Hybrid Systems Course Observer design for hybrid systems

Maria Prandini DEIB - Politecnico di Milano E-mail: maria.prandini@polimi.it

DYNAMICS OF THE STATE ESTIMATION ERROR

$$e(t) := x(t) - \hat{x}(t)$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$\dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y(t) - \hat{y}(t))$$

$$\hat{y}(t) = C\hat{x}(t)$$

DYNAMICS OF THE STATE ESTIMATION ERROR $e(t) := x(t) - \hat{x}(t)$ $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) $\dot{x}(t) = A\hat{x}(t) + Bu(t) + L (Cx(t) - C\hat{x}(t))$ $\hat{y}(t) = C\hat{x}(t)$

DYNAMICS OF THE STATE ESTIMATION ERROR

 $e(t) := x(t) - \hat{x}(t)$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t)$$

$$\dot{x}(t) = A\hat{x}(t) + Bu(t) + L (Cx(t) - C\hat{x}(t))$$

$$\hat{y}(t) = C\hat{x}(t)$$

$$\dot{e}(t) = (A - LC) e(t)$$

ASYMPTOTIC OBSERVER
Theorem: If (A,C) is detectable, then, L can be designed so that A-LC is Hurwitz and, hence, the estimation error converge exponentially to zero:
$\ e(t)\ \leq \mu e^{-\lambda_0 t} \ e(0)\ , t \geq 0, \forall e(0) = e_0 \in \Re^n$ Sketch of the proof:
 the system can be decomposed in observable/unobservable part the observable part can be reconstructed from the output the unobservable part is asymptotically stable, hence it can be reconstructed just by duplicating the corresponding system dynamics

SWITCHED LINEAR SYSTEMS (WITH INPUT/OUTPUT)

$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$
$$y(t) = C_{\sigma(t)}x(t)$$

Switching occurs within the family of systems:

$$\dot{x}(t) = A_q x(t) + B_q u(t)$$

 $y(t) = C_q x(t)$
 $q \in Q = \{1, 2, ..., m\}$

Assumptions:

(i) the switching signal $\sigma : [0, \infty) \to Q$ is available as (discrete) output signal

SWITCHING OBSERVER

 $\dot{e}(t) = (A_{\sigma(t)} - L_{\sigma(t)}C_{\sigma(t)})e(t)$

Theorem: If there exists $P = P^T > 0$ such that

$$P(A_q - L_qC_q) + (A_q - L_qC_q)^T P < 0$$

$$\forall q \in Q = \{1, 2, \dots, m\}$$

then, the switching observer consistently estimates the continuous state of the switched system, for any e(0) and for any σ : $[0,\infty) \rightarrow Q$.

SWITCHING OBSERVER

 $\dot{e}(t) = (A_{\sigma(t)} - L_{\sigma(t)}C_{\sigma(t)})e(t)$

Theorem: If there exists $P = P^T > 0$ such that

$$P(A_q - L_q C_q) + (A_q - L_q C_q)^T P < 0$$

$$\forall q \in Q = \{1, 2, \dots, m\}$$

then, the switching observer consistently estimates the continuous state of the switched system, for any e(0) and for any $\sigma \colon [0,\infty) \to Q$.

Proof. $V(e) = e^T P e$ is a radially unbounded common Lyapunov function at the equilibrium e = 0. Then, e = 0 is GUAS.

We are designing the observer, and its gains...

We should choose the observer gains $L_1, L_2, ..., L_m$ such that there exists $P = P^T > 0$ satisfying

$$P(A_q - L_qC_q) + (A_q - L_qC_q)^T P < 0$$

$$\forall q \in Q = \{1, 2, \dots, m\}$$

SWITCHING OBSERVER DESIGN

We are designing the observer, and its gains...

We should choose the observer gains $L_1, L_2, ..., L_m$ such that there exists $P = P^T > 0$ satisfying

 $P(A_q - L_q C_q) + (A_q - L_q C_q)^T P < 0$ $\forall q \in Q = \{1, 2, \dots, m\}$

Apparently not an easy problem beacuse of the terms P L_i

We are designing the observer, and its gains...

We should choose the observer gains $L_1, L_2, ..., L_m$ such that there exists $P = P^T > 0$ satisfying

 $P(A_q - L_q C_q) + (A_q - L_q C_q)^T P < 0$ $\forall q \in Q = \{1, 2, \dots, m\}$

Linear Matrix Inequalities (LMI) reformulation:

By setting $L_q = P^{-1} Y_q$, we have $PL_q = Y_q$

SWITCHING OBSERVER DESIGN

We are designing the observer, and its gains...

We should choose the observer gains $L_1, L_2, ..., L_m$ such that there exists $P = P^T > 0$ satisfying

$$P(A_q - L_q C_q) + (A_q - L_q C_q)^T P < 0$$

$$\forall q \in Q = \{1, 2, \dots, m\}$$

Linear Matrix Inequalities (LMI) reformulation:

By setting $L_q = P^{-1} Y_q$, we have $PL_q = Y_q$

The problem can then be rephrased as that of determining $P = P^T > 0$ and $Y_1, Y_2, ..., Y_m$ such that

$$PA_q - Y_qC_q + A_q^T P - C_q^T Y_q^T < 0$$

$$\forall q \in Q = \{1, 2, \dots, m\}$$

SWITCHED LINEAR SYSTEMS (WITH INPUT/OUTPUT)

$$\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}u(t)$$
$$y(t) = C_{\sigma(t)}x(t)$$

Switching occurs within the family of systems:

$$\dot{x}(t) = A_q x(t) + B_q u(t)$$

 $y(t) = C_q x(t)$
 $q \in Q = \{1, 2, ..., m\}$

Assumptions:

- (i) the switching signal $\sigma : [0, \infty) \to Q$ is available as (discrete) output signal
- (ii) (A_q, C_q) <u>observable</u> for all $q \in Q$
- (iii) known minimum dwell time τ_D >0 between consecutive switchings

Idea:

design the switching observer gains $L_1,\,L_2,\,\ldots,\,L_m$ such that the dynamics of the estimation error

$$\dot{e}(t) = (A_{\sigma(t)} - L_{\sigma(t)}C_{\sigma(t)})e(t)$$

is contractive over each switching time interval, and, hence, $e(t) \rightarrow 0$, for any e(0) and for any σ : $[0,\infty) \rightarrow Q$ with minimum dwell time τ_{D} .

Note:

stability under slow switching condition is forced by making the error dynamics fast compared with the given τ_{D} .

SQUASHING LEMMA

Suppose (A,C) observable. Let τ_D >0.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

SQUASHING LEMMA

Suppose (A,C) observable. Let $\tau_D > 0$.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Proof.

The eigenvalues of A-LC can be arbitrarily selected. Choose L so that they are distinct, real, strictly negative with $\lambda_1 < -\alpha$.

SQUASHING LEMMA

Suppose (A,C) observable. Let $\tau_D > 0$.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Proof.

The eigenvalues of A-LC can be arbitrarily selected. Choose L so that they are distinct, real, strictly negative with $\lambda_1 < -\alpha$.

Then, M:= A-LC is diagonalizable

 $M=T~M_{d}~T^{-1}~$ with $M_{d}~diagonal$ $\rightarrow e^{Mt}$ = T $e^{M_{d}~t}~T^{-1}$

SQUASHING LEMMA

Suppose (A,C) observable. Let $\tau_D > 0$.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Proof.

The eigenvalues of A-LC can be arbitrarily selected. Choose L so that they are distinct, real, strictly negative with $\lambda_1 < -\alpha$.

Then, M:= A–LC is diagonalizable

 $M=T~M_d~T^{-1}~$ with $M_d~diagonal$ $\rightarrow~e^{Mt}$ = T $e^{M_d~t}~T^{-1}$

 $||e^{Mt}|| \le ||T|| ||T^{-1}||e^{-\alpha t}$

SQUASHING LEMMA

Suppose (A,C) observable. Let τ_D >0.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Proof. [cont'd]

$$||e^{(A-LC)t}|| \le ||T(\alpha)|| ||T^{-1}(\alpha)|| e^{-\alpha t}$$

Choose α >0 such that

 $||T(\alpha)|| ||T^{-1}(\alpha)|| \le \rho e^{\alpha \tau_D}$

[such α exists since T(α) and T⁻¹(α) are rational] This concludes the proof.

SQUASHING LEMMA

Suppose (A,C) observable. Let $\tau_D > 0$.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Statement:

If 0< ρ <1, then, during each switching time interval [t_i, t_{i+1}) with t_{i+1}-t_i $\geq \tau_D$, the dynamics contracts of a factor at least equal to ρ

SQUASHING LEMMA

Suppose (A,C) observable. Let $\tau_D > 0$.

Then, for any ρ >0 there exists α >0 and L such that

$$\|e^{(A-LC)t}\| \le \rho e^{-\alpha(t-\tau_D)}, t \ge 0$$

Statement:

If 0<p<1, then, during each switching time interval [t_i, t_{i+1}) with t_{i+1} -t_i $\geq \tau_D$, the dynamics contracts of a factor at least equal to ρ

$$\|e^{(A-LC)(t_{i+1}-t_i)}\| \le \rho e^{-\alpha(t_{i+1}-t_i-\tau_D)} \le \rho$$

SWITCHING OBSERVER DESIGN Fix 0<ρ<1.

SWITCHING OBSERVER DESIGN Fix $0 < \rho < 1$. Fix $0 < \rho < 1$. Tor any $q \in Q$, determine L_q according to the Squashing Lemma with τ_D equal to the (known) minimum dwell time.

Fix 0<ρ<1.

For any $q \in Q$, determine L_q according to the Squashing Lemma with τ_D equal to the (known) minimum dwell time.

Then, the switching observer with gains L₁, L₂, ..., L_m consistently estimates the continuous state of the switched system, for any e(0) and for any σ : $[0,\infty) \rightarrow Q$ with minimum dwell time τ_D .

SWITCHING OBSERVER DESIGN

Fix 0<ρ<1.

For any $q \in Q$, determine L_q according to the Squashing Lemma with τ_D equal to the (known) minimum dwell time.

Then, the switching observer with gains $L_1, L_2, ..., L_m$ consistently estimates the continuous state of the switched system, for any e(0) and for any σ : $[0,\infty) \rightarrow Q$ with minimum dwell time τ_D .

Remarks:

- convergence to zero is actually exponential
- explicit bounds improving the Squashing Lemma result have been recently introduced

Bibliography • A. Alessandri and P. Coletta. *Switching observers for continuous-time and discrete-time linear systems* In Proceedings of the American Control Conference Arlington, VA June, 2001