FEEDBACK LINEARIZATION
GOAL

Given a nonlinear system of the following form

\[
\begin{align*}
\dot{x} &= a(x) + b(x)u \\
y &= c(x)
\end{align*}
\]

design a static state feedback control law

\[u = k(x, v)\]

such that the associated feedback system is linear
GOAL

Given a nonlinear system of the following form

\[
\begin{align*}
\dot{x} &= a(x) + b(x)u \\
y &= c(x)
\end{align*}
\]

design a static state feedback control law

\[u = k(x, v)\]

such that the associated feedback system is linear

Remarks:

- Theory developed for a nonlinear system that is affine in the input, not a general system like

\[
\begin{align*}
\dot{x} &= f(x, u) \\
y &= c(x)
\end{align*}
\]

but one can add an integrator and enlarge the state to get a nonlinear system which is affine in the input
GOAL

Given a nonlinear system of the following form

\[
\begin{align*}
\dot{x} &= a(x) + b(x)u \\
y &= c(x)
\end{align*}
\]

design a static state feedback control law

\[u = k(x, v) \]

such that the associated feedback system is linear

Remarks:

• Different from the approximation of a nonlinear system via linearization around some trajectory/equilibrium
EXAMPLE

Centrifuge model:

\[J\ddot{\theta} = -k\dot{\theta}^2 \text{sgn}(\dot{\theta}) + u \]

- moment of inertia
- friction torque proportional to the square of the angular velocity
- torque control input

Goal: speed regulation
Centrifuge model: \[J\ddot{\theta} = -k\dot{\theta}^2 \text{sgn}(\dot{\theta}) + u \]

Setting \(y = x = \dot{\theta} \) (speed control), we get

\[
\begin{cases}
\dot{x} = -\frac{k}{J} x^2 \text{sgn}(x) + \frac{1}{J} u \\
y = x
\end{cases}
\]
EXAMPLE

S: \[
\begin{cases}
\dot{x} = -\frac{k}{j} x^2 \text{sgn}(x) + \frac{1}{j} u \\
y = x
\end{cases}
\]

If we set

\[v := -\frac{k}{j} x^2 \text{sgn}(x) + \frac{1}{j} u\]

then we get the feedback system S^*

\[
\begin{cases}
\dot{x} = v \\
y = x
\end{cases}
\]
S: \[
\begin{align*}
\dot{x} &= -\frac{k}{J}x^2 \text{sgn}(x) + \frac{1}{J} u \\
y &= x
\end{align*}
\]

If we set
\[
v := -\frac{k}{J}x^2 \text{sgn}(x) + \frac{1}{J} u \quad \leftrightarrow \quad u = -kx^2 \text{sgn}(x) + Jv
\]
then we get the feedback system S^*

\[
\begin{align*}
\dot{x} &= v \\
y &= x
\end{align*}
\]

\[\begin{array}{ccc}
\text{v} & \rightarrow & \text{C} \\
\downarrow & & \downarrow \\
\text{u} & \rightarrow & \text{S} \\
\downarrow & & \downarrow \\
y = x & \rightarrow & \begin{array}{c}
\text{x} \\
\dot{x} = v
\end{array}
\end{array}\]
EXAMPLE

\[S: \begin{cases} \dot{x} = -\frac{k}{J} x^2 \text{sgn}(x) + \frac{1}{J} u \\ y = x \end{cases} \]

If we set

\[v := -\frac{k}{J} x^2 \text{sgn}(x) + \frac{1}{J} u \]

\[\iff \quad u = -k x^2 \text{sgn}(x) + J v \]

then we get the feedback system \(S^* \)

\[\begin{cases} \dot{x} = v \\ y = x \end{cases} \]

and it is now possible to design a rotational speed controller by the pole assignment method for linear systems

\[G(s) = \frac{1}{s} \]
EXAMPLE

We can adopt a static proportional controller:

\[v = k_p e \quad e = y^o - y \]

The resulting transfer function from \(y^o \) to \(y \) is given by

\[
F(s) = \frac{k_p \frac{1}{s}}{1 + k_p \frac{1}{s}} = \frac{1}{1 + s/k_p}
\]

\[G(s) = \frac{1}{s} \]
Designed (nonlinear) controller:

\[u = -k x^2 \text{sgn}(x) + J k_p (y^o - x) \]
QUESTIONS

• Under what conditions there exists a static state feedback control law that makes the feedback system linear?

• How can one design state feedback linearization?

• If a system is not fully linearizable, can we design a state feedback control law for a partial feedback linearization?
EXAMPLE 1: FULLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the so-called normal form

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \phi(x_1, x_2, x_3, x_4) + bu \\
y &= x_1
\end{align*}
\]

where \(\phi(\cdot, \cdot, \cdot, \cdot) \) is a known nonlinear function and \(b \neq 0 \).
EXAMPLE 1: FULLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the so-called normal form

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \phi(x_1, x_2, x_3, x_4) + bu \\
y &= x_1
\end{align*}
\]

where \(\phi(\cdot, \cdot, \cdot, \cdot) \) is a known nonlinear function and \(b \neq 0 \)

Design a state feedback control law \(u = k(x, v) \) such that the resulting feedback system is linear with transfer function

\[
F(s) = \frac{1}{(s + 1)^4}
\]
EXAMPLE 1: FULLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the so-called normal form

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \phi(x_1, x_2, x_3, x_4) + bu \\
y &= x_1
\end{align*}
\]

where \(\phi(\cdot, \cdot, \cdot, \cdot)\) is a known nonlinear function and \(b \neq 0\)

Design a state feedback control law \(u = k(x, v)\) such that the resulting feedback system is linear with transfer function

\[
F(s) = \frac{1}{(s + 1)^4}
\]

Solution:

\[
\begin{align*}
u &= \frac{1}{b}(-\phi(x) + Kx + \alpha v) \\
&= \frac{1}{b}(-\phi(x_1, x_2, x_3, x_4) + k_1 x_1 + k_2 x_2 + k_3 x_3 + k_4 x_4 + \alpha v)
\end{align*}
\]
We then get the linear feedback system

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= k_1 x_1 + k_2 x_2 + k_3 x_3 + k_4 x_4 + \alpha u \\
y &= x_1
\end{align*}
\]

with transfer function

\[
F(s) = \frac{\alpha}{s^4 - k_4 s^3 - k_3 s^2 - k_2 s - k_1}
\]

We set it equal to the desired transfer function

\[
F(s) = \frac{1}{(s + 1)^4} = \frac{1}{s^4 + 4s^3 + 6s^2 + 4s + 1}
\]

thus getting

\[
\alpha = 1, \ k_1 = -1, \ k_2 = -4, \ k_3 = -6, \ k_4 = -4
\]

Remark. If \(\phi \) were linear (S linear) \(\rightarrow \) pole assignment
EXAMPLE 1: FULLY LINEARIZABLE SYSTEM

Given the nonlinear system in normal form

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\dot{x}_3 &= x_4 \\
\dot{x}_4 &= \phi(x_1, x_2, x_3, x_4) + bu \\
y &= x_1
\end{align*}
\]

where \(\phi(\cdot, \cdot, \cdot, \cdot) \) is a known nonlinear function and \(b \neq 0 \)

we just need to set

\[
u = \frac{1}{b}(-\phi(x) + Kx + v)
\]

in order to obtain a linear feedback system.

if we can rewrite the system in the normal form via a suitable change of state variables, then the system is fully linearizable via a static state feedback \(\rightarrow \text{input/state linearization} \)
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0\).
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \). If we set

\[
u = \frac{1}{b(\xi, \eta)}(-a_\xi(\xi, \eta) + v)
\]

Then, the I/O map from \(v \) to \(y \) is linear.
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

The resulting feedback system is nonlinear

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= v \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

but the I/O map is linear and given by the differential equation

\[
\frac{d^r y}{dt^r} = v
\]

or, equivalently, by the transfer function

\[
G(s) = \frac{1}{s^r}
\]
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots & \quad x = \begin{bmatrix} \xi \\ \eta \end{bmatrix} \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \).

Then, the system is partially linearizable via the state feedback control law

\[
u = \frac{1}{b(\xi, \eta)}(-a_\xi(\xi, \eta) + v)
\]

The external dynamic is linearized by state feedback

\(\rightarrow \) input/output linearization
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{aligned}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{aligned}
\]

where \(b(\xi, \eta) \neq 0 \), and set

\[
u = \frac{1}{b(\xi, \eta)}(-a_\xi(\xi, \eta) + v)
\]

Is the feedback system zero-state observable?
Definition (zero-state observable dynamical system)
System S is zero-state observable if $x(\cdot) = 0$ is the only free evolution of the state compatible with identically zero output.
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider the feedback system

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
&\vdots \\
\dot{\xi}_r &= v \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

If we set \(v(\cdot) = 0, \xi_1(0) = \xi_2(0) = \cdots = \xi_r(0) = 0 \), then \(y(\cdot) = 0 \).

Correspondingly, \(\xi_1(\cdot) = \xi_2(\cdot) = \cdots = \xi_r(\cdot) = 0 \), while \(\eta \) evolves according to the hidden internal dynamics (zero dynamics)

\[
\dot{\eta} = a_\eta(0, \eta), \quad \eta(0) = \eta_0
\]

And it is not necessarily zero, hence, the system is not zero-state observable.
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Given a nonlinear system in normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
&\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \), we just need to set \(u \) in order to get a linear I/O map.

The system has a hidden dynamics.
Given a nonlinear system in normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
&\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \), we just need to set \(u = \frac{1}{b(\xi, \eta)}(-a_\xi(\xi, \eta) + v) \) in order to get a linear I/O map.

The system has a hidden dynamics.

EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

if the system can be rewritten in normal form by a suitable state coordinate transformation, then, it is input-output linearizable via static state feedback.

But… one must consider the behavior of the zero dynamics!
GOAL

Given a nonlinear system of the following form
\[
\begin{aligned}
\dot{x} &= a(x) + b(x)u \\
y &= c(x)
\end{aligned}
\]

design a static state feedback control law
\[u = k(x, v)\]
such that the associated feedback system is linear
Nonlinear affine system, time-invariant, SISO:

\[
S : \begin{cases}
\dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

Regularity assumptions on system \(S\):

\(a(\cdot), b(\cdot), c(\cdot)\) should be such that there exists a unique evolution associated to any piecewise continuous input \(u\), and continuously differentiable for any order (of class \(C^\infty\))
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO:

\[\begin{align*}
 \dot{x} &= a(x) + b(x)u \\
 y &= c(x)
\end{align*} \]

Regularity assumptions on system \(S \):

\(a(\cdot), b(\cdot), c(\cdot) \) should be such that there exists a unique evolution associated to any piecewise continuous input \(u \), and continuously differentiable for any order (of class \(C^\infty \))

Goal:

Show that if \(S \) has a certain “relative degree” in \(x \), then there exists a static state feedback that makes the feedback system I/O map linear locally
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u.
RELATIVE DEGREE OF A SYSTEM

Definition (relative degree):

The relative degree \(r \) of a system \(S \) is given by the minimum order of the time derivative of the output \(y \) that is affected directly by the input \(u \).

In the case of a linear system, it is given by the difference between number of poles and number of zeros in the transfer function.

We show it next.
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u.

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B$$
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y =Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B$$

Let us compute the first order time derivative of y:

$$\dot{y} = C\dot{x} = CAx + CBu$$
DEFINITION (RELATIVE DEGREE):

The relative degree \(r \) of a system \(S \) is given by the minimum order of the time derivative of the output \(y \) that is affected directly by the input \(u \).

Let us consider a linear time invariant SISO system:

\[
S_L: \begin{cases}
\dot{x} = Ax + Bu \\
y = Cx
\end{cases} \quad \quad \quad G(s) = C(sI - A)^{-1}B
\]

Let us compute the first order time derivative of \(y \):

\[
\dot{y} = C\dot{x} = CAx + CBu
\]

If \(CB \neq 0 \), \(r = 1 \), otherwise \(r > 1 \) and we compute the next derivative

\[
\ddot{y} = CA\dot{x} = CA^2x + CABu
\]
RELATIVE DEGREE OF A LINEAR SYSTEM

Definition (relative degree):
The relative degree \(r \) of a system \(S \) is given by the minimum order of the time derivative of the output \(y \) that is affected directly by the input \(u \)

Let us consider a linear time invariant SISO system:

\[
S_L : \begin{cases}
 \dot{x} = Ax + Bu \\
 y = Cx
\end{cases} \quad G(s) = C(sI - A)^{-1}B
\]

Let us compute the first order time derivative of \(y \):

\[\dot{y} = C\dot{x} = CAx + CBu \]

if \(CB \neq 0 \), \(r = 1 \), otherwise \(r > 1 \) and we compute the next derivative

\[\ddot{y} = CA\dot{x} = CA^2x + CABu \]

if \(CAB \neq 0 \), \(r = 2 \), otherwise \(r > 2 \) and we compute the next derivative
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u.

Let us consider a linear time invariant SISO system:

$$ S_L : \begin{cases} \dot{x} = Ax + Bu \\ y =Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B $$

Let us compute the first order time derivative of y:

$$ \dot{y} = C\dot{x} = CAx + CBu $$

If $CB \neq 0$, $r = 1$, otherwise $r > 1$ and we compute the next derivative

$$ \ddot{y} = CA\dot{x} = CA^2x + CABu $$

If $CAB \neq 0$, $r = 2$, otherwise $r > 2$ and we compute the next derivative

If $CB = CAB = CA^2B = \ldots = CA^{k-2}B = 0$ and $CA^{k-1}B \neq 0$, then $r = k$

$\Rightarrow r$ is the first value for k such that $CA^{k-1}B \neq 0$
The relative degree of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B$$
RELATIVE DEGREE OF A LINEAR SYSTEM

The relative degree r of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

\[
S_L : \begin{cases}
\dot{x} = Ax + Bu \\
y = Cx
\end{cases}
\]

\[
G(s) = C(sI - A)^{-1}B
\]

The impulse response of S_L is given by:

\[g(t) = Ce^{At}B, \quad t \geq 0\]

since \[e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots + \frac{1}{k!}A^kt^k + \cdots\]

we get

\[g(t) = CB + CABt + \frac{1}{2!}CA^2Bt^2 + \cdots + \frac{1}{k!}CA^kBt^k + \cdots\]
The relative degree r of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B$$

The impulse response of S_L is given by:

$$g(t) = Ce^{At}B, \ t \geq 0$$

since $e^{At} = I + At + \frac{1}{2!}A^2t^2 + \cdots + \frac{1}{k!}A^kt^k + \cdots$ we get

$$g(t) = CB + CABt + \frac{1}{2!}CA^2Bt^2 + \cdots + \frac{1}{k!}CA^kBt^k + \cdots$$

from which it follows

$$\lim_{t \to 0} \frac{d^k g}{dt^k}(t) = CA^kB$$
The relative degree r of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases}$$

$$G(s) = C(sI - A)^{-1}B$$

The Laplace transform of the impulse response of S_L is the transfer function $G(s)$, hence:
RELATIVE DEGREE OF A LINEAR SYSTEM

The relative degree r of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

$$S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad \quad \quad G(s) = C(sI - A)^{-1}B$$

The Laplace transform of the impulse response of S_L is the transfer function $G(s)$, hence:

- $CB = \lim_{t \to 0} g(t) = \lim_{s \to \infty} sG(s) \begin{cases} = 0, & h > 1 \\ \neq 0, & h = 1 \end{cases}$
The relative degree r of a linear system S_L coincides with the difference h between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

\[S_L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \quad G(s) = C(sI - A)^{-1}B \]

The Laplace transform of the impulse response of S_L is the transfer function $G(s)$, hence:

- $CB = \lim_{t \to 0} g(t) = \lim_{s \to \infty} sG(s) \begin{cases} = 0, & h > 1 \\ \neq 0, & h = 1 \end{cases}$
- If $h > 1$, $CAB = \lim_{t \to 0} \frac{dg}{dt}(t) = \lim_{s \to \infty} s(sG(s) - g(0)) = \lim_{s \to \infty} s^2G(s) \begin{cases} = 0, & h > 2 \\ \neq 0, & h = 2 \end{cases}$
The relative degree \(r \) of a linear system \(S_L \) coincides with the difference \(h \) between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

\[
S_L : \begin{cases}
\dot{x} = Ax + Bu \\
y = Cx
\end{cases} \quad G(s) = C(sI - A)^{-1}B
\]

The Laplace transform of the impulse response of \(S_L \) is the transfer function \(G(s) \), hence:

- \(CB = \lim_{t \to 0} g(t) = \lim_{s \to \infty} sG(s) \begin{cases} 0, & h > 1 \\ \neq 0, & h = 1 \end{cases} \)
- if \(h > 1 \), \(CAB = \lim_{t \to 0} \frac{dg}{dt}(t) = \lim_{s \to \infty} s(sG(s) - g(0)) = \lim_{s \to \infty} s^2G(s) \begin{cases} 0, & h > 2 \\ \neq 0, & h = 2 \end{cases} \)
- if \(h > k - 1 \), \(CA^{k-1}B = \lim_{t \to 0} \frac{d^{k-1}g}{dt^{k-1}}(t) = \lim_{s \to \infty} s^kG(s) \begin{cases} 0, & h > k \\ \neq 0, & h = k \end{cases} \)
The relative degree \(r \) of a linear system \(S_L \) coincides with the difference \(h \) between number of poles and number of zeros in the transfer function.

Let us consider a linear time invariant SISO system:

\[
S_L: \begin{cases}
\dot{x} = Ax + Bu \\
y = Cx
\end{cases}
G(s) = C(sI - A)^{-1}B
\]

The Laplace transform of the impulse response of \(S_L \) is the transfer function \(G(s) \), hence:

- \(CB = \lim_{t \to 0} q(t) = \lim_{s \to \infty} sG(s) \begin{cases} = 0, & h > 1 \\ \neq 0, & h = 1 \end{cases} \]
- if \(h > 1 \), \(CAB = \lim_{t \to 0} \frac{d}{dt} g(t) = \lim_{s \to \infty} s(sG(s) - g(0)) = \lim_{s \to \infty} s^2 G(s) \begin{cases} = 0, & h > 2 \\ \neq 0, & h = 2 \end{cases} \]
- if \(h > k - 1 \), \(CA^{k-1}B = \lim_{t \to 0} \frac{d^{k-1}}{dt^{k-1}} g(t) = \lim_{s \to \infty} s^k G(s) \begin{cases} = 0, & h > k \\ \neq 0, & h = k \end{cases} \)

\(\rightarrow h \) is the first value for \(k \) such that \(CA^{k-1}B \neq 0 \) \(\rightarrow h \) is equal to \(r \).
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

We have to compute the derivatives of the output and progressively increase the order of derivation k till we get the (smallest) k such that

$$y^{(k)} := \frac{d^k y}{dt^k}$$

depends directly on the input u.

We need first to introduce some notations and concepts.
REGULAR FUNCTIONS

Let A be an open subset of \mathbb{R}^n and f a real function defined on A

$$f : A \rightarrow \mathbb{R}$$

Function f is regular in $x \in A$ if it is continuously differentiable of any order in x: $f \in C^\infty$
REGULAR FUNCTIONS

Let A be an open subset of \mathbb{R}^n and f a real function defined on A

$$f : A \rightarrow \mathbb{R}$$

Function f is regular in $x \in A$ if it is continuously differentiable of any order in x: $f \in C^\infty$

Function f is regular in A, if it is regular in every point of A
REGULAR FUNCTIONS

Let A be an open subset of \mathbb{R}^n and f a real function defined on A

$$f : A \to \mathbb{R}$$

Function f is regular in $x \in A$ if it is continuously differentiable of any order in x: $f \in C^\infty$

Function f is regular in A, if it is regular in every point of A

The vector-value function

$$f = [f_1 \ f_2 \ldots \ f_m] : A \to \mathbb{R}^m$$

is regular if all functions in f are regular

Given that it maps each x into a vector $f(x) \in \mathbb{R}^m$, it is often called regular vector field defined on A
The Jacobian of \(f = [f_1 \ f_2 \ldots \ f_m]' \) is the following matrix of functions:

\[
\begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \ldots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \ldots & \frac{\partial f_2}{\partial x_n} \\
\ldots & \ldots & \ldots & \ldots \\
\frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \ldots & \frac{\partial f_m}{\partial x_n}
\end{pmatrix}
\]

We shall denote its value at some \(x^\circ \) with \(\frac{\partial f}{\partial x}(x^\circ) \) or \([f_x]_{x^\circ} \).
The Jacobian of $f = [f_1 \ f_2 \ldots f_m]'$ is the following matrix of functions

$$\mathbf{J}_f = \begin{bmatrix}
\frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\
\frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n}
\end{bmatrix}$$

We shall denote its value at some x° with $\frac{\partial f}{\partial x}(x^\circ)$ or $[\mathbf{J}_f]_{x^\circ}$

Let A and B be open sets in \mathbb{R}^n.
Then, function $f : A \rightarrow B$ is a diffeomorphism if it is bijective (invertible) and both f and f^{-1} are regular functions.

Theorem: a regular function $f : A \rightarrow B$ is a local diffeomorphism in x° if its Jacobian \mathbf{J}_f is non-singular at x°
LIE DERIVATIVE

Let A be an open set in \mathbb{R}^n and $f : A \rightarrow \mathbb{R}^n$ a regular vector field on A. The operator L_f defined as

$$L_f := \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}$$

is called *Lie derivative along the vector field* f.
LIE DERIVATIVE

Let A be an open set in \mathbb{R}^n and $f : A \rightarrow \mathbb{R}^n$ a regular vector field on A. The operator L_f defined as

$$L_f := \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}$$

is called Lie derivative along the vector field f

Given a regular vector field $h : A \rightarrow \mathbb{R}^m$, the Lie derivative of h along the vector field f is given by:

$$L_f h = h_x f : A \rightarrow \mathbb{R}^m$$

Jacobian of h
LIE DERIVATIVE

Let A be an open set in \mathbb{R}^n and $f : A \to \mathbb{R}^n$ a regular vector field on A. The operator L_f defined as

$$L_f := \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}$$

is called *Lie derivative along the vector field* f

Given a regular vector field $h : A \to \mathbb{R}^m$, the Lie derivative of h along the vector field f is given by:

$$L_f h = h_x f : A \to \mathbb{R}^m$$

Remark: we have already seen it when computing the time derivative of a Lyapunov function $V(x)$ along the trajectories of a system

$$\dot{x} = f(x) \rightarrow \dot{V}(x) = \sum_{i=1}^{n} f_i(x) \frac{\partial V}{\partial x_i} = V_x f = L_f V$$
LIE DERIVATIVE

Let A be an open set in \mathbb{R}^n and $f : A \to \mathbb{R}^n$ a regular vector field on A. The operator L_f defined as

$$L_f := \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}$$

is called Lie derivative along the vector field f

Given a regular vector field $h : A \to \mathbb{R}^m$, the Lie derivative of h along the vector field f is given by:

$$L_f h = h_x f : A \to \mathbb{R}^m$$

If we iterate the Lie derivative along f we get

$$L_f^2 h := L_f (L_f h)$$

In general

$$L_f^k h := L_f (L_f^{k-1} h), \quad L_f^0 h = h$$
LIE DERIVATIVE

Let A be an open set in \mathbb{R}^n and $f : A \to \mathbb{R}^n$ a regular vector field on A. The operator L_f defined as

$$L_f := \sum_{i=1}^{n} f_i(x) \frac{\partial}{\partial x_i}$$

is called *Lie derivative along the vector field* f.

Given a regular vector field $h : A \to \mathbb{R}^m$, the Lie derivative of h along the vector field f is given by:

$$L_f h = h_x f : A \to \mathbb{R}^m$$

Given a regular vector field $g : A \to \mathbb{R}^n$ with values in \mathbb{R}^n like f,

$$L_g L_f h = \frac{\partial (L_f h)}{\partial x} g$$
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree): The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

\[
S : \begin{cases}
\dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

We next compute the relative degree of S in $x^o \in \mathbb{R}^n$, by determining the derivatives of the output y
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^o \in \mathbb{R}^n$, by determining the derivatives of the output y

- First order time derivative of y:

$$\dot{y} = c_x \dot{x} = c_x (a + b \ u) = L_a \ c + u \ L_b \ c$$
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^\circ \in \mathbb{R}^n$, by determining the derivatives of the output y

- First order time derivative of y:

$$\dot{y} = c_x \dot{x} = c_x (a + b \ u) = L_a \ c + u \ L_b \ c$$

If $[L_b \ c]|_{x^\circ} \neq 0$, then $[L_b \ c]|_{x} \neq 0$ in a neighborhood of x° (by the regularity assumption on S) and we can conclude that the relative degree of S in x° is $r = 1$
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^\circ \in \mathbb{R}^n$, by determining the derivatives of the output y

- First order time derivative of y:
 $$\dot{y} = c_x \dot{x} = c_x (a + b u) = L_a c + u L_b c$$

 If $[L_b c]_{x^\circ} \neq 0$, then $[L_b c]_x \neq 0$ in a neighborhood of x° (by the regularity assumption on S) and we can conclude that the relative degree of S in x° is $r = 1$

 If $[L_b c]_{x^\circ} = 0$, then, the relative degree r of S in x° is either not well-defined or is larger than 1
RELATIVE DEGREE OF A NONLINEAR SYSTEM

- If \([L_b c]_{x^\circ} = 0\) but in any neighborhood of \(x^\circ\) there is some \(x\) such that \([L_b c]_x \neq 0\), then the relative degree of \(S\) in \(x^\circ\) is not well-defined.

- If \([L_b c]_x = 0\) in some neighborhood of \(x^\circ\), then we have to take the second order derivative to determine \(r\).
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S: \begin{cases}
\dot{x} = a(x) + b(x)u \\
 y = c(x)
\end{cases}$$

We next compute the relative degree of S in $x^\circ \in \mathbb{R}^n$, by determining the derivatives of the output y:

- First order time derivative of y:
 $$\dot{y} = c_x \dot{x} = c_x (a + b u) = L_a c + u L_b c$$

- Let $[L_b c]_{x^\circ} = 0$ in some neighborhood of x°, that is,
 $$\dot{y} = L_a c$$
Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^* \in \mathbb{R}^n$, by determining the derivatives of the output y

- First order time derivative of y:
 $$\dot{y} = c_x \dot{x} = c_x (a + b u) = L_a c + u L_b c$$

- Let $[L_b c]_{x^*} = 0$ in some neighborhood of x^*, that is $\dot{y} = L_a c$

 Second order time derivative of y:
 $$\ddot{y} = \frac{\partial (L_a c)}{\partial x} (a + b u) = L_a^2 c + u L_b L_a c$$
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^o \in \mathbb{R}^n$, by determining the derivatives of the output y

- Second order time derivative of y:

$$\ddot{y} = \frac{\partial(L_a \ c)}{\partial x} (a + b \ u) = L_a^2 \ c + u \ L_b \ L_a \ c$$

If $[L_b \ L_a \ c]_{x^o} \neq 0$, then, $r = 2$.

If $L_b \ L_a \ c \equiv 0$ in some neighborhood of x^o, then $r > 2$ (otherwise r is not well-defined in x^o), $\dddot{y} = L_a^2 c$, and we need to move on to the third order time derivative $y^{(3)}$.
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^\circ \in \mathbb{R}^n$, by determining the derivatives of the output y

- By iterating this procedure, if in some neighborhood of x° we have
 $$L_b L_a^i c \equiv 0, \quad i = 0, 1, 2, \ldots, k-2$$
 then the time derivative of order k of y is given by
 $$y^{(k)} = L_a^k c + u L_b L_a^{k-1} c$$
 and if $[L_b L_a^{k-1} c]_{x^\circ} \neq 0$ then $r = k$.
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

We next compute the relative degree of S in $x^0 \in \mathbb{R}^n$, by determining the derivatives of the output y:

- By iterating this procedure, if in some neighborhood of x^0 we have
 $$L_b L_a^i c \equiv 0, \quad i = 0, 1, 2, \ldots, k-2$$
 then the time derivative of order k of y is given by
 $$y^{(k)} = L_a^k c + u L_b L_a^{k-1} c$$

 and if $[L_b L_a^{k-1} c]_{x^0} \neq 0$ then $r = k$.

 If this does not happen for any k, then the relative degree of S in x^0 is not defined.
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):

The relative degree \(r \) of a system \(S \) is given by the minimum order of the time derivative of the output \(y \) that is affected directly by the input \(u \)

\[
S : \begin{cases}
\dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

Definition (relative degree of \(S \) in \(x^\circ \)):

System \(S \) has relative degree \(r \) in \(x^\circ \) if, in a neighborhood of \(x^\circ \),

\[
L_b L_a^k c \equiv 0, \quad k = 0, 1, 2, \ldots, r-2,
\]

and

\[
[L_b L_a^{r-1} c]_{x^\circ} \neq 0.
\]
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):
The relative degree \(r \) of a system \(S \) is given by the minimum order of the
time derivative of the output \(y \) that is affected directly by the input \(u \)

\[
S : \begin{cases}
 \dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

Definition (relative degree of \(S \) in \(x^0 \)):
System \(S \) has relative degree \(r \) in \(x^0 \) if, in a neighborhood of \(x^0 \),

\[
L_b L_a^k c = 0, \quad k = 0, 1, 2, \ldots, r-2,
\]

and

\[
[L_b L_a^{r-1} c]_{x^0} \neq 0.
\]

Remark: if \(S \) is linear, then

\[
L_b c = L_B(Cx) = CB
\]

\[
L_b L_a c = L_B(L_a(Cx)) = L_B(CAx) = CAB
\]

\[
L_b L_a^2 c = L_B(L_a(L_a(Cx)))) = L_B(L_a(CAx)) = L_B(CA^2x) = CA^2 B
\]
RELATIVE DEGREE OF A NONLINEAR SYSTEM

Definition (relative degree):
The relative degree r of a system S is given by the minimum order of the time derivative of the output y that is affected directly by the input u

$$S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases}$$

Definition (relative degree of S in x^0):
System S has relative degree r in x^0 if, in a neighborhood of x^0,

$$L_b L_a^k c = 0, \quad k = 0, 1, 2, \ldots, r-2,$$

and

$$[L_b L_a^{r-1} c]_{x^0} \neq 0.$$

Remark: if S is linear, then

$$L_b L_a^k c = CA^k B$$

and the relative degree r of S is the smallest k such that $CA^{k-1}B \neq 0$.
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^\circ \), then, one can obtain a (locally) linear I/O map via state feedback.
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[
S : \begin{cases}
\dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r\) in \(x^o\), then, one can obtain a (locally) linear I/O map via state feedback.

Proof.
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[
S : \begin{cases}
\dot{x} = a(x) + b(x)u \\
y = c(x)
\end{cases}
\]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^\circ \), then, one can obtain a (locally) linear I/O map via state feedback.

Proof. If \(S \) has relative degree \(r \) in \(x^\circ \), then

\[
y^{(r)} = L_a^T c + u L_b L_a^{-1} c
\]

and \([L_b L_a^{-1} c]_{x^\circ} \neq 0\); hence, \(L_b L_a^{-1} c \) is nonzero in a neighborhood of \(x^\circ \).
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^o \), then, one can obtain a (locally) linear I/O map via state feedback.

Proof. If \(S \) has relative degree \(r \) in \(x^o \), then

\[
y^{(r)} = L_a^r c + uL_b L_a^{r-1} c
\]

and \([L_b L_a^{r-1} c]_{x^o} \neq 0 \); hence, \(L_b L_a^{r-1} c \) is nonzero in a neighborhood of \(x^o \). If we then set

\[
v := L_a^r c + uL_b L_a^{r-1} c
\]

where \(v \) is the new input variable, then:

\[
y^{(r)} = \frac{d^r y}{dt^r} = v
\]
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^\circ \), then, one can obtain a (locally) linear I/O map via state feedback.

Proof. If \(S \) has relative degree \(r \) in \(x^\circ \), then

\[y^{(r)} = L_a^r c + u L_b L_a^{r-1} c \]

and \([L_b L_a^{r-1} c]_{x^\circ} \neq 0\); hence, \(L_b L_a^{r-1} c \) is nonzero in a neighborhood of \(x^\circ \). If we then set

\[v := L_a^r c + u L_b L_a^{r-1} c \]

where \(v \) is the new input variable, then:

\[u = \frac{1}{L_b L_a^{r-1} c} (v - L_a^r c) \]

\[y^{(r)} = \frac{d^r y}{dt^r} = v \]
Nonlinear affine system, time-invariant, SISO, regular:

\[S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^\circ \), then, one can obtain a (locally) linear I/O map via state feedback.

\[u = \frac{1}{L_b L_a^{r-1} c} (v - L_a^r c) \]
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[S : \begin{cases} \dot{x} = a(x) + b(x)u \\ y = c(x) \end{cases} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^o \), then, one can obtain a (locally) linear I/O map via state feedback.

\[y^{(r)} = \frac{d^r y}{dt^r} = v \]
STATE FEEDBACK LINEARIZATION

Nonlinear affine system, time-invariant, SISO, regular:

\[S: \begin{align*}
\dot{x} &= a(x) + b(x)u \\
y &= c(x)
\end{align*} \]

Theorem (input-output state feedback linearization)

If system S has relative degree \(r \) in \(x^o \), then, one can obtain a (locally) linear I/O map via state feedback.

Remark: If \(r < n \), there is some hidden dynamics!

- We need to isolate and analyze the hidden dynamics by using a suitable canonical form (the normal canonical form).
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
&\vdots \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \).
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form

\[
\begin{aligned}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= a_{\xi}(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1 \\
x &= \begin{bmatrix} \xi \\ \eta \end{bmatrix}
\end{aligned}
\]

where \(b(\xi, \eta) \neq 0 \). If we set

\[
u = \frac{1}{b(\xi, \eta)}(-a_{\xi}(\xi, \eta) + v)
\]

Then, the I/O map from \(v \) to \(y \) is linear.
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

The resulting feedback system is nonlinear

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
&\vdots \\
\dot{\xi}_r &= v \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

but the I/O map is linear and given by the differential equation

\[
\frac{d^r y}{dt^r} = v
\]

or, equivalently, by the transfer function

\[
G(s) = \frac{1}{s^r}
\]
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider a nonlinear system in the normal form
\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= x_3 \\
\vdots \\
\dot{x}_r &= a_x(x, \eta) + b(x, \eta)u \\
\dot{\eta} &= a_\eta(x, \eta) \\
y &= x_1
\end{align*}
\]

where \(b(x, \eta) \neq 0 \).

Then, the system is partially linearizable via the state feedback control law
\[
u = \frac{1}{b(x, \eta)}(- a_x(x, \eta) + v)
\]

The external dynamic is linearized by state feedback
\[\text{input/output linearization}\]
EXAMPLE 2: PARTIALLY LINEARIZABLE SYSTEM

Let us consider the feedback system

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots \\
\dot{\xi}_r &= v \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

\[x = \begin{bmatrix} \xi \\ \eta \end{bmatrix}\]

If we set \(v(\cdot) = 0, \xi_1(0) = \xi_2(0) = \cdots = \xi_r(0) = 0 \), then \(y(\cdot) = 0 \).

Correspondingly, \(\xi_1(\cdot) = \xi_2(\cdot) = \cdots = \xi_r(\cdot) = 0 \), while \(\eta \) evolves according to the hidden internal dynamics (zero dynamics)

\[\dot{\eta} = a_\eta(0, \eta), \eta(0) = \eta_0\]

And it is not necessarily zero, hence, the system is not zero-state observable.
Given a nonlinear system in normal form

\[
\begin{align*}
\dot{\xi}_1 &= \xi_2 \\
\dot{\xi}_2 &= \xi_3 \\
\vdots & \\
\dot{\xi}_r &= a_\xi(\xi, \eta) + b(\xi, \eta)u \\
\dot{\eta} &= a_\eta(\xi, \eta) \\
y &= \xi_1
\end{align*}
\]

where \(b(\xi, \eta) \neq 0 \), we just need to set

\[
u = \frac{1}{b(\xi, \eta)} (-a_\xi(\xi, \eta) + v)
\]

in order to get a linear I/O map.

The resulting feedback system has a hidden dynamics.

Concluding remarks:

if the system can be rewritten in normal form by a suitable state coordinate transformation, then, it is input-output linearizable via static state feedback.

But… one must consider the behavior of the zero dynamics!