|ψ_{in}\rangle = |00\rangle \rightarrow |ψ_{out}\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}}(|01\rangle + |11\rangle)
\]
Multi Qu-Bit Gates

There are also quantum gates which apply only on multiple qu-bits

CNOT Gate

- If the control bit ($|\psi_0\rangle$) is 1, then the target bit ($|\psi_1\rangle$) is inverted
- The gate matrix is already 4×4:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

- Superposition state: act independently on the fundamental states

Example: $|\psi_{in}\rangle = \frac{\sqrt{3}}{2} |00\rangle + \frac{1}{2} |10\rangle \rightarrow |\psi_{out}\rangle = \frac{\sqrt{3}}{2} |00\rangle + \frac{1}{2} |11\rangle$
Multi Qu-Bit Gates: More Examples

Swap Gate

The Qu-Bits are swapped

|ψ₀⟩ ↔ |ψ₁⟩
|ψ₁⟩ ↔ |ψ₀⟩

Gate Matrix:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Multi Qu-Bit Gates: More Examples

Swap Gate

The Qu-Bits are swapped

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Toffoli Gate

CNOT gate with 2 control bits instead of 1

That is, the target bit (\(|\psi_2\rangle\)) is inverted when both control bits are 1
Circuits with Multi Qu-Bits Gates

Example

\[|0\rangle \quad H \quad |\psi_{out}\rangle = ?? \]

\[|0\rangle \quad 1 \quad 2 \quad 3 \]

Step-by-Step evaluation:

1. \(|\psi_{in}\rangle = |00\rangle \)
2. \(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \)
3. \(|\psi_{out}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)
Circuits with Multi Qu-Bits Gates

Example

\[|0\rangle \xrightarrow{H} |\psi_{out}\rangle = ?? \]

Step-by-Step evaluation:

1. \[|\psi_{in}\rangle = |00\rangle \]
2. \[\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |10\rangle) \]
3. \[|\psi_{out}\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \]

Measuring 1 Qu-Bit

Introduce a slight variation of the above circuit:

\[|0\rangle \xrightarrow{H} |\psi_{out}\rangle = ?? \]
What happens to the multi qu-bits state when not all the bits are measured?

Partial Measurement: 2 Qu-Bits State

Before measurement, the multi qu-bit $|\psi_{in}\rangle = |\psi_a\rangle \otimes |\psi_b\rangle$

As with single bit gates, bit-wise reasoning

1. Splitting qu-bits: Given a 2 multi qu-bit state $|\psi\rangle$, it is always possible to split is as $|\psi\rangle = \alpha_0 |0\rangle \otimes (|\psi_0\rangle) + \alpha_1 |1\rangle \otimes (|\psi_1\rangle)$, such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\psi_0\rangle$, $|\psi_1\rangle$ are valid qu-bits

2. Then, depending on the measurement outcome on the first qu-bit:
 - Measurement of the first qu-bit is 0 → the second qu-bit is $|\psi_0\rangle \rightarrow |\psi_{out}\rangle = |\psi_0\rangle$
 - Measurement of the first qu-bit is 1 → the second qu-bit is $|\psi_1\rangle \rightarrow |\psi_{out}\rangle = |\psi_1\rangle$
Back to the Example Circuit

Before measurement, the multi qu-bit \(|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

1. \(|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle \)
2. \(\psi_{out} = |0\rangle \) if the measured qu-bit is 0
3. \(\psi_{out} = |1\rangle \) if the measured qu-bit is 1
Before measurement, the multi qu-bit $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

1. $|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle$
2. $\psi_{out} = |0\rangle$ if the measured qu-bit is 0
3. $\psi_{out} = |1\rangle$ if the measured qu-bit is 1

The measurement of a bit determines the second qu-bit

This is weird, since the measurement affects only 1 bit
Before measurement, the multi qu-bit \(|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

1. \(|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |1\rangle \)

2. \(\psi_{out} = |0\rangle \) if the measured qu-bit is 0

3. \(\psi_{out} = |1\rangle \) if the measured qu-bit is 1

- The measurement of a bit determines the second qu-bit
- This is weird, since the measurement affects only 1 bit

\[\Downarrow \]

A quantum phenomenon is happening: entanglement!
Multi Qu-Bit Circuits: Entanglement

Recall the splitting of a 2 multi qu-bit state $|\psi\rangle = |\psi_a\rangle \otimes |\psi_b\rangle$:

$|\psi\rangle = \alpha_0 |0\rangle \otimes (|\psi_0\rangle) + \alpha_1 |1\rangle \otimes (|\psi_1\rangle)$, such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\psi_0\rangle, |\psi_1\rangle$ are valid qu-bits

$|\psi_a\rangle$ and $|\psi_b\rangle$ are entangled $\iff |\psi_0\rangle \neq |\psi_1\rangle$

Meaning: the quantum state of the unmeasured bit depends on the measurement outcome of the entangled bit.
Multi Qu-Bit Circuits: Entanglement

Entanglement Definition

- Recall the splitting of a 2 multi qu-bit state $|\psi\rangle = |\psi_a\rangle \otimes |\psi_b\rangle$:

 $|\psi\rangle = \alpha_0 |0\rangle \otimes (|\psi_0\rangle) + \alpha_1 |1\rangle \otimes (|\psi_1\rangle)$, such that $|\alpha_0|^2 + |\alpha_1|^2 = 1$ and $|\psi_0\rangle, |\psi_1\rangle$ are valid qu-bits

- $|\psi_a\rangle$ and $|\psi_b\rangle$ are entangled $\iff |\psi_0\rangle \neq |\psi_1\rangle$

- Meaning: the quantum state of the unmeasured bit depends on the measurement outcome of the entangled bit.
Entanglement: Examples

1. \[|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}} |0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} |1\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \rightarrow \text{Not entangled!} \]

2. \[|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) = \frac{1}{\sqrt{2}} |0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} |1\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \rightarrow \text{Entangled!} \]
Entanglement: Examples

- \(|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) = \frac{1}{\sqrt{2}} |0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} |1\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \rightarrow \text{Not entangled!} \)

- \(|\psi\rangle = \frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle) = \frac{1}{\sqrt{2}} |0\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} |1\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \rightarrow \text{Entangled!} \)

Bell States

\[
\begin{align*}
|\psi_a\rangle & \quad H \\
|\psi_b\rangle & \\
|\psi_a\rangle \otimes |\psi_b\rangle = |\psi_{in}\rangle \in \{ |00\rangle, |01\rangle, |10\rangle, |11\rangle \} \Rightarrow |\psi_a\rangle \text{ and } |\psi_b\rangle \text{ are entangled at the end of the circuit:}
\end{align*}
\]

| \(|\psi_a\rangle \) | \(|0\rangle \) | \(|\psi_b\rangle \) | \(|1\rangle \) |
|---|---|---|---|
| \(|0\rangle \) | \(\frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \) | \(\frac{1}{\sqrt{2}} (|01\rangle + |10\rangle) \) |
| \(|1\rangle \) | \(\frac{1}{\sqrt{2}} (|00\rangle - |11\rangle) \) | \(\frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \) |
Quantum Teleportation

Teleportation Circuit

- The sender and the receiver generates a bell pair
- The sender keeps $|\psi_a\rangle$, while the receiver keeps $|\psi_b\rangle$
- When the sender wants to send a qu-bit $|\psi_m\rangle$, it performs encoding using $|\psi_a\rangle$ too
- 2 classical bits are sent to the receiver for the decoding procedure
- After decoding, the entangled qu-bit $|\psi_b\rangle$ has become equal to $|\psi_m\rangle$

8th September 2017

Nicholas Mainardi

POLITECNICO DI MILANO

Dipartimento di Elettronica, Informazione e Bioingegneria
Quantum Teleportation

Teleportation Circuit

Example with $|\psi_m\rangle = |1\rangle$ and $|\psi_a\rangle = |\psi_b\rangle = |0\rangle \rightarrow |\psi_{in}\rangle = |100\rangle$:

1. Bell pair creation: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

2. Encoding before measurement: $\frac{1}{2}(|010\rangle - |110\rangle + |001\rangle - |101\rangle) = \frac{1}{2}(|00\rangle \otimes |1\rangle + |01\rangle \otimes |0\rangle + |10\rangle \otimes (-|1\rangle) + |11\rangle \otimes (-|0\rangle))$

Measure	$	\psi_b\rangle$	Corrections	Output	
00	$	1\rangle$	No	$	1\rangle$
01	$	0\rangle$	X	$	1\rangle$
10	$-	1\rangle$	Z	$	1\rangle$
11	$-	0\rangle$	X,Z	$	1\rangle$
Quantum Computing Power

- With quantum teleportation, we can send N qu-bits with $2N$ classical bits
- Is it worthy?
Quantum Computing Power

- With quantum teleportation, we can send N qu-bits with $2N$ classical bits
- Is it worthy?

Qu-Bit Power

Classical Bits:

- N classical bits hold 1 single value between 0 and $2^N - 1$
- For instance, 010 is the value 2
- Classical computation performs only on the single value of the bits
With quantum teleportation, we can send N qu-bits with 2^N classical bits

Is it worthy?

Qu-Bit Power

Classical Bits:

- N classical bits hold 1 single value between 0 and $2^N - 1$
- For instance, 010 is the value 2
- Classical computation performs only on the single value of the bits

Quantum Bits:

- N qu-bits contains all possible 2^N values representable by N bits
- For instance,
 \[
 \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \\
 \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \\
 \alpha_6 |110\rangle + \alpha_7 |111\rangle \text{ represents all integers from 0 to 7}
 \]
- Performing quantum computation is equivalent to compute at the same time with all these 2^N values. How? \Rightarrow Quantum Algorithms!
Quantum Algorithms

Description

Quantum algorithms structure:

- Work on multi qu-bits in superposition states
- The operations performed on the qu-bits are chosen to get to a final superposition state
- Measuring this state generally yields the solution of the problem with probability close to 1
- Quantum algorithms have usually a classical part too, where standard bits are employed
Quantum Algorithms

Description

Quantum algorithms structure:

- Work on multi qu-bits in superposition states
- The operations performed on the qu-bits are chosen to get to a final superposition state
- Measuring this state generally yields the solution of the problem with probability close to 1
- Quantum algorithms have usually a classical part too, where standard bits are employed

Example: Integer Factorization

Classical computing for a 2048 bits number?

- 100 years
- 10^5 Trillion €
- 398549 km^2 server farm
Shor Algorithm

Quantum computation? ⇒ 26.7 hours using Shor algorithm!

Description

- Classical reduction to the order-finding subproblem
- This sub-problem is solved with the quantum algorithm
- Some properties of the solution are tested, otherwise the procedure is repeated to yield a new solution of the subproblem
Quantum computation? ⇒ 26.7 hours using Shor algorithm!

Description

- Classical reduction to the order-finding subproblem
- This sub-problem is solved with the quantum algorithm
- Some properties of the solution are tested, otherwise the procedure is repeated to yield a new solution of the subproblem

Order-Finding Solver

Given $f(x) = a^x \mod N$, find the period of f, i.e. the order of a
Quantum computing is extremely powerful, but . . .

⇓

Quantum Technologies are extremely fragile!
Quantum Technologies

Quantum computing is extremely powerful, but . . .

⇓

Quantum Technologies are extremely fragile!

Quantum Computation Errors

- A qu-bit is affected by external noise
- For instance, the Brownian motions of the molecules may interfere with the quantum estate
- Each qu-bit has a decoherence time: The maximum time a qu-bit can keep its superposition state
- Typically in the order of tens of μs
Quantum Technologies

Quantum computing is extremely powerful, but …

⇓

Quantum Technologies are extremely fragile!

Quantum Computation Errors

- A qu-bit is affected by external noise
- For instance, the Brownian motions of the molecules may interfere with the quantum estate
- Each qu-bit has a decoherence time: The maximum time a qu-bit can keep its superposition state
- Typically in the order of tens of μs

Quantum technology fragility

⇓

Error correction codes are necessary to preserve the computation
Quantum Error Correction Codes (QECC)

- Correction process is carried on after each operation
- As every correction code, redundancy is employed to correct errors
- A lot of redundancy is necessary, since:
 1. Qu-bits are continuous, not discrete
 2. Error rate is high
- Each qu-bit becomes a logical qu-bit, which is encoded in n physical qu-bits: data and ancilla ones
Quantum Error Correction Codes (QECC)

- Correction process is carried on after each operation
- As every correction code, redundancy is employed to correct errors
- A lot of redundancy is necessary, since:
 1. Qu-bits are continuous, not discrete
 2. Error rate is high
- Each qu-bit becomes a **logical** qu-bit, which is encoded in *n* physical qu-bits: **data** and **ancilla** ones

Surface Code Logical Qu-Bit:

[Diagram showing Surface Code Logical Qu-Bit with data qubits, measurement/syndrome/ancilla qubits, Z ancilla qubit (bit-flip errors), and X ancilla qubit (phase-flip errors).]
QECC: Logical Gates

Quantum Operations on Logical Qu-Bits

- Each of the fundamental operations (X, Z, H, ...) needs to be defined on the logical qu-bit
- The way the logical operation is performed is code dependent
- Each logical operation is represented by a logical gate
QECC: Logical Gates

Quantum Operations on Logical Qu-Bits

- Each of the fundamental operations (X, Z, H, ...) needs to be defined on the logical qu-bit
- The way the logical operation is performed is code dependent
- Each logical operation is represented by a logical gate

Surface Code Hadamar Gate:
Error correction is the main responsible for the blowup of qu-bits required for a quantum algorithm

Shor Algorithm Overhead

For instance, Shor algorithm on $L = 2048$ bits number requires:

<table>
<thead>
<tr>
<th>Rationale</th>
<th>#Physical Qu-bits (cumulative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6L$ logical qu-bits</td>
<td>12,288</td>
</tr>
<tr>
<td>$8 \times$ ancilla qu-bits</td>
<td>98,304</td>
</tr>
<tr>
<td>$1.33 \times$ to provide ‘wiring’</td>
<td></td>
</tr>
<tr>
<td>room to move qu-bits</td>
<td>133,000</td>
</tr>
<tr>
<td>$10k \times$ surface code</td>
<td>$1.3bn$</td>
</tr>
<tr>
<td>$4 \times$ micro-architecture details</td>
<td>$5.2bn$</td>
</tr>
</tbody>
</table>
How Many Qu-Bits?

16 qu-bit IBM quantum processor, publicly available online:
Quantum Technologies

How Many Qu-Bits?

16 qu-bit IBM quantum processor, publicly available online:

IBM Trend:

IBM will sell 50-qubit universal quantum computer “in the next few years”

IBM has solved most of the science behind quantum computing. Time to make some money.

SEBASTIAN ANTHONY - 6/3/2017, 12:59
Quantum Technologies

Quantum Chips

5 qu-bits chip scheme for a logical qu-bit:

- data qu-bits, ancilla qu-bits
- The gates are implemented via microwave pulses (10^{-8} s) sent to the qu-bits
- We want to perform different gates within the decoherence time
Quantum Computation Concepts

Quantum Processor: A chip where there are n available qu-bits
Quantum Computation Concepts

<table>
<thead>
<tr>
<th>Quantum Processor:</th>
<th>A chip where there are (n) available qu-bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Programming Language:</td>
<td>A language to describe a circuit using gate-level instructions or known functions</td>
</tr>
</tbody>
</table>
Quantum Computation Concepts

<table>
<thead>
<tr>
<th>Concept</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum Processor:</td>
<td>A chip where there are n available qu-bits</td>
</tr>
<tr>
<td>Quantum Programming</td>
<td>A language to describe a circuit using gate-level instructions or known functions</td>
</tr>
<tr>
<td>Language:</td>
<td></td>
</tr>
<tr>
<td>Quantum Algorithm:</td>
<td>A quantum circuit to be executed</td>
</tr>
<tr>
<td>Quantum Compilation:</td>
<td>Optimization</td>
</tr>
<tr>
<td></td>
<td>Use heuristics to merge gates or re-arrange operations</td>
</tr>
<tr>
<td>Placement</td>
<td>Initial mapping of the circuit to on-chip qu-bits</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Schedule gates execution</td>
</tr>
<tr>
<td>Routing</td>
<td>Move qu-bits to execute multibit operations</td>
</tr>
<tr>
<td>Quantum Execution:</td>
<td>Translation of gate-level instructions (QISA) to signals sent to the processor</td>
</tr>
</tbody>
</table>
Quantum Computation Concepts

Quantum Processor: A chip where there are \(n \) available qu-bits

Quantum Programming Language: A language to describe a circuit using gate-level instructions or known functions

Quantum Algorithm: A quantum circuit to be executed

Quantum Compilation: Optimization Use heuristics to merge gates or re-arrange operations

Placement Initial Mapping of the circuit qu-bits to the on-chip qu-bits

Scheduling Schedule gates execution

Routing Move qu-bits to execute multibit operations
Quantum Computation Concepts

Quantum Processor: A chip where there are n available qu-bits
Quantum Programming Language: A language to describe a circuit using gate-level instructions or known functions
Quantum Algorithm: A quantum circuit to be executed
Quantum Compilation: Optimization Use heuristics to merge gates or re-arrange operations
Placement Initial Mapping of the circuit qu-bits to the on-chip qu-bits
Scheduling Schedule gates execution
Routing Move qu-bits to execute multibit operations
Quantum Execution: Translation of gate-level instructions (QISA) to signals sent to the processor
Quantum Compilation

Logical view of the chip:

Main issue to be addressed (imposed by the technology): 2 input qu-bits of a non single gate (e.g. CNOT) needs to be adjacent to compute the gate.

→ 2 qu-bits are adjacent if they are either on the same row or on the same column.

→ If they are not adjacent, they need to be moved to satisfy this constraint (routing process).
Quantum Compilation: Placement

Placement
Maps the qu-bits on chip, deriving the initial configuration of the processor
- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible.

E.g., $\text{CNOT}(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$

Target: finding the placement minimizing the sum of Manhattan distances over all pairs involved in multiple bits gates.

One possible approach: Quantum Interaction Graph (QIG)
Quantum Compilation: Placement

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance \equiv Minimizing routing cost

\[|\psi_0\rangle \quad |\psi_1\rangle \quad |\psi_2\rangle \quad |\psi_3\rangle \]

\[|\psi_4\rangle \quad |\psi_5\rangle \quad |\psi_6\rangle \]

E.g \(CNOT(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4\)
Quantum Compilation: Placement

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance \equiv Minimizing routing cost

\[
\begin{align*}
|\psi_0\rangle & |\psi_1\rangle |\psi_2\rangle |\psi_3\rangle \\
|\psi_4\rangle & |\psi_5\rangle |\psi_6\rangle \\
\end{align*}
\]

E.g $CNOT(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$

- Target: finding the placement minimizing the sum of Manhattan distances over all pairs involved in multiple bits gates
Quantum Compilation: Placement

Placement

Maps the qu-bits on chip, deriving the initial configuration of the processor

- We want the qu-bits which are combined in a 2 qu-bits gate to be placed as close as possible
- How close? Minimizing Manhattan distance \equiv Minimizing routing cost

$$|\psi_0\rangle |\psi_1\rangle |\psi_2\rangle |\psi_3\rangle$$
$$|\psi_4\rangle |\psi_5\rangle |\psi_6\rangle$$

E.g $\text{CNOT}(|\psi_3\rangle, |\psi_4\rangle) \rightarrow d = 4$

- Target: finding the placement minimizing the sum of Manhattan distances over all pairs involved in multiple bits gates
- One possible approach: Quantum Interaction Graph (QIG)
Quantum Interaction Graph

- QIG purpose: represent the relationships between qu-bits involved in multiple bits gates
- The corresponding symmetric matrix can be used to define a linear programming problem
- The solution of this problem provide a good placement.

Example Circuit:

Quantum Interaction Graph:
Quantum Compilation: Scheduling

Gates can theoretically be all executed simultaneously, but:

Scheduling Issues

- Data dependencies
- Privileged Writings on each qu-bit
- Out of order execution must preserve the correctness of the computation
Quantum Compilation: Scheduling

Gates can theoretically be all executed simultaneously, but:

Scheduling Issues

- Data dependencies
- Privileged Writings on each qu-bit
- Out of order execution must preserve the correctness of the computation

Scheduling Policy

- An As Soon As Possible (ASAP) policy is usually employed
 - An operation is performed as soon as the input data are available
- Mainly due to decoherence time constraints, As Late As Possible (ALAP) policy is generally preferable in quantum scenarios
- Try to minimize the time between an operation writing a qu-bit and the next operation reading it → reducing the time interval the quantum state needs to be preserved
Quantum Computation: ASAP vs ALAP

ASAP Policy

C0: .init |ψ₀⟩, |ψ₁⟩, |ψ₂⟩, |ψ₃⟩, |ψ₄⟩, |ψ₅⟩, |ψ₆⟩
C1: \(H(|ψ₀⟩), H(|ψ₁⟩), H(|ψ₂⟩), CNOT(|ψ₃⟩, |ψ₄⟩), CNOT(|ψ₃⟩, |ψ₅⟩)\)
C2: \(CNOT(|ψ₂⟩, |ψ₃⟩), CNOT(|ψ₂⟩, |ψ₄⟩), CNOT(|ψ₂⟩, |ψ₆⟩), CNOT(|ψ₁⟩, |ψ₅⟩)\)
C3: \(CNOT(|ψ₁⟩, |ψ₃⟩), CNOT(|ψ₁⟩, |ψ₆⟩), CNOT(|ψ₀⟩, |ψ₄⟩), CNOT(|ψ₀⟩, |ψ₅⟩)\)
C4: \(CNOT(|ψ₀⟩, |ψ₆⟩)\)

ALAP Policy

C0: .init |ψ₂⟩
C1: \(C0\)
C2: \(C1\)
C3: \(C2\)
C4: \(C3\)
Quantum Computation: ASAP vs ALAP

ASAP Policy

C_0	.init $	\psi_0\rangle$, $	\psi_1\rangle$, $	\psi_2\rangle$, $	\psi_3\rangle$, $	\psi_4\rangle$, $	\psi_5\rangle$, $	\psi_6\rangle$	
C_1	$H(\psi_0\rangle)$, $H(\psi_1\rangle)$, $H(\psi_2\rangle)$, $CNOT(\psi_3\rangle,	\psi_4\rangle)$, $CNOT(\psi_3\rangle,	\psi_5\rangle)$	
C_2	$CNOT(\psi_2\rangle,	\psi_3\rangle)$, $CNOT(\psi_2\rangle,	\psi_4\rangle)$, $CNOT(\psi_2\rangle,	\psi_6\rangle)$, $CNOT(\psi_1\rangle,	\psi_5\rangle)$
C_3	$CNOT(\psi_1\rangle,	\psi_3\rangle)$, $CNOT(\psi_1\rangle,	\psi_6\rangle)$, $CNOT(\psi_0\rangle,	\psi_4\rangle)$, $CNOT(\psi_0\rangle,	\psi_5\rangle)$
C_4	$CNOT(\psi_0\rangle,	\psi_6\rangle)$						

ALAP Policy

C_0	.init $	\psi_2\rangle$								
C_1	.init $	\psi_1\rangle$, $	\psi_3\rangle$, $	\psi_4\rangle$, $	\psi_5\rangle$, $	\psi_6\rangle$, $H(\psi_2\rangle)$			
C_2	.init $	\psi_0\rangle$, $H(\psi_1\rangle)$, $CNOT(\psi_3\rangle,	\psi_4\rangle)$, $CNOT(\psi_3\rangle,	\psi_5\rangle)$, $CNOT(\psi_2\rangle,	\psi_6\rangle)$	
C_3	$H(\psi_0\rangle)$, $CNOT(\psi_2\rangle,	\psi_3\rangle)$, $CNOT(\psi_2\rangle,	\psi_4\rangle)$, $CNOT(\psi_1\rangle,	\psi_6\rangle)$, $CNOT(\psi_1\rangle,	\psi_5\rangle)$
C_4	$CNOT(\psi_1\rangle,	\psi_3\rangle)$, $CNOT(\psi_0\rangle,	\psi_4\rangle)$, $CNOT(\psi_0\rangle,	\psi_5\rangle)$, $CNOT(\psi_0\rangle,	\psi_6\rangle)$	

Postpone initialization as late as possible!
Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent

→ If they are not, we need to move them. How?

→ Using swap gate!
Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent
 → If they are not, we need to move them. How?
 → Using swap gate!

Routing Example

Consider this initial placement obtained from our linear programing algorithm:

|ψ₆⟩ |ψ₀⟩ |ψ₁⟩ |ψ₅⟩
|ψ₂⟩ |ψ₄⟩ |ψ₃⟩

Now, consider the third cycle using ALAP scheduling policy:

:init |ψ₀⟩, H(|ψ₁⟩), CNOT(|ψ₃, ψ₄⟩), CNOT(|ψ₃, ψ₅⟩), CNOT(|ψ₂⟩, |ψ₆⟩)

 → We need to add a swap between |ψ₅⟩ and |ψ₁⟩
 → .init |ψ₀⟩, H(|ψ₁⟩), CNOT(|ψ₃, ψ₄⟩), SWAP(|ψ₁, ψ₅⟩), CNOT(|ψ₂⟩, |ψ₆⟩)
Quantum Compilation: Routing

Recall: to perform multi qu-bit gates the qu-bits need to be adjacent
→ If they are not, we need to move them. How?
→ Using swap gate!

Routing Example

Consider this initial placement obtained from our linear programming algorithm:

```
|ψ⟩6 |ψ⟩0 |ψ⟩1 |ψ⟩5 |
|ψ⟩2 |ψ⟩4 |ψ⟩3 |

|ψ⟩1 |
|ψ⟩5 |
```

Now, consider the third cycle using ALAP scheduling policy:

```
.init |ψ⟩0 , H(|ψ⟩1) , CNOT(|ψ⟩3 , |ψ⟩4) , CNOT(|ψ⟩3 , |ψ⟩5) , CNOT(|ψ⟩2 , |ψ⟩6) |
```

→ We need to add a swap between |ψ⟩5 and |ψ⟩1
→ .init |ψ⟩0 , H(|ψ⟩1) , CNOT(|ψ⟩3 , |ψ⟩4) , SWAP(|ψ⟩1 , |ψ⟩5) , CNOT(|ψ⟩2 , |ψ⟩6)
Cooling Power

Technical Challenges

- Qu-bits can preserve their states only at really low temperatures (mK order)
- They need to interact with electronic components → the heat generated by these components should not affect the chip
- Cooling methods:
 1. Heat bath: liquid helium is employed
 2. In 2017, a quantum refrigerator chip based on tunnel effect has been proposed
Shielding & Wiring

Shielding

- The quantum computer needs to be isolated from external electro-magnetic waves
- The quantum processor is shielded with magnetic elements which zero the magnetic field coming from electronic circuitry

Wiring

- Wiring: with a lot of qu-bits, placement of wires to perform operations may become complex
- In particular, interferences among different wires is a relevant issue
- Due to:
 1. Wires need to work at extremely low temperatures
 2. Material used to build wires cannot be magnetic
 ⇒ non conventional material is necessary
Shielding

- The quantum computer needs to be isolated from external electro-magnetic waves
- The quantum processor is shielded with magnetic elements which zero the magnetic field coming from electronic circuitry

Wiring

- Wiring: with a lot of qu-bits, placement of wires to perform operations may become complex
- In particular, interferences among different wires is a relevant issue
- Due to:
 1. Wires need to work at extremely low temperatures
 2. Material used to build wires cannot be magnetic

 \[
 \text{non conventional material is necessary}
 \]
Conclusion

Take Home Messages

- Qu-bit superposition state allows to represent simultaneously both 0 and 1
- Qu-bit measurement is probabilistic
- Quantum gates are reversible
- Entanglement: 2 entangled qu-bits are strictly linked, and operations performed on one qu-bit may affect the other one too
- Entanglement can be used for quantum teleportation
- Exponential improvement: N qu-bits allow to represent 2^N values
- Quantum Algorithm idea: perform computation which yields to high probability of measuring the correct result
- Quantum technology is fragile \rightarrow error correction is necessary
- Quantum processor are nowadays too limited for practical application
- Quantum computer architecture & compilation
- There are relevant technical challenges to build a quantum computer
Questions
From the previous example, we can see that routing affects the scheduling
- Swaps are additional gates, which introduce new constraints
- But we cannot properly insert swaps if we do not know the scheduling of the operations

Routing & Scheduling should be performed together given the initial placement
From the previous example, we can see that routing affects the scheduling.

- Swaps are additional gates, which introduce new constraints.
- But we cannot properly insert swaps if we do not know the scheduling of the operations.

Routing & Scheduling should be performed together given the initial placement.

Optimal Solution?

- Routing cost is estimated on the initial placement for all gates.
- But the placement of the qu-bits changes during the execution.
- The solution may not be optimal!
- However, if we consider the temporal dependencies during placement the problem becomes more complex: scheduling of the operations is relevant too!
From the previous example, we can see that routing affects the scheduling.

- Swaps are additional gates, which introduce new constraints.
- But we cannot properly insert swaps if we do not know the scheduling of the operations.

Routing & Scheduling should be performed together given the initial placement.
Useful Resources

- 5 qu-bits IBM processor under the curtains: https://arstechnica.com/science/2016/05/how-ibms-new-five-qubit-universal-quantum-computer-works/
- IBM Quantum Experience: https://quantumexperience.ng.bluemix.net/qx
- Quantum Computer Simulator: http://quantum-studio.net/
Quantum Teleportation

Generic Qu-Bit Computation

\[|\psi_m\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle, \quad |\psi_a\rangle = |\psi_b\rangle = |0\rangle \Rightarrow |\psi_{\text{in}}\rangle = \alpha_0 |000\rangle + \alpha_1 |100\rangle \]

1. Bell pair creation: \(\alpha_0 \frac{1}{\sqrt{2}} (|000\rangle + |011\rangle) + \alpha_1 \frac{1}{\sqrt{2}} (|100\rangle + |111\rangle) \)

2. CNOT gate: \(\alpha_0 \frac{1}{\sqrt{2}} (|000\rangle + |011\rangle) + \alpha_1 \frac{1}{\sqrt{2}} (|110\rangle + |101\rangle) \)

3. Hadamard gate:
 \[
 \alpha_0 \frac{1}{2} (|000\rangle + |100\rangle + |011\rangle + |111\rangle) + \alpha_1 \frac{1}{2} (|010\rangle - |110\rangle + |001\rangle - |101\rangle)
 \]

4. Split before measurement: \(\frac{1}{2} |00\rangle \otimes (\alpha_0 |0\rangle + \alpha_1 |1\rangle) + \frac{1}{2} |01\rangle \otimes (\alpha_1 |0\rangle + \alpha_0 |1\rangle) \) + \(\frac{1}{2} |10\rangle \otimes (\alpha_0 |0\rangle - \alpha_1 |1\rangle) + \frac{1}{2} |11\rangle \otimes (-\alpha_1 |0\rangle + \alpha_0 |1\rangle) \)

5. Decoding:

Measure	\(\psi_b\rangle\)	Corrections	Output			
00	\(\alpha_0	0\rangle + \alpha_1	1\rangle\)	No	\(\alpha_0	0\rangle + \alpha_1	1\rangle\)
01	\(\alpha_1	0\rangle + \alpha_0	1\rangle\)	X	\(\alpha_0	0\rangle + \alpha_1	1\rangle\)
10	\(\alpha_0	0\rangle - \alpha_1	1\rangle\)	Z	\(\alpha_0	0\rangle + \alpha_1	1\rangle\)
11	\(-\alpha_1	0\rangle + \alpha_0	1\rangle\)	X,Z	\(\alpha_0	0\rangle + \alpha_1	1\rangle\)