1. Let us consider the autonomous Lur’e system in Figure 1

where \(\phi(\cdot) \) is a sector nonlinearity and \(G(s) \) is the transfer function of a reachable and observable linear system.

Provide clear and precise answers to the following requests:

1.1 Define the notion of absolute stability of the autonomous Lur’e system in sector \([0,k]\), where \(k>0 \)

1.2 Write the statements of Popov criterion and the circle criterion for the absolute stability of the autonomous Lur’e system in sector \([0,k]\), where \(k>0 \), with a graphical interpretation of both criteria. Is there any relation between these criteria?

2. Consider the Lur’e system in Figure 2

where
\[G(s) = \frac{10}{(1 + 10s)^2(1 + 0.1s)} \]

is the transfer function of a reachable and observable system, and block N is the MB/2 relay with hysteresis in Figure 3.

Set \(B/2 = 1 \), and determine the values for \(M > 0 \) such that the describing function method predicts a permanent oscillation. Evaluate the stability properties of such an oscillation. To this purpose recall that the describing function of the MB/2 relay in Figure 3 is given by

\[D(E) = \frac{2M}{\pi E^2} (\sqrt{4E^2 - B^2} - jB), \quad E \geq B/2 \]

3. Consider the Lur'e system in Figure 4.

where

i) \(\varphi(\cdot) \) satisfies \(0 \leq \varphi(y) \leq 3y, \quad \forall y \in \mathbb{R} \)

ii) \(G(s) \) is the transfer function of a SISO system of order 2 with gain \(\mu > 0 \)
\[G(s) = \frac{\mu (1 - s)}{(1 + s)(1 + 0.01s)} \]

1. define the notion of \(L_2 \) stability for the causal operator \(H \) with input \(u \) and output \(y \);
2. determine the values for \(\mu > 0 \) such that the operator \(H \) with input \(u \) and output \(y \) is \(L_2 \)-stable with finite gain by using
 a. the small gain theorem
 b. the circle criterion
3. provide an estimate of the gain of \(H \) by the small gain theorem.

4. Given the dynamical system
 \[
 S : \begin{cases}
 \dot{x}(t) = f(x(t), u(t)), & x(0) = x_0 \in \mathbb{R}^n \\
 y(t) = g(x(t), u(t))
 \end{cases}
 \]
 \[
 f(0, 0) = 0, \quad g(0, 0) = 0
 \]
 Define the notion of passivity and strict passivity.
 Let \(A \) be a square matrix of size \(n \) and \(B \) a column vector with \(n \) elements. Suppose that there exists a symmetric positive definite matrix \(P \) that satisfies
 \[
 A^T P + PA = -I
 \]
 Analyze the passivity and strict passivity properties of the linear dynamical system with transfer function.

5. Describe in a clear and concise way the issue of high frequency oscillations of the control input in a variable structure controller and suggest a possible solution to such an issue.

6. Consider the regular nonlinear SISO system \(S \)
 \[
 S : \begin{cases}
 \dot{x} = a(x) + b(x)u \\
 y = c(x)
 \end{cases}
 \]
 1. Define the notion of relative degree of \(S \) in a state \(x^* \) and the role that it plays in the (local) state feedback linearization of \(S \) around \(x^* \).
 2. Explain what are the conditions to obtain a full state feedback linearization.