Problem

- Classical API approaches may generate a policy \(\pi_{n+1} \) that performs worse than the previous policy \(\pi_n \).
- This undesired improvement may lead to the policy oscillation phenomenon that can prevent convergence to the optimal policy and degrade the learning process.
- Our “safe” approach tries to overcome this issue by visiting a sequence of policies with monotonic improving performance. Following this approach, the policy is constrained to improve overtime and, as a consequence, the degradation of the policy performance between consecutive iteration is prevented.

Contributions

1. **Theoretical contribution.** We introduce a new, more general lower bound to the policy improvement of an arbitrary policy compared to another policy based on the ability to bound the distance between the future state distributions.
2. **Algorithmic contribution.** We define two approximate policy–iteration algorithms whose policy improvement moves toward the estimated greedy policy by maximizing the policy improvement bounds.
3. **Empirical contribution.** We report results on a simple chain walk and Blackjack domains that confirm the main theoretical findings.

Theoretical Bounds

For any stationary policies \(\pi \) and \(\pi' \) of an infinite horizon MDP \(M \) and any starting state distribution \(\mu \):

\[
J_\mu' - J_\mu = d_\mu^{-1/2} A_{\pi'}
\]

The search of optimal policy \(\pi^* \) can become a maximization problem if \(d_\mu' \) is known for all \(\pi' \). API approaches do not have access to \(d_\mu' \) but exploit the distribution of the greedy policy: \(d_\mu' \neq d_\mu' \).

Given two stationary policies \(\pi \) and \(\pi' \) for an infinite horizon MDP \(M \), the \(L_1 \)-norm of their \(\gamma \)-discounted distribution can be upper bounded as:

\[
\|d_{\pi'} - d_{\pi}\|_1 \leq \frac{\gamma}{(1 - \gamma)^2} \|\pi' - \pi\|_\infty,
\]

i.e., similar policies have similar future state distribution.

Merging previous results is possible to derive a lower bound on policy performance

\[
J_\mu' - J_\mu \geq \min_{\pi, \pi'} \|A_{\pi'}(i) - A_{\pi}(i)\|
\]

where \(A_{\pi'} = \max_{i \in \{1, \ldots, S\}} |A_{\pi'}(i) - A_{\pi}(i)| \).

Finite Sample Analysis

With probability \(1 - \delta \), SPI terminates with a policy \(\pi \) such that

\[
\forall n \in \mathbb{N}, \quad d_\mu'^{1/2} A_{\pi} \leq \epsilon,
\]

where \(\epsilon \) is a free to be designed policy space.

The number of transitions required to obtain the \(\epsilon \)-accurate estimate is

\[
N_{\text{itr}} = \frac{1}{\epsilon} \left(\log(2\pi) + \log \left(\frac{1}{\epsilon(1 - \gamma)^2} \right) \right)
\]

If the same target policy \(\pi \) is used at each iteration, the approximate version of the algorithms terminate after \(O \left(\frac{1}{\epsilon^2(1 - \gamma)^2} \right) \).

Results

The Chain–Walk domain

State: \(S = 1, \ldots, 4 \)

Actions: \(A = \{\text{left}, \text{right}\} \)

Dynamics: for action \(\text{right} \):

\[
x_{t+1} = \begin{cases}
1 & \text{with probability } p \\
0 & \text{otherwise}
\end{cases}
\]

- Approximate policy evaluation;
- Linear architecture.

Unique–parameter Safe Policy Improvement (USPI)

Multiple–parameter Safe Policy Improvement (MSPI)

Convex update rule: state–dependent parameters

\[
J_\mu' - J_\mu \geq \alpha A_{\pi'} \cdot \sqrt{\frac{\gamma}{(1 - \gamma)^2} \|\pi' - \pi\|_\infty} \Delta A_{\pi'}^2.
\]

Guaranteed Improvement with \(\alpha = \min \left(1, \frac{1 - \gamma}{\sqrt{\pi' - \pi}} \right) \).

Convex update rule: state–dependent parameters

\[
J_\mu' - J_\mu \geq E_{\pi'}(s) \left[A_{\pi'}(s) \right] - \frac{\gamma}{(1 - \gamma)^2} \max_{i \in S} \left(\pi(s) - \pi(s) \right)^2 \|q_i\|_\infty \cdot \Delta A_{\pi'}^2.
\]

No closed–form solution but an iterative solution in order to find the optimal value \(\pi' \) that maximize

\[
B(A) = \sum \min \left(1, \frac{A}{\pi(s) - \pi(s)} \right) d_{\pi'}(A) \Delta A_{\pi'}^2.
\]