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SYNCHRONIZATION  

 
Sync hronization  is the adjustment  of the rhythm s of two (or more)  oscillator s  

due to their weak  intera ction . 
 

 
Example : pendulum clocks  (Huygens, 1665)  
 

               
 

When independent, the two clocks  (=oscillator s)  have slightly different velocit ies . 
 
When connected through a common support  (= weak interaction) , the clocks have 
perfectly identical velocit ies  (=r hythm adaptation ).  
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The bifurcation scenario is that of a n Arnold  tongue :  

 

21, ff : frequen cies of oscillator s non intera cting  ( 21 fff -=D )  

 

21,FF : frequencies of oscillators interacting  ( 21 FFF -=D )  

 

e: coupling strength  

 

        
 

¶ Synchroniz ation ( 0=DF ) can only take place if  || fD  is sufficient ly small .  

 

¶ Synchroniza t ion  can take place with arbitrary small  e (but needs smaller || fD ).  
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Observing two variables  oscillating in a synchronous way does not necessarily impl y 
the existence of two synchronized systems .  

 
Example :  pre y-predator system  
 
 

 
 
 

 
 
 

 
  
                       1x =n° of preys                   The oscillations disappear if the two  

                    2x =n° of  predator s                        variables are decoupled . 

 

 

The system is not separable in to  (non interacting) subsystems able to oscilla te  
ind ependent ly . 
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The synchronous behaviour of two systems cannot properly be qualified as 
synchron ization if the interaction is ñstrong ò. 

 
 

 
 

 
 
When the interaction can be qualified as weak ? 
 

As a guideline , if a subsystem stops oscilla ting  it should not prevent the other one 
to continue  do it . 
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PHASE SYNCHRONIZATION OF PERIODIC OSCILLATORS  
 
Phase of periodic oscillators  
 
The phase  )(tF  of an oscillator  with  period T  is defined as :  

 

constconst
2

)( +=+=F t
T

t
t w

p
 

 

 
 
 
 

)(tF  grows linear ly  in  t ime . 

 

tt d)(dF=w  is the (angular) frequency  of 

oscillation . 
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Synchroniz ation of a periodic oscillator  with a  periodic forcing  input  
 

A periodic oscillator subject to a periodic  forcing input )(tu :  

 
 

)(tuF = phase of the for cing input   

ttuu d)(dF=w  

 

)(tF = phase of the oscillator  

tt d)(dF=w  

 

 

We assume that  uww¸  when there is no  intera ction ( 0)( =tu ).  

 

 
The oscillator is synchronized with the forcing input  (phase synchronization , or  
phase locking ) when  

 

const)()( =F-F tt u  
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Remark :  const)()( =F-F tt u  if and only if   

 

uww=  

 
Thus phase  synchronization is equivalent to frequency synchronization  (ñfrequency 

lockingò).  
 
In the synchronized regime, th e oscillator is ñlocked ò to the frequency of the forcing 
input . The amp litude of the two signals may remain uncorrelated.  

 
 
 
More in general, we have frequency sy nchroniz ation of order mn :  ( mn,  integers) 

when  
 

ww mn u =           that is           const)()( =F-F tmtn u  

 
The oscillators counts n period s for each m period s of the forcing input  ὲὝ άὝ) . 
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Example :  forced respiration by mechanical  ventila tion  
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Example :  synchroniza tion of various orders  mn :  in a laser  

 

¶ Unforced system : light intensity oscillates with Hz40@f .  

¶ Periodic (forcing) input (voltage signal ) with various frequencies and amplitudes.  

 

 

Synchroniza tion  1:2:  1 period of the oscillator every 2 

period s of the forcing input . 

 

 

 

 

 

 

 

 

Arnold  tongues  for synchronizations of various 

orders.  
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Synchroniza t ion  of two periodic  oscillators  
 

 
The influence is bidirectional :  
 
 

)(1 tF  =  phase of oscillator 1  ( tt d)(d 11 F=w )  

)(2 tF  =  phase of oscillator 2  ( tt d)(d 22 F=w )  

 
We assume that  21 ww¸  when there is no  intera ction ( 021 ==uu ).  

 
 
The two oscillators are synchroniz ed (in phase  and  frequen cy) when  
 

const)()( 21 =F-F tt           that is           21 ww=  

 
Similarly we define the synchroniz ation of order mn :  as 
 

21 ww mn =           that is           const)()( 21 =F-F tmtn  
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Example :  two athletes are  jogging  on a circular track , each 

one with her/his own (constant) speed :  

 

 

22

11

w

w

=F

=F

#

#
 

 

 

 

The system ),( 21 FF  has (generically) quasi -periodic  behaviour.  

 

The athletes are friends: they try to  synchroniz e their speeds  by correcting their "base" speed 

with a term dependent  on their distan ce:  

 

)sin(

)sin(

21222

12111

F-F+=F

F-F+=F

k

k

w

w

#

#
 

 

The phase difference  21 F-F=j  evolves according to the 1 st-order system :     

 

jwwj sin)( 2121 kk +--=#  
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The athletes are phase  synchronized  when  21 F=F ## , that is  

 

 

  

21

21sin0
kk +

-
=Ú=

ww
jj#  

 

 

 

 

Provided  )( 21 ww-  is sufficiently small and /o r )( 21 kk +  is sufficiently large , there are two 

equilibri a j, one asymptotically stable (
*j ) and one unstable.  

 

 

When  
*jj= , the system ),( 21 FF  has periodic  behaviour  and   

 

consttt =F-F )()( 21  

 

But in general  )()( 21 tt F̧F  ( the two athletes run at the same 

speed but remain distant é). 
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Phase synchro niz ation  (=  asymptotically 

stable periodic solution for ),( 21 FF ) 

takes place for  

 

1
21

21 <
+

-

kk

ww
 

 

which defines an Arnold  tongue .  

 

 

 

 

 

By varying )( 21 ww-  and/or )( 21 kk + , the loss of synchronization  takes place -  by crossing 

the border of the Arnold tongue -  through a saddle -node bifurcation  involving two periodic 

solutions for ),( 21 FF , one asymptotically stable and the other unstable.  
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Example :  synchronization of triode oscillators (Appleton, 1922)  

 

The two oscillators intera ct  through the magnetic fields  generated by the inductors (physically 

close each other) . 

 

 

         
 

 

The results of the experiments ( 21 ww-  as a function of the variable capacity C) show an 

interval of C  where synchr oniza t ion  takes place.  
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Example :  synchronization of electric generators  

 

 

 
 

 

 

The generators connected to the power distribution system keep the same speed of rotation 

(=  frequency of the electric signal ) thanks to synchronization . 

 

 

  



 

 
Carlo Piccardi ï Politecnico di Milano ï ver. 04/11/2016  17 / 41  

 

Example :  coordination of respiration rhythm and wing beat in the flight of migratory geese  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The distribution of the respiratory frequenc y shows evidence of a synchronization of order 1:3  

with the wing beat frequency (1 breath every  3 wing beats ).  
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PHASE SYNCHRONIZATION OF CHAOTIC OSCILLATORS  
 
 
Phase of chaotic oscillators  
 

 
 
The ph ase )(tF  of a chaotic o scillator should 

be defined  as a  monotonica lly increasing 

variable which parameterizes the system 
solution.  
 

 
 
 

The average frequency of the oscillator is defined as  
 

t

t

t

)(
lim
F

=
¤­

w  
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Phase of a chaotic oscillator: projecting the attractor  
 

It is possible when the attractor has a suitable geometric  structure . 
 
Example :  Rössler  system  
 

 

xtx

yty
t ~)(

~)(
arctan)(

-

-
=F  

 
 

 
 
 
 

 
For different paramet er values , th e above  phase 
definition is impossible due to the shape of the attractor . 
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In some  cases, defining the phase by attractor projection becomes possible after a 

variab le change . 
 
 
Example :  Lorenz  system  

 
 
 

 
 

z 
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Phase of a chaotic oscillator: Poincaré section  
 

 
 

)(tF  is defined to (linearly) increase of  p2  between two consecutive crossings of a 

suitably defined Poincaré section  P. 
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A very practical Poincaré section  corresponds to the maxima of one of the state 

variables.  
 
This allows one to associate a phase variable  )(tF  to a (chaotic) t ime series (even if 

no model is available ).  

 
 
Example :  pre y-predator system (Rosenzweig -MacArthur)  
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Synchronization of a chaotic oscillator by a periodic  forcing input  
 

¶ )(tuF  is the phase of the periodic  forcing input  ( ttu d)(dF=w )  

¶ )(tF  is the phase of the chaotic  oscillator  ( ttt )(lim F=W ¤­ )  

 

The oscillator is synchroniz ed with the input  (ph ase synchronization ) if   
 

const)()( <F-F tt u  

 
The phase difference can vary in time, but should remain bounded . 
 

Remark :  const)()( <F-F tt u  if and only if   

 

w=W  
 
The oscillator is locked  to the input frequency  -  but the amplitudes remain uncorrelated.  

 
 

The behaviour of the oscillator  may  remain chaotic . 
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Example :  Rössler system with periodic forcing input  

 

 

)5.8(4.0

15.0
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+--=
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Phase synchronization takes place in an Arnold  tongue . 
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Stroboscopic  diagram : dots highlight the state value at time instants multiple of wp2  ( the 

period of the input ).  

 

¶ Without synchronization  ( left ) dots are  spread  in all the attractor ( their phase is 

distributed between  p-  and  p).  

 

¶ With synchronization  ( right ) dots are  concentrat ed in a narrow phase interval.  
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Example :  lab experiment: Geissler  tube with periodic forcing input  

 

 

When a constant 800V voltage is 

applied to the tube (Geissler  type with 

heli um ), chaotic o scilla tions  in the ligh t  

intensity are recorded . 

 

 

 

 

 

 

 

 

The attra ctor reconstructed in the two -

dimensional space.   

The estimate of the fractal dimension  is 

18.2=d .  
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Stroboscopic diagram of the system without input :  

 

dots are  spread  in all the attractor ( their phase is 

distributed between  p-  and  p).  

 

 

 

 

 

 

 

 

 

 

If a small sinusoidal input  is applied (amp litude  

V4.0 , frequen cy Hz3850 ) , phase synchronization  

is obtained . 
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Example :  Lorenz  system with periodic forcing input  

 

 

)cos()38(
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Frequency synchronization is " imperfect ":  0̧-W w  for all w,e, but the difference w-W  is 

very close to zero for some w,e. 
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We observe long time intervals of ñapparentò synchronization ( const)()( <F-F tt u ), 

interr upted by sudden  ñjumps ò of p2  in  )()( tt uF-F  ( i.e., sometimes the oscillator "loses un 

turn" with respect to the input ).  

 

 

 
 

 

In Lorenz  system , this happens when the trajectory comes very close to the saddle

)0,0,0(),,( =zyx , where it can be trapped for arbitrarily long time (ñsadd le effect ò). 
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Example :  imperfect synchronization in the locomotion of Halobacterium salinarium  

 

It is a ciliated bacterium  moving in a fluid, which commutes  dire ction  every few seconds . 

 

 
 

Under periodic  light stimuli  (=flash  sequences ) of amplitude A, the commuting intervals tend 

to synchronize with the period T  of the stimuli .  

 

           
                     5.121 == TA                                          5.124 == TA  
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However, for some ),( TA , some flashes fail to induce commutation . 

 

 

        
91 == TA  

 

 

 
61 == TA  

 

 

I mperfe ct synchronization : l ong intervals of ñapparentò synchronization (=the  bacterium  

commut es with the frequency of the input ) are interrupted by sudden ñphase jumps ò (=the 

bacterium commutes only once for two flashes) . 
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Synchroniz ation of two chaotic oscillator s 

 
 
 

)(1 tF  =  phase of oscillator 1  

( ttt )(lim 11 F= ¤­w )  

 

)(2 tF  =  phase of oscillator  2  

( ttt )(lim 22 F= ¤­w )  

 
We assume that  21 ww¸  when there is no  intera ction ( 021 ==uu ).  

 

 
The two chaotic oscillators are synchroniz ed (in phase  and  frequen cy) when  
 
 

const)()( 21 <F-F tt           that is           21 ww=  
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Example :  postur e control in humans  

 

An equipped platform detects the anterior/posterior  )(tx  and lateral  )(ty  oscilla tions  of a 

standing subject , under  various experimental conditions (open eyes, closed eyes, etc.) .  

 

 

The bivariate  t ime series  ( )(tx , )(ty ) 

(ñstabilogramò) contain important 

information on the central  nervous 

system . Typically, correlations among 

)(tx  and )(ty  denote the existence of 

pathologies.  

 

 

In this example, although the 

amplitudes of )(tx  and )(ty  vary in 

time and appear to be uncorrelated, 

the two oscillations are perfectly 

phase synchronized . 
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Example :  synchronization of  two food-chain  systems  (plants/herbivores/predators)  

 

 

The isolated tri - trophic food chain has 

chaotic behaviour . 

 

 

 

 
As the coupling  Ὀ (diffusive migration of herbivores 

and predators)  increases, we observe:  

 

¶ no synchronization  

 

¶ phase synchronization  (same average frequency, 

but uncorrelated amplitudes)  

 

¶ complete synchronization  (same average 

frequency, same amplitudes)  
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COMPLETE SYNCHRONIZATION  
 
 
Consider two systems  1S e 2S :  

 

 
¶ identic al  (same f ):   ),( uxfx ¡¡=¡#   ,   ),( uxfx ¡¡¡¡=¡¡#  

 
¶ in chaotic  regime  when isolated  ( 0)()( =¡¡=¡ tutu  t" )  

 
¶ intera cting  uni -  or bi -dire ctionally:   ό Ὣὼȟὼ    ,   ό Ὣὼȟὼ     

 
 

 
          

 


