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OBSERVER DESIGN PROBLEM 

Goal: recover the state of a system from its input and output 

STATE  

OBSERVER 



MOTIVATION FOR OBSERVER DESIGN 

 

• Need to monitor the evolution of the system 

 

• Control algorithms require full state feedback 

 

   …  but measuring the complete state of the system may be 

not economically feasible or even possible 

 

 

 

 

OUTLINE 

 

• observer design for continuous time linear systems 

 

• observer design for switched linear systems with known 

switchings 

 

• observer design for hybrid systems  
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CONTINUOUS TIME LINEAR SYSTEMS 
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 u(t) 2 <m ´ input  
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OBSERVABILITY NOTION 

 “possibility of reconstructing the state from past input and 

output  measurements”  

 

Definition [indistinguishable states] 

x1 and x2 are indistinguishable if the output associated with 
x(0) = x1 and x(0) = x2 is identical for any input u(t), t¸ 0  
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OBSERVABILITY NOTION AND CHARACTERIZATION 

 “possibility of reconstructing the state from past input and 
output  measurements”  

 

Definition [unobservable state] 
x is unobservable if it is indistinguishable from the origin 

 

 

 x belongs to the null space of the observability matrix On 

 

 

 

OBSERVABILITY NOTION AND CHARACTERIZATION 

 “possibility of reconstructing the state from past input and 
output  measurements”  

 

Definition [unobservable state] 
x is unobservable if it is indistinguishable from the origin 

 

 

 x belongs to the null space of the observability matrix On 

 

Further definitions: 

 x is observable if it is not unobservable 
  

the set of all the unobservable states is the unobservable 
subspace, the orthogonal subspace is called observable 
subspace 



OBSERVABILITY NOTION AND CHARACTERIZATION 

 “possibility of reconstructing the state from past input and 

output  measurements”  

 

Definition [observable system] 

A system is observable if all states x  0 are observable  

 

 

 the observability matrix On has maximum rank (n) 

 

Remark:  

if the observability matrix On has maximum rank (n), then, 

the pair (A,C) is called observable  

OBSERVABILITY NOTION AND CHARACTERIZATION 

 Key property: 

(A,C) is observable  

 

 

 one can select matrix L such that A-LC has arbitrarily 

chosen  eigenvalues   

  



KALMAN DECOMPOSITION 

similarity transformation for the decomposition  

into observable and unobservable part 
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KALMAN DECOMPOSITION 

+ 

+ 

+ 

+ 

+ 

dynamic matrix  

of the unobservable part 

dynamic matrix  

of the observable part 

OBSERVABILITY NOTION 

 “possibility of reconstructing the state from past input and 

output  measurements”  

 

Definition [detectable system] 

A system is detectable if the eigenvalues of the 

unobservable part have all strictly negative real part   

 

 

 

Remark:  

in this case, the pair (A,C) is detectable  



ASYMPTOTIC OBSERVER 

 “possibility of reconstructing the state from past input and 

output  measurements”  

 

Definition [asymptotic observer]: 

An asymptotic observer is a system that consistently 

estimates the state x(t) based on the input and output 
measurements u() and y(), 0·  · t , for any (unknown) 

initial condition x0 and for any input u(¢):  

 

 

Remark: Also called Luenberger observer 

 

 

ASYMPTOTIC OBSERVER 

+ 

+ 

+ 

+ 



ASYMPTOTIC OBSERVER 

+ 

+ 

+ 

+ 

+ 

+ 

- 

ASYMPTOTIC OBSERVER 

+ 

+ 

+ 

+ 

- 

observer gain 



DYNAMICS OF THE STATE ESTIMATION ERROR 
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DYNAMICS OF THE STATE ESTIMATION ERROR 

ASYMPTOTIC OBSERVER 

 

 

  

 If  A is Hurwitz, one can set L = 0 and obtain that the 

estimation error converges exponentially to zero.  

 

 This means that one can just duplicate the system 

dynamics, without using the output measurements. The 

rate of convergence will be determined by the real part of 

the eigenvalues of A (see the lecture on Lyapunov stability)  



ASYMPTOTIC OBSERVER 

Theorem:  

 If (A,C) is detectable, then, L can be designed so that A-LC 

is Hurwitz and, hence, the estimation error converge 

exponentially to zero:  
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ASYMPTOTIC OBSERVER 

Theorem:  

 If (A,C) is detectable, then, L can be designed so that A-LC 

is Hurwitz and, hence, the estimation error converge 

exponentially to zero:  

 

 

Sketch of the proof:  

• the system can be decomposed in observable/unobservable part 

• the observable part can be reconstructed from the output 

• the unobservable part is asymptotically stable, hence it can be 

reconstructed just by duplicating the corresponding system 

dynamics 



KALMAN DECOMPOSITION 

similarity transformation for the decomposition  

into observable and unobservable part 

+ 

+ 

KALMAN DECOMPOSITION 

+ 

+ 

+ 

+ 

+ 



KALMAN DECOMPOSITION: OBSERVABLE PART 

+ 

+ 

This sub-system is observable, not necessarily stable 

 

KALMAN DECOMPOSITION: OBSERVABLE PART 

+ 

+ 

This sub-system is observable, not necessarily stable 

 

the output contains info to reconstruct the state wo(t):  

an exponentially stable dynamics can be imposed to the state 

estimation error 



KALMAN DECOMPOSITION: UNOBSERVABLE PART 

+ 

+ 

+ 

the unobservable state wno(t) does not affect the output 

KALMAN DECOMPOSITION: UNOBSERVABLE PART 

+ 

+ 

+ 

the contribution of the unknown and unobservable initial 

condition wno(0) exponentially converges to zero  

Hurwitz known/reconstructed signals 



DYNAMICS OF THE ESTIMATION ERROR 

eigenvalues of the unobservable  

part keep fixed 

eigenvalues of A11-L1C1  

can be arbitrarily selected 

since (A11,C1) is observable 

ASYMPTOTIC OBSERVER 

Theorem:  

 If (A,C) is detectable, then, L can be designed so that A-LC 

is Hurwitz and, hence, the estimation error converges 

exponentially to zero:  

 

 

 

Remark: The convergence rate can be arbitrarily chosen if and 

only if  (A,C) is observable. 
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• observer design for continuous time linear systems 

 

• observer design for switched linear systems with known 

switchings 

 

• observer design for hybrid systems  
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Assumptions:  

(i) the switching signal                               is available as 

(discrete) output signal  

(ii) (Aq, Cq) detectable for all q 2 Q          
    



SWITCHING OBSERVER 

+ 

+ 

+ 

+ 

- 

observer time-varying gain 

DYNAMICS OF THE STATE ESTIMATION ERROR 

system 

observer 



DYNAMICS OF THE STATE ESTIMATION ERROR 

system 

observer 

DYNAMICS OF THE STATE ESTIMATION ERROR 

Aq- LqCq Hurwitz for all q 2 Q does not guarantee that  

e(t) ! 0, 8 e(0) , 8 :[0,1)! Q (GUAS of equilibrium e = 0)   

system 

observer 



 

 

Theorem: If there exists       such that 

 

 

 then, the switching observer consistently estimates the 

continuous state of the switched system, for any e(0) and 
for any : [0,1)! Q. 
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continuous state of the switched system, for any e(0) and 
for any : [0,1)! Q. 

 

 Proof.           is a radially unbounded common 

Lyapunov function at the equilibrium e =0. Then, e = 0 is 

GUAS. 
 

  

SWITCHING OBSERVER 



 

 

Theorem: If there exists       such that 

 

 

 then, the switching observer consistently estimates the 

continuous state of the switched system, for any e(0) and 
for any : [0,1)! Q. 

 

 Proof.           is a radially unbounded common 

Lyapunov function at the equilibrium e =0. Then, e = 0 is 

GUAS. 
 

 Note: exponential convergence can also be proven [see the 

 lecture on Lyapunov stability] 

SWITCHING OBSERVER 
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 We are designing the observer, and its gains… 

 We should choose the observer gains L1, L2, …, Lm such 

that there exists P = PT >0 satisfying 

 

 

 Linear Matrix Inequalities (LMI) reformulation: 

 By setting Lq = P-1 Yq, we have PLq = Yq  

 The problem can then be rephrased as that of determining 

P = PT >0 and Y1, Y2, …, Ym such that 

 

 

 Gains are then recovered by Lq = P-1 Yq 

SWITCHING OBSERVER DESIGN 

LMIs in P and Yq 



SWITCHED LINEAR SYSTEMS (WITH INPUT/OUTPUT) 

 

 

 

 

Switching occurs within the family of systems: 

 

 

 

 

 

Assumptions:  

(i) the switching signal                                is available as (discrete) 

output signal  

(ii) (Aq, Cq) observable for all q 2 Q  

(iii) known minimum dwell time D>0 between consecutive switchings 

SWITCHING OBSERVER 

+ 

+ 

+ 

+ 

- 

observer time-varying gain 



SWITCHING OBSERVER DESIGN 

Idea:  

 design the switching observer gains L1, L2, …, Lm such that 

the dynamics of the estimation error 

 

 is contractive over each switching time interval, and, hence, 
e(t) ! 0, for any e(0) and for any : [0,1)! Q with 

minimum dwell time D. 

 

Note:  

stability under slow switching condition is forced by making 

the error dynamics fast compared with the given D.  

 

SQUASHING LEMMA 

 Suppose (A,C) observable. Let D>0. 

 Then, for any >0 there exists a>0 and L such that 
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L so that they are distinct, real, strictly negative with I < -a.  
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 Proof. [cont’d]  

 

 

 Choose a>0 such that 

 
 

 [such a exists since T(a) and T
-1

(a) are rational] 

 This concludes the proof. 
 



SQUASHING LEMMA 

 Suppose (A,C) observable. Let D>0. 

 Then, for any >0 there exists a>0 and L such that 

 

 

 

 Statement: 

 If 0<<1, then, during each switching time interval [ti, ti+1) 
with ti+1

-ti ¸ D, the dynamics contracts of a factor at least 

equal to   
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SWITCHING OBSERVER DESIGN 

 Fix 0<<1.  

 For any q 2 Q, determine Lq according to the Squashing 

Lemma with D equal to the (known) minimum dwell time.  

 Then, the switching observer with gains L1, L2, …, Lm 

consistently estimates the continuous state of the switched 
system, for any e(0) and for any : [0,1)! Q with minimum 

dwell time D. 

 

Remarks:  

- convergence to zero is actually exponential 

- explicit bounds improving the Squashing Lemma result have 

been recently introduced   



Bibliography 

• A. Alessandri and P. Coletta. 

Switching observers for continuous-time and discrete-time linear 

systems  

In Proceedings of the American Control Conference Arlington, VA 

June, 2001 

 

 


