LUR'É PROBLEM: ABSOLUTE STABILITY

LUR'É SYSTEM

- L: time-invariant dynamic system
- N: nonlinear static system
LUR’E SYSTEM

Equivalent forms

\[\alpha = -w \]
\[\gamma = -u \]
\[\eta = -y \]
\[\beta = v \]
AUTONOMOUS LUR’E SYSTEM

\[S: \]

\[L : \begin{cases} \dot{x} = Ax + Bu \\ y = Cx \end{cases} \] (A,B,C) stabilizable

Assumption: (A,B) reachable & (A,C) observable

\[G(s) = C(sI - A)^{-1}B \]
AUTONOMOUS LUR’E SYSTEM

\[S: \quad e \rightarrow N \rightarrow u \rightarrow L \rightarrow y \]

\[N: \quad u(t) = \varphi(e(t)) \]

- \(\varphi: \mathbb{R} \rightarrow \mathbb{R} \) piecewise continuous function
- \(\varphi(\cdot) \in \Phi_{[k_1,k_2]} = \{ \phi(\cdot): k_1 e \leq \phi(e) \leq k_2 e, \forall e \in \mathbb{R} \} \)

SECTOR NONLINEARITY

\[\Phi_{[k_1,k_2]} = \{ \phi(\cdot): k_1 e \leq \phi(e) \leq k_2 e, \forall e \in \mathbb{R} \} \]
SECTOR NONLINEARITY

\[\Phi_{[k_1,k_2]} = \{ \phi(\cdot) : k_1 e \leq \phi(e) \leq k_2 e \ \forall e \in \mathbb{R} \} \]

\[\Phi_{[k_1,k_2]} = \{ \phi(\cdot) : (k_2 e - u)(u - k_1 e) \geq 0, \ u = \phi(e), \ \forall e \in \mathbb{R} \} \]

AUTONOMOUS LUR’E SYSTEM

\[S : \begin{cases} \dot{x} = Ax + B\varphi(-Cx) \\ y = Cx \end{cases} \]

\[f(x) := Ax + B\varphi(-Cx) \]

\[\varphi(0) = 0 \rightarrow f(0) = 0 \rightarrow \bar{x} = 0 \] is an equilibrium for \(S \), for any sector nonlinearity \(\varphi(\cdot) \in \Phi_{[k_1,k_2]} \)
ABSOLUTE STABILITY IN THE SECTOR \([k_1, k_2]\)

Definition

System \(S\) is absolutely stable in the sector \([k_1, k_2]\) if \(x = 0\) is a globally asymptotically stable equilibrium, for every sector nonlinearity \(\varphi(\cdot) \in \Phi_{[k_1,k_2]}\).

STABILITY OF AN EQUILIBRIUM

\[\dot{x}(t) = f(x(t)) \]

Definition (equilibrium):

\(x_e \in \mathbb{R}^n\) such that \(f(x_e) = 0\)
Definition (stable equilibrium):

\[\forall \varepsilon > 0, \exists \delta > 0 : \|x_0 - x_e\| < \delta \Rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \geq 0 \]

\[\|v\| = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2} \]

 execution starting from \(x(0) = x_0 \)

Graphically:

- **perturbed motion**
- **equilibrium motion**

small perturbations lead to small changes in behavior
Definition (asymptotically stable equilibrium):

\(\forall \varepsilon > 0, \exists \delta > 0 : \|x_0 - x_e\| < \delta \rightarrow \|x(t) - x_e\| < \varepsilon, \forall t \geq 0 \)

and \(\delta \) can be chosen so that \(\lim_{t \to \infty} (x(t) - x_e) = 0 \)

Graphically:

Small perturbations lead to small changes in behavior and are re-absorbed, in the long run.
Definition (asymptotically stable equilibrium):

\[\forall \epsilon > 0, \exists \delta > 0 : \| x_0 - x_e \| < \delta \rightarrow \| x(t) - x_e \| < \epsilon, \forall t \geq 0 \]

and \(\delta \) can be chosen so that \(\lim_{t \to \infty} (x(t) - x_e) = 0 \)

Graphically:

```
small perturbations lead to small changes in behavior
and are re-absorbed, in the long run
```

Let \(x_e \) be asymptotically stable.

Definition (domain of attraction):

The domain of attraction of \(x_e \) is the set of \(x_0 \) such that

\[\lim_{t \to \infty} (x(t) - x_e) = 0 \]

Definition (globally asymptotically stable equilibrium):

\(x_e \) is globally asymptotically stable (GAS) if its domain of attraction is the whole state space \(\mathbb{R}^n \).
Lur'e problem

Given the transfer function $G(s)$ of the linear system L, determine necessary and/or sufficient conditions for the absolute stability of S in the sector $[k_1, k_2]$.

Why is this problem meaningful?
A SIGNIFICANT EXAMPLE

Assumption: $g_P = g_T = 0$ and $g_R = 1$

Let \bar{y}_0, \bar{d}_a, u_0 be constant,

and denote with $\bar{x} = (\bar{x}_P, \bar{x}_T, \bar{x}_R)'$ the corresponding equilibrium.
Assumption: \(g_P = g_T = 0 \) and \(g_R = 1 \)

Let \(\vec{y}^o, \vec{d}_a, u_0 \) be constant,

and denote with \(\vec{x} = (\vec{x}_P, \vec{x}_T, \vec{x}_R)' \) the corresponding equilibrium.

\[
g_R = 1 \rightarrow \vec{c} = 0 \rightarrow \vec{y} = \vec{y}^o \rightarrow \vec{c} = \frac{\vec{y}^o}{\mu_T} \\
\vec{c} = \vec{m} \mu_P + \vec{d}_a \rightarrow \vec{m} = \frac{1}{\mu_P} (\vec{c} - \vec{d}_a) = \frac{1}{\mu_P} \left(\frac{\vec{y}^o}{\mu_T} - \vec{d}_a \right) \\
\vec{u} = \psi^{-1}(\vec{m}) \quad \vec{w} = \vec{u} - u_0
\]

Typical control design approach:

‘linear’ design + nonlinear analysis

(for instance, by simulation)
A SIGNIFICANT EXAMPLE

\[\Sigma: \begin{array}{c}
\delta y \\
\delta u_0 \\
\delta u \\
\delta c
\end{array} \xrightarrow{\delta \Sigma} \begin{array}{c}
R(s) \\
\psi() \\
P(s)
\end{array} \xrightarrow{\delta \Sigma} \begin{array}{c}
d_a \\
T(s)
\end{array} \]

Linear design:
• build the system \(\delta \Sigma \) by linearizing \(\Sigma \) around the equilibrium associated with the constant inputs \(\bar{y}^0, \bar{d}_a, u_0 \)

\[k := \frac{\partial \psi}{\partial u}(\bar{u}) \]

A SIGNIFICANT EXAMPLE

\[\delta \Sigma: \begin{array}{c}
\delta y \\
\delta u_0 \\
\delta u \\
\delta d_a \\
\delta c
\end{array} \xrightarrow{\delta \Sigma} \begin{array}{c}
R(s) \\
\psi() \\
P(s)
\end{array} \xrightarrow{\delta \Sigma} \begin{array}{c}
d_a \\
T(s)
\end{array} \]

Linear design:
• build the system \(\delta \Sigma \) by linearizing \(\Sigma \) around the equilibrium associated with the constant inputs \(\bar{y}^0, \bar{d}_a, u_0 \)

\[k := \frac{\partial \psi}{\partial u}(\bar{u}) \]
A SIGNIFICANT EXAMPLE

Linear design:
- build the system $\delta \Sigma$ by linearizing Σ around the equilibrium associated with the constant inputs $\bar{y}^0, \bar{d}_a, u_0$
- choose $R(s)$ that makes $\delta \Sigma$ asymptotically stable

Different triples $\bar{y}^0, \bar{d}_a, u_0$ map into different equilibria for Σ.
Hence, the linear gain k of the actuator is uncertain

$$k := \frac{\partial \psi}{\partial u} (\bar{u}) \in [k_{\text{min}}, k_{\text{max}}]$$
A SIGNIFICANT EXAMPLE

Different triples \hat{y}^o, d_{α}, u_0 map into different equilibria for Σ. Hence, the linear gain k of the actuator is uncertain

$$k := \frac{\partial \psi}{\partial u}(\bar{u}) \in [k_{\text{min}}, k_{\text{max}}]$$

\Rightarrow robust linear control design needed to guarantee that $\delta \Sigma$ is asymptotically stable for every k in the admissible range

Guarantees for $\delta \Sigma$:

every equilibrium of $\delta \Sigma$ associated with constant inputs is \textit{globally asymptotically stable} and the controlled variable will converge to the desired set-point after some suitable transient, irrespectively of the (constant) value of the disturbances
What about the nonlinear system Σ?

We need to verify that all equilibria associated with admissible constant inputs are globally asymptotically stable.
What about the nonlinear system Σ? We need to verify that all equilibria associated with admissible constant inputs are \textit{globally asymptotically stable}.

\[\rightarrow \text{Lur'e problem} \]

Consider the constant input values \bar{y}°, \bar{d}_a, u_0 and the corresponding equilibrium. We can then adopt the following expressions:

\[x(t) = \bar{x} + \Delta x(t) \]
\[e(t) = \bar{e} + \Delta e(t) \]
\[w(t) = \bar{w} + \Delta w(t) \]
\[u(t) = \bar{u} + \Delta u(t) \]
\[m(t) = \bar{m} + \Delta m(t) \]
\[c(t) = \bar{c} + \Delta c(t) \]
\[y(t) = \bar{y} + \Delta y(t) \]
Consider the constant input values \bar{y}°, \bar{d}_a, u_0 and the corresponding equilibrium. We can then adopt the following expressions:

\[
\begin{align*}
x(t) &= \bar{x} + \Delta x(t) & \Delta x(t) &:= x(t) - \bar{x} \\
e(t) &= \bar{e} + \Delta e(t) & \Delta e(t) &:= e(t) - \bar{e} \\
w(t) &= \bar{w} + \Delta w(t) & \Delta w(t) &:= w(t) - \bar{w} \\
u(t) &= \bar{u} + \Delta u(t) & \Delta u(t) &:= u(t) - \bar{u} \\
m(t) &= \bar{m} + \Delta m(t) & \Delta m(t) &:= m(t) - \bar{m} \\
c(t) &= \bar{c} + \Delta c(t) & \Delta c(t) &:= c(t) - \bar{c} \\
y(t) &= \bar{y} + \Delta y(t) & \Delta y(t) &:= y(t) - \bar{y}
\end{align*}
\]
A SIGNIFICANT EXAMPLE

\[\Sigma \ast : \quad \Delta y = \Delta e \rightarrow R(s) \rightarrow \Delta w = \Delta u \rightarrow \varphi(\cdot) \rightarrow \Delta m \rightarrow P(s) \rightarrow \Delta c \]

\[T(s) \]

\[\Delta y^o(t) := y^o(t) - \bar{y}^o = 0 \]
\[\Delta u_0 := u_0(t) - u_0 = 0 \]
\[\Delta d_a(t) := d_a(t) - \bar{d}_a = 0 \]

(constant) inputs keep unchanged

A SIGNIFICANT EXAMPLE

\[\Sigma \ast : \quad \Delta e \rightarrow R(s) \rightarrow \Delta w = \Delta u \rightarrow \varphi(\cdot) \rightarrow \Delta m \rightarrow P(s) \rightarrow \Delta c \]

\[\Delta y \]

\[T(s) \]

autonomous system
A SIGNIFICANT EXAMPLE

System Σ^* in compact form:

$\Sigma^*:
\begin{align*}
&\Delta u \\
\varphi(\cdot) &\rightarrow \Delta m \\
L &\rightarrow \\
\end{align*}$

$L: G(s) = P(s)T(s) R(s)$
\rightarrow Lur'e autonomous system

- Given that $x(t) = \bar{x} + \Delta x(t)$, then, the global asymptotic stability of the equilibrium \bar{x} of Σ is equivalent to that of the equilibrium $\Delta x = 0$ of Σ^*
- Function $\varphi(\cdot)$ depends on \bar{x}
A SIGNIFICANT EXAMPLE

\[\Sigma^*: \quad \begin{array}{c}
\Delta u \\
\varphi(\cdot)
\end{array} \rightarrow \begin{array}{c}
\Delta m \\
L
\end{array} \]

L: \(G(s) = P(s)T(s)R(s) \)

\(\Rightarrow \) autonomous Lur’e system with \(\varphi(\cdot) \in \Phi_{[k_1,k_2]} \)

Conclusions:

If \(\Sigma^* \) is absolutely stable in the sector \([k_1, k_2]\), then, all equilibria of \(\Sigma \) are globally asymptotically stable
LUR’E PROBLEM

Lur’e problem
determine necessary and/or sufficient conditions for the absolute
stability of S in some sector $[k_1, k_2]$.

A NECESSARY CONDITION

$\varphi(\cdot) \in \Phi_{[k_1, k_2]}$
A NECESSARY CONDITION

\[S : \quad e \xrightarrow{\varphi(\cdot)} u \xrightarrow{G(s)} y \]

\[\varphi(\cdot) \in \Phi_{[k_1,k_2]} \]

Admissible sector functions can be linear:

\[\varphi(e) = ke \in \Phi_{[k_1,k_2]} \]

A NECESSARY CONDITION

\[S : \quad e \xrightarrow{\varphi(\cdot)} u \xrightarrow{G(s)} y \]

\[\varphi(\cdot) \in \Phi_{[k_1,k_2]} \]

Admissible sector functions can be linear:

\[\varphi(e) = ke \in \Phi_{[k_1,k_2]} \]

\[S_L : \quad e \xrightarrow{k} u \xrightarrow{G(s)} y \]
A NECESSARY CONDITION

$$S : \begin{array}{c}
\varphi(\cdot) \\
\varphi(\cdot) \in \Phi_{[k_1, k_2]} \\
\end{array}$$

Admissible sector functions can be linear:

$$\varphi(e) = ke \in \Phi_{[k_1, k_2]}$$

$$S_L : \begin{array}{c}
k \\
\end{array}$$

If S is absolutely stable in $[k_1, k_2]$, then, S_L is (globally) asymptotically stable for any $k \in [k_1, k_2]$.

If $0 \in [k_1, k_2]$, then, system L with t.f. $G(s)$ is asymptotically stable
For a given k,
System S_L is asymptotically stable if and only if the Nyquist plot of $G(s)$ encircles (anti-clockwise) the point in the complex plane corresponding to the real number $-1/k$ as many times as the number of poles of $G(s)$ with positive real part
(Nyquist criterion)
ROBUST ASYMPTOTIC STABILITY OF S_L

If $k \in [k_1, k_2] \rightarrow$ robust stability of S_L

$0 \leq k_1 < k_2$

\[G(j\omega) \]

\[I(k_1, k_2) := \{ \alpha \in \mathbb{R} : \alpha = -\frac{1}{k}, k \in [k_1, k_2] \} \]
ROBUST ASYMPTOTIC STABILITY OF S_L

If $k \in [k_1, k_2] \rightarrow$ robust stability of S_L

$$0 \leq k_1 < k_2$$

$k_1 < 0 < k_2$

$I(k_1, k_2) := \{ \alpha \in \Re : \alpha = -\frac{1}{k}, k \in [k_1, k_2] \}$

ROBUST ASYMPTOTIC STABILITY OF S_L

k uncertain, $k \in [k_1, k_2]$.

System S_L is asymptotically stable for any $k \in [k_1, k_2]$ if and only if the Nyquist plot of $G(s)$ encircles (anti-clockwise) $I(k_1, k_2)$ as many times as the number of poles of $G(s)$ with positive real part.
A NECESSARY CONDITION

Theorem (necessary condition)

If S is absolutely stable in the sector $[k_1, k_2]$, then the Nyquist plot of $G(s)$ encircles (anti-clockwise) $\mathcal{I}(k_1, k_2)$ as many times as the number of poles of $G(s)$ with positive real part. In particular, if $0 \in [k_1, k_2]$, then system L with transfer function $G(s)$ is asymptotically stable.