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Debnitions
Basic debnitions

Probability theory provides a mathematical description of the possible
outcomes of experiments. L& be an experiment which provides a Pnite
number of outcomes 1,! 5,...,! 5.

We have the following debnitions:

Trial is the execution oE which leads to a outcome, or sample,
and only one.

Space or stochastic universe associated with the experimer is
the setS=14,!,,....I , of all possible outcomes @&.

Event is any setA of outcomes and what is a any subset $f

An Elementary Event (or Sample Event) is a seE ! S with a
single outcome.
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Debnitions
Basic debnitions

(contOd) debnitions:
A Certain Event is the event corresponding t8.
The Impossible Event is the empty set'.

Events can be combined with operations in use in Set theory,
obtaining events such asnion (or sum) eventsconjunction (or
product or intersection) eventg;omplement events, anddi! erence
events.

We say that in a trial event A occurs if the outcome of the trial
belongs to A.
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L
Basic properties

Some basic properties directly follow from dePnitions:

The certain event always occurs;
The impossible event never occurs;
A union event occurs if at least one of the component events occur

A joint event occurs if all the components events occur
simultaneously;

Disjoint events can not occur simultaneously, and for this reasons
they are called mutually exclusive (as for example sample events a
complementary events).
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L
Probability dePnition

The probability P(A) of an event Al S is ameasure debned on S so as
to satisfy the following axioms:

Axiom |: P(A) is a nonnegative real number associated with the event.
P(A)# 0 1)

Axiom Il : the probability of the certain event is one.

P(S)=1 2)
Axiom Il : if A e B are disjoint events
P(A+ B)= P(A)+ P(B) 3)
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L
Probability dePnition

Based on the axioms, probabilities have the following properties:

P(A)=1%$ P(R) %1 4)
P(")=0 (5)
If B! A, then
P(B) % P(A) (6)
If A1,Az,..., Ay are disjoint events, and\ = A1 + Ao+ ...+ Ay, then we
have
P(A)= P(A1) + P(A2) + ...+ P(An). (7)

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 8/93



L
Probability space description

A complete stochastic description of an experiment is obtained whe
a su cient number of probabilities to events have been assigned

From a mathematical point of view the assignments are arbitrary
within the limits of the axioms but obviously for applications we use
probability for measuring the likelihood that an event occurs

A formal link between probabilities and occurrence of events in
repeated trials is provided by the law of large numbers (see later).

We say that an experimenk (or probability space S) is completely
described from the probabilistic point of view when probabilities are give
for each elementary eventE

pi = P(E)

The probability of any evenA can then be obtained as the sum of the
probabilities of its elementary events.
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L
Uniform spaces

If all the ng elementary eventg; are equally probable, the spa&is
calleduniform

For a uniform spaces of ng elements, the probability of an evert
composed of, elementary events is:

P(A) = ;—‘; 8)

Therefore for uniform spaces, probability calculations are performed
by counting techniques (as in combinatorial calculus) in order to ge!
ra andns.
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M{LEGIIIII  Uniform spaces

Urn model

A useful way of describing uniform Pnite spaces is throughtuhre

model
L

@

It is an ideal experiment consisting in drawikgobjects (elements)
from an urn containingn objects (like e.g. numbered or colored balls
The model assumes that all possible outcomes consisting of all the
groups that can be formed witk out of n objects are equally
probable
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Cuskreess
Counting groups

Counting the number ok out of n objects and the number of groups
in a given event allows to completely characterize experiments in tt
urn model

If groups df er in at least one element or in the order they appear ir
the group, and if objects are drawn together or one by one with no
replacement

n!

ns=(Nk=nn$1)..(n$ k+1)= m

While, if objects are drawn one by one with re-insertion/replacemen
of the drawn element in the urn

ng = n¥
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Cuskreess
Counting groups

If the order does not count we have to divide by the numikérnof

possible permutations and we get:
l n
n (N _ n!

k k! ki(n$ k)’

Ng =

in the case of drawn with no replacement, and

nk

nS: F!

in the case of with replacement.
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M{LEGIIIII  Uniform spaces

Example (1)

In an urn there are ten objects representing the ten digit4,0.., 9.

Evaluate the probability that, upon drawing of 3 elements, the three digi
form the event

A = number 567

B = number with three consecutive increasing digits
We haveng = (10)3 =10 a9a8 = 720

1

rA—l P(A)— ﬁ)
8

rB—8 P(B)— ﬁ)
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M{LEGIIIII  Uniform spaces

Example (2)

Like in previous example but assuming that we have three consecutive
drawings with the replacement of the element previously drawn. Evalua

the probability of events:
A = number 567
B = number with three consecutive increasing digits

C = number with all equal digits.

ns = 103

ra=1 P(A) = ﬁ)
rg = 8 P(B) = %)
rc =10 P(C) = 1000

15/93
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Cuskreess
Example (3)

Evaluate the minimum number of peoplkeyou need to pick so that the
probability of having at least two people born on the same day is greate
or equal 0.5.

The experiment is equivalent to drawirlgnumbers out of an urn that
contains 365 objects, each representing aetient day of the year.
Denoting with Dy = { extraction k objects all dierent} we have

_ (365)
"~ (365)

P(Dy) k % 365

The probability that at least two people are born in the same day is:

365!

PO =18 POI=13 Gareiyaes

0,5.

The non linear equation can be solved numerically. The resulit ¥23.
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Ceplvaces
Union of non disjoint events

Given eventA and B & S we have:

P(A+ B)= P(A)+ P(B)$ P(AB)

1T
e
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Ceplvaces
Example (4)

In a throw of dice, evaluate the probability that number is either even or
less than 3.

Denote the event Oeven numberOfaand the event Oless than threeO a:
B we have

P(D)= P(A+ B)= P(A)+ P(B)$ P(AB),

We evaluateP (A), P(B), and P(AB) with the counting process and we
Pnd 3 2 1
P(A) = 5 P(B) = 5 P(AB) =

Substituting we get

6

=

P(D) = $

NI =
ol
o

Z+
3
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Conditional spaces
Conditional events

It is often useful evaluating probabilities of events when we know th
another event certainly occurs (conditional events)

Formally, we want to evaluate the conditional probability that the
outcome of a trial ofE, ! ' A knowing that! ' M.

Obviously, knowing that the outcome is in sét gives some
additional information on the possible occurrence of a giversince
all! that do not belong toM are excluded.

For this reason the probability of the occurrence Afis no longer the
original oneP(A), usually referred to as Oa prioriO probability, but a
di" erent one, usually referred to as Oa posterioriO (after knowing
I M).
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Conditional probability
The probability description of conditional events can be given as a

function of unconditional probabilities considering a new space
S; = M and a new evenA; = AM

S
A M=S,

Using axioms it is easy to show that the probability of A conditionec

to M is:
P(AM)
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Ceplvaces
Example (5)

Evaluate the probability that the outcome of a throw of the dice is 2
knowing that the result is even.
We have
S={123,45,6} S; = {2,4,6}
and from (10)
P(2/ even) =P4(2) = %
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IMCLEGIIII  Conditional spaces

Total Probability

Theorem of Total Probability

GivenM1, M2, ... M, disjoint events such thaM; + My + ...+ My = S
(or more in generaM; + Mo... My ( A), we have
#n
P(A)=  P(AIM))P(M;). (11)
i=1

In fact, since event®\M; are disjoint, and their union provide&, we can
write

#n
P(A) = P(AM;),
i=1

(12)
and using the relation

P(AM;) = P(A/ M;)P(M;), (13)
we get (11).)
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Ceplvaces
Example (6)

Note: in all cases where calculating the probability of an event conditioned to

others is easier that direct calculation, total probability theorem is particularly
useful

A box contains three types of objects, some of which are defective, in
these proportions

type A - 2500 of which 10% defective

type B - 500 of which 40% defective

type C - 1000 of which 30% defective
If we draw an object at random, what is the probabiliB(D) that,
drawing an object, this is found to be defective?

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 23/93



Lol Conitiona spaces
Example (6)

The probability to draw an object of typé\, B, C are respectively

2500 _ 5. 500 1 1000 _ 2

P(A) = 4000 8’ P(B)= 4000 8’ P(C)= 4000 8
Then we have

10 40 30

P(D/A)= soi P(DIB)= i P(D/C)= 1o

and, pnally, from total probability equation:

P(D)= P(D/A)P(A)+ P(D/B)P(B)+ P(D/C)P(C) = {%
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Ceplvaces
Example (7)

A game is based on the following experiment. A box contairtags, each
one reporting a number arbitrarily determined. The player draws at Iprst
tags and observes their maximum valog. Then, further drawings are
performed until a valuen is observed such as > M.

Player wins ifm = M, whereM is the maximum value among those
reported on then tags. We want to evaluate the probabilit (V) to win.
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Ceplvaces
Example (7)

Since the positions of the maximum are equally likely, the probability the
M is in positionk is
. 1
P(M in k) = n

The probability to win, withM in k, is zero ifk % r.

For k > r player wins if the maximunmy, ; among the brsk $ 1 tags is
within the Prstr, and this happens with probability

. r
Pi(V/IM ink) = .
( ) k$ 1
with k > r.
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Ceplvaces
Example (7)

By the Total Probability Theorem (11) we have:

#n
P(V)=  P(V/M inKk)P(M ink)=

k=1

# #n
= P(V/MinK)P(M in k) + P:(V/M in K)P(M in k) =
k=1 k=r+1
IS S S
k=r+1k$1n k=r k

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 27193



BayesO Formulas

If we use total probability two times in a direct and a reverse way we ge

P(AM) _
P(A)

P(M)

P(M/A) = A

= P(AIM) 55 (14)

Using the total probability theorem (11) for the denominator, the above
expression can be re-written as:
P(A/ M) P (M)

L P(A/M))P(M))

P(Mk/A) = (15)
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BayesO Formulas

BayesO formulas are particularly useful for evaluating conditional
probabilities before and after observing the occurrence of an event.

In particular, the second formula is referred to as OBayesO rule for
Oa posterioriO probabilityO, that is after observing the occurrence ¢
the eventA.

In this case,P(M;) are called Oa priori probabilitiesO aR@M;/ A) Oa
posteriori probabilitiesO.
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IEVITM  BayesO Formulas

Example (8)

An object drawn at random from the box in Example (6) is found to be

defective. Evaluate the probabilities that it is of typ® B and C
respectively.

Using BayesO formula and the preceding results we have

P(D/A)P(A) _ 10

P(A/D) = P(D/B)P(B) _ 8

P(B/D) = .
P(D) 30’ ( ) P(D) 30
Similarly we have
P(C/D) = 12
-~ 30

Note that while Oa prioriO the most likely type of objectisafter
observing that the object is defective the most likely type of objecCis
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Eeveetlioliks
Example (9)

Assume that you are presented with three dices, two of them fair and th
other a counterfeit that always gives 6. If you randomly pick one of the
three dices, the probability that itOs the counterfeit is 1/3.

See h Y

-«m:’

This is the a priori probability of the hypothesis that the dice is
counterfeit. Now after throwing the dice, you get 6 for two consecutive
times. Seeing this new evidence, you want to calculate the revised a
posteriori probability that it is the counterfeit.
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Eeveetlioliks
Example (9)

The Oa prioriO probability of counterfeit dice is

1
P(Dc) = 3’
while that of a fair dice is 5
We have: 11 1
= _* _ =
P (66/ Ds) " 6 36
P(66/D:) =1
and then using BayesO formula:
P(66/ D:)P(D¢) 18

P(De/ 66) =

P(66/ Dc)P(D.) + P(66/D;)P(Df) _ 19
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Statisial independence
Statistical independence

Two eventsA andB ! S are said statistically independent if and only if
P(AB) = P(A)P(B) (16)
The meaning of statistical independence is immediate if we observe tha
A and B are independent:
P(A/B)= P(A), P(B/A)= P(B).

This means that the probability oA is not inBuenced by the occurrence ¢
B and vice versa.
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ST )
Example (10)

In a throw of the dice, check whether the following events
A = even number

B = number one, or two or three

are statistically independent.

We have
P(A)=1/2; P(B)=1/2; P(AB)=1/6;

that is
P(AB) = P(A)P(B)

Hence, event®# e B are not statistically independent.
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Statisial independence
Example (11)

In a throw of the dice, check whether the following everts an even
number appears

B = number one, or two, or three, or four appears

are statistically independent.

We have
P(A)=1/2; P(B)=2/3; P(AB)=2/6

and
P(AB) = P(A)P(B)

Hence, event®\ e B are indeed statistically independent.
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Random Variables

Random Variables
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LTI AT SO
Spaces with countable outcomes

To deal with space$ with inbnite outcomes, we must add another axion
that extends the summation of the probability measure over inbnite tern

Axiom Illa: If Ay, Ay, ..., A, ... are disjoint events and
A=A+ Ax+ ...+ A+ ..., then

P(A)= P(A))+ P(A))+ ...+ P(Ap) + ... an

An example of this type of space is the number of coin Rips to get a he
This number is not limited, as the head could never appean imial,
whichevem is.

These spaces are saiuntable (number of elements of the same
cardinality of natural numbers), and can be managed with the methods
Pnite spaces.
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LTI AT SO
Spaces with uncountable outcomes

We can consider alsuncountable spaces, such as is the case when
the outcomes is, for example, a point in an interval, or in any gener
geometrical space

The extension to these spaces is however not straightforward and
require new instruments

The approach used is that of OtransformingO the space of outcome
into another one more convenient for assigning probabilities.

In particular, we map outcomes and events (subsetsBdhto the
space of real numbers (using integer numbers as a subset to incluc
countable spaces as a special case)
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Spaces with inPnite outcomes
Debnition of Random Variable

Let us consider a real functiok (! ) debPned on the spacB of the
outcomes that binds the se® and the set of real numberR in order
to match every! ' S with one and only one valuX (! )inR

With this function, each evenfA! S corresponds a sdt! R such
that for every! ' A we havexX(!)"' I.
In this way the description of an experiment in terms of resulisA
and probability events foPs(A) in S, can be replaced with
description in terms of real numbess setsl and probabilitiesPr(1)
in R.
A function X (! ) which satisbes the above conditions is calleddom
variable.

Typically, the notation is simpliPed omitting the relation with and
capital letters, such as X, Y, Z, are used to indicate random variables.
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Spaces with inbite outcomes
Cumulative Distribution Function (CDF)

Let X be a Random Variable (RV) and a real number.
The probability of the even{ X %x} is a function of the real variablg:

Fx (X) = P(X %X) (18)
and is calledCumulative Probability Distribution Function (CDF) of X.

Fx (x) completely describes RX.
In fact we have, for anys, xo and x:

P(x1 < X %X2) = F(x2) $ F(x1) (19)

P(X=x)= F(x)$ F(x') (20)

We denoteF(x*) =1lim 1 g and F(x" ) =lim, oF(x!-!)
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Spaces with inbite outcomes
Cumulative Distribution Function (CDF)

The CDF has the following properties:
it has the following limits

F($, )=0 F(+, )=1 (21)
it is @ monotonic non decreasing function gf
F(x1) % F(x2) per x3 %x; (22)

it is right continuous :
F(x™) = F(x) (23)
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REULINAYEYEGIESE  Continuous Random Variables

Continuous Random Variables
Probability Density Function (pdf)

A RV X is continuous if its CDF Fx (x) is a continuous function in
R, together with its Pbrst derivative, except at most a countable set (
points where the derivative does not exist.

Since for a continuous R¥y (x), we have
P(X=x)=0.

It is therefore useful introducing thprobability density function
(pdf) of RV X, fx (x) debned as the derivative of the corresponding

CDF: q
fx (x) = ngx)

The debnition is then completed by assigning arbitrary positive valu
where the derivative does not exist.

(24)
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Continuous Random Variables
Probability Density Function (pdf)

From the dePnition and properties &f(x) we have

o f(x)# 0 (25)
f(x)dx =1 (26)
N %,
P(X %x)= F(x)= f (x)dx (27)
" %,
P(x1< X %X2) = F(x2) $ F(x1) = f (x)dx (28)

X1
Directly from the depPnition we have:
P(x < X %X+ #Xx)
# X '
This shows that the pdf can be interpreted as the normalized probability
that the RV belongs to a small interval aroundand, dimensionally, is a
density, hence the name.
Basics of Probability Theory 43/93
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Continuous Random Variables
Example (12) - Uniform RV

We want to bnd the CDF and pdf of RX, debned as the coordinate of ¢
point randomly selected in intervah[b] of x axis.

We have

&
( Ei Z (a%Xx %b)
Fx(x) =, (30)
) 0 (x< a)
1 (x> b)
and from dePnition (29):

_ #x 1
FO= M 5% a #x
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Continuous Random Variables
Example (12)

we get & L
( (a%Xx %b)
=, b$ a (31)
0 elsewhere
A A
Fx() (X
1 s -
a b X g a b X .

A RV that satisbes (30) and (31) is called Ouniformly distributedO and t
pdf is said OuniformO.
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REULINAYEYEGIESE  Continuous Random Variables

Example (13)

A point P is drawn uniformly on a circumference of radius R and center
the origin of axes. Find the pdf of RV X, debned as the coordinate of
orthogonal projection of P on the horizontal axis.

N
L

di

To bnd the pdf let us use the dePnition (29). With reference to the bPgul
P(x < X %x + #x) is the probability thatP lies in one of two small arcs
shown in the bgure, each having a length

+

*

d#=  dx2+ dy2 = dx 1+(%)2
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Continuous Random Variables
Example (13)

Beingy = " RZ$ x2, we get:

xadx

d =$‘:
Y R2$ x?

by replacing it in the expression above we get

2 2
d#= dx 1er(dx) 1 dx

2@ 32 7 = F———
RZ$ x2 (d¥) 1$(%)2
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Continuous Random Variables
Example (13)

Then we have:

o= tim 22 Lo, 2X
T N0 #x23R T 1x#o #X25R 1% (X/R)2

1, 1

TSR 1% (WR)?

for (| x |%R) and zero elsewhere.
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REULINAYEYEGIESE  Continuous Random Variables

Example (14)

A point P is drawn uniformly in a circle of radius R. Derive the pdf of R
Z, debned as the distance of P from the center O of the circle.

P(z< Z %z+ #2) is the probability thatP is taken in the annulus
shown in the bgure, whose area i$22 z.

. @ N =

By dePnition (29) we get

o 2$z#tz 1 _ 2z
f22)= M “grz %z~ Rz ©%2%R)
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Continuous Random Variables
Example (15) - Negative Exponential RV

The ONegative ExponentialO pdf is debned as:

F(x)=1$€e ' (x#0) (32)
we have:
f(x)= % '* (x# 0) (33)
AFx(x) f (%)
1 !
a b
X g X >
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RELLINAYEUELIESE  Discrete Random Variables

Discrete Random Variables
Probability Distribution

A discrete RVX is characterized by a CDFx (x) of a staircase type, with
discontinuities in a countable set of poinig(i =0,+£1,+2...), where it
presents steps of valug:

A
Fx(®)
l ————
PP, T Pr*P;*Ps
pl :——i i
Xy Xo  Xg X
In this case we get
-\ = DPi X = X
P(X = x) = 34
X=x= X (34)

This is calledProbability Distributionof X.
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Bl Al
Probability Distribution

For the Probability Distribution, we have

pi # 0 (35)
#
pi =1 (36)
M
F(x) = Pi (37)

whereM is the maximumi for whichx; % x.
If the valuesx; are integers, then R\X is said aninteger RV .
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Discrete Random Variables
Examples of discrete variables

Distribution of a constantc:

1 for x=¢c¢

P(X'=x)= 0 elsewhere (38)
The Bernoulli (binary) distribution:
&
(p for x=1
P(X=x)=) 1$p=q for x=0 (39)
0 elsewhere

The uniform distribution

R

} for x=x (i=1,...,n)
P(x:x):,) A (40)

0 elsewhere

already encountered in examples with dices, draws from urns, etc.
Basics of Probability Theory 53/ 93



Discrete Random Variables
Binomial distribution

We can consider experiments obtained from repeating a single
experiment multiple independent times

Repeated independent trials, each of which with only two possible
outcomes, sayuccesgS) and failure (F) are calledBernoullitrials.
DenotedP(S) = pandP(F)= g=1 $ p, the probability P(S, = k)
that in n Bernoulli trialsk successes and$ k failures occur is given

by the following distribution
! n

P(Si= k)= | pg” ™ 0%k %n) (41

This distribution is calledBinomial of order n
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Discrete Random Variables
Example (16)

A quality control process tests some components out of a factory and
components are found defective with a probability=pl0' 2. Evaluate the
probability that out of 10 components checked there are

A = only one defective

B = two defective

C = at least one defective

The 10 tests can be modeled as Bernoulli trials with success probability
p= 100 Then we have

P(A)—( )(1—00) ( 9=0,0013...

P(B)=( 3 )(1%0)2(% ®=0,00415...

#0
PO = (3010 (o) K =18 (1 )(159°(15)'0=0,0986..
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MEARICIRE
Moments of a pdf

For the pdf we can debPne some parameters that resume some propertie
the function. These are callethoments and the most used are:
k$ th order momentsk =1,2,...)
%,
my = XX f (x)dx (42)

k$ th order central moments
%, .

U = (x$ mp)*f (x)dx (43)

Note that, depending on the specibc pdf, some moments may not exist.
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MEARICIRE
Moments of a pdf

Parameters of the same meaning can be given also for discrete variable
the form:

my = X" Pi (44)

Hk (% $ m)¥ pi (45)
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MEARICIRE
Moments of a pdf

The brst order moment:
%, .
mp = x f(x)dx (also denotedmy)
.
This can be considered as the coordinate of the center of mass
interpreting the pdf as a mass distribution along thkewith density
f (x).
The indexus:
%, n
Uy = (x$ mp)?f (x)dx (also denoteds? )

"

provides an index of the dispersion of the distribution around my
we have
Ho = mp$ m?
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RELLINAYEYELIESM  Moments of a pdf

Law of large numbers

Let X be a RV whose pdf has brst order moment
Denote with Xy, X, ..., X, the outcomes of the RV im independent

repetitions of the experiment

and X, their arithmetic mean:
Xn =

we have the followind.ow of large nhumbers:

P(lim Xn=m)=1 (46)
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Moments of 2 pdf
Law of large numbers

Law of large numbers states that the average performed on a numt
n of outcomes ofn independent trials, tends with probability 1 ton;
whenn tends to inPnity.

For this reasonms is also called thanean valueor expected valuef
RV X and it is also denoted b¥[X].

This law is of great importance since it provides a relationship
between a pure mathematical parameten;, to another oneX,
directly derived from an experiment.
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MEARICIRE
Interpretation of probability

LetOs formulate the law of large numbers for probabjityof eventA
Debne the binary R\ such that it isX =1 if A occurs andX =0
otherwise
If we performn trials we have

#n

Xi = na

i=1
beingna the number of timesA occurs
we also observe that

m1(X) = pa
and n
Na A
Xn = o
Therefore, the law of large numbers can be written as
. Na _ _
P(Im —=pa)=1 (47)
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Properties of E[X]
Some properties oE[X] are (for proofs see lecture notes):

If f (x) is symmetric around a value @& and m; exists, thenm; = a
If my exists, it can be expressed as

%. %,
my = . (1% F(x))dx$ . F(x)dx (48)
If Fx(x) =0 for x < O, for! > 0 the foIIoWing inequality holds
PX#!1)% E[x] (49)
Settingv = EEX] we get a di erent expression
P(X # VE[X]) %% (50)

that shows how to establish a constraint upon the part of pdf that lie
above the mean valuev(> 1), based on the sole knowledge of the

mean value.
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Moments of 2 pdf
Tchebichev inequality

Central momentysy, is also calledrarianceof RV X and denoted by
&)2(, whereas&y is calledstandard deviation

The variance represents a measure of the dispersidnf around its
average value

This is shown by thel'chebichev Inequality
P(X$my|# v&)<v—12 (51)
By settingv& = ' we get alternatively
&2
Pm$'<X<m+') # 1$ (52)

&2
' 2

P(IX$ m|# ') % (53)
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Moments of 2 pdf
Example (17)

Let us apply Tchebichev inequality to bound the probability that the
frequency of HEADS in Ripping a fair coin n times exce8ds+ ' .

The frequency of HEADS im trials isH/ n whereH is the RV number of

HEADS inn trials. This has a Binomial distribution with average 2 and
& (H) = n/ 4. Therefore,

1

mi(H/n) = >

1

2 = =

& (H/n) = n

Tchebichev inequality says

2
P(IH/n$ my| # ") %(-&2

and substituting
, 1
P(JH/n$ 0.5 # )%W
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RELLINAYEYELIESM  Moments of a pdf

Example (17)

we have

=0.1,
'=0.1,
'=0.1,
'=0.1,

We also see that

=10,
=100,
= 1000,
= 10000,

50"

lim P(JH/n$ 05/ # ') =0,
n#

that provides a kind of demonstration of the law of large numbers.

Antonio Capone (Politecnico di Milano)
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Conditional distributions and densities
Conditional distributions and densities

Let M be an event of spac8 where RVX is debPned. We debne CDF of
X conditional toM (provided thatP(M) = 0) the function:

Fx (X/M) = P(X % x/M) (54)

and similarly for the density a

dFx (x/ M) — im P(x< X %x+ #x/IM)

fx(x/M) = dx I x# 0 # X

(55)

It is easy to check that the above debned functions have all the propert
of the CDF and pdf.
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RELLOINAYEYEGIES  Conditional distributions and densities

Conditional distributions and densities

Interesting cases are those where also evdnis described in terms of RV

X.
We debne probability of an evert conditional to the valuex assumed by

a RV X, assuming thatfx (x) # 0, as the limit

P(A/X = x) = !”Qlo P(A/x < X %X+ #X) (56)

From Bayes formula (14) we get:

P(x < X %x+ #x/A)P(A)
0 P(x< X %X+ #X)

P(A/IX =x) = Ili)r(g

and multiplying by# x above and below, and taking the limit, we have

Pnally
P(AIX = x) = XX/ APA) (’;/X A&;’(A) (57)
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Conditional distributions and densities
Total probability law for the continuous case

From (57) we have by integrating left and right sides:

%, - %, -
fx (x/ A)P(A)dx = P(A/ X = x)fx (x)dx
" "
%,
and, by observing that fx (x/ A)dx = 1, we have
%, .
P(A) = P(A/ X = x)fx (x)dx (58)

This is the Total probability law for the continuous case.
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Conditional distributions and densities
BayesO formula for the continuous case

Furthermore from (57), and using (58), we obtain:

P(A/ X = x)fx (x) - o P(A/ X = x)fx (x) (59)
P(A) ' P(A/ X = x)fx (x)dx

fy (x/ A) =

which represents the Bayes theorem extended to the continuous. case.
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RELLOINAYEYEGIES  Conditional distributions and densities

Example (18)

Four points AB,C and D are chosen uniformly and independently on a
circumference. Find the probability of event

| = {intersection of chords AB and CPp

Denoted byL the length of the circumference and bythe RV length of
arc AB (oriented), and assume& = x, we have

P(/X =x)= P(D' AB)P(C' BA)+ P(D' BA)P(C' AB)=

A xX(L$ x)
_ZT

A

B
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Conditional distbutions and densites
Example (18)

From total probability law, and being

)= 1 0<x<L),

we get

P()=  P(/X = X)fx()dx= 2
0 0 L

x(Lt X) dx = 1

The result can be found also observing that, ongeas taken, the
sequences derived from the permutations of the other 3 points are equz
likely, and among these only two lead to a chord intersection.
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Vectoral Random Variables
Multiple Random Variables

We can extend dePnitions of a scalar RV (debPned on real nuniRers
to the case of multiple RVOs debned on multidimensional spaces

We focus on the case of two RVs, being the extension to more thai
two RVs straightforward

Consider two RVX(! ) and Y (! ) debned in the same result spafe

We have a correspondence between each e¥ehtS and a setDyy
of the Cartesian plane, such that for every' A the point with
coordinatesX (! ) and Y (! ) belongs toDyy.

Thus, a joint event inS is represented by a domaid,y in the
Cartesian plane.
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REQLINAYEYEGIESE  Vectorial Random Variables

Joint CDF

The probability of the joint eventd X % Xx,Y %y} = {X %xH{ Y %y} is
a function of the pair of real variables andy:

Fxy (X,¥) = P(X %X,Y %Y) (60)
Such a function is callegbint CDF of RVsX andY.

A

y

(x.y)

v
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Vectorial Random Variables

Joint CDF
From the dePnition we can easily verify the following relations:
F(x,, )= FX);  F( y)=F(y) (61)
FG ., )=1 (62)
F(x,$, )=0; F($ .,y)=0 (63)
P(x1< X %X2,y1 < Y %Y2) = F(Xz,¥2)$ F(x1,y2)$ F(x2, y1)+ F(Xliglll))

Tl&
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sl
Joint pdf

Assuming now thatxy (X, y) is derivable, the joint pdf of RVX andY is

_ (PF(x,y)
fXY (X1 y) - ( X( y (65)
The properties hold
f(x,y)# 0 (66)
%. %.
f(x,y)dxdy=1 (67)
" "
Furthermore, from the debnition of the joint derivative we have
o Px< X< x+#X,y<Y<y+#y)
foy) = ! xI,I!my# 0 #x#y (68)
Basics of Probability Theory 75193



sl
Joint pdf

The event including all results whebe(! ) and Y (! ) belong to a domain
D can be written as a union or intersection of elementary events of the

type
(X< X %X+ #X, y<Y %y+ #y}
and, therefore, we have
% %
P((X,Y)" D)= f (x,y)dxdy (69)
D

where the integral is extended over the domé&in
It also follows that

% %.
fx (x) = f(x,y)dy; fy (y) = f(x,y)dx (70

" "

When dealing with multiple RVs, the pdf of each RV is call@drginal
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Vectoral Random Variables
Example (19)

Find the joint and marginal pdf of RVOs X and Y Cartesian coordinates
a point Q chosen uniformly in a

a) square of side L and centered at the origin
b) circle of radius R and center at the origin

y
a b

v

.
NP,
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Vectoral Random Variables
Example (19)

To Pnd the joint density we use depPnition (68).
In this expression the probability at the numerator the probabili@ylies
into the rectangle of coordinates, x + # x, y, y + #Y, but sinceQ is

picked uniformly, this probability has valuﬁﬂ, S being the area of the

domain, regardless of the location of the small rectangle. Therefore, we
obtain &

( for(x,y)' S
f(x,y)=, (71)
0 elsewhere

Such a pdf is still called Uniform i and the value of the constant/5
depends only from the area of the domain and not by its shape.
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Vectoral Random Variables
Example (19)

About the marginal pdf we have

a)

0 0 | "
fx (x) = o f(x,y)d —A)% id = 1 .$E<X<E
= VS YT 2 2

and similarly I "
1 L L
fy (y) = K $§<y<§
In this case, the marginal pdf are uniform.
b)
%, Wrae 5 *
= = _ - _— 2 2- <
fX (X) " f(xvy)dy ! $R2! 2 $R2dy $R2 R $ X%, (l X | R)

Here, the marginal pdfOs are no longer uniform. In fact, the shape of th
domain of point K,Y) inBuences the result.
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Vectoral Random Variables
Conditional pdf

¥ pdf of RVY conditioned by the value assumed by another RV

fxy (X,
fy (/X = x) = vax((x)y) (72)
¥ Total Probability Theorem
%, .
fy (y) = fy (y/ X = x)fx (x)dx (73)

¥ BayesO Theorem

b= = LY =)

(74)
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Vectoral Random Variables
Conditional pdf

¥ Conditional mean
%, -
E[Y/X =X] = yfy (y/ X = x) (75)
p
¥ Total Probability Theorem with respect to the mean
%, -

E[Y]= E[Y / x]fx (x)dx (76)
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REQLINAYEYEGIESE  Vectorial Random Variables

Example (20)

A point of coordinate X is uniformly selected within intervi@; L] of x
axis; Another point of coordinate Y is uniformly selected within interval
[X;L]. Find the joint pdf of X, Y, the marginal pdf of Y and the

probability P that the three segments of length X, Y, and¥ X can
form a triangle.

L/2 L X
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Vectoral Random Variables
Example (20)

We have 1
fx (x) = L O<x<L)
1
fy(y/X=x)=L$X; (x<y<l)
Using (72) we get
1
fxy (X,y) = m; O<x<y<l)

and from (73), by observing that the expression under integration is zer«
for x > y, we have

0
/Oy

fy (y) =

1
o s ™ gy O<vy<b
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Vectoral Random Variables
Example (20)

The domainD, whereX andY are such as to allow the construction of
the triangle, is shown in the bgure

A

y
a
D
L/2 L x
and we thus have

%% %x+% 1 1

= —————dy=1In2% = =0,1931...

p . dx% L(L$x)dy n$2 0,193
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Vectoral Random Variables
Statistically independent RVs

Two RV X andY are said to be statistically independent if events

{X %x} e{Y %y} are statistically independent for eachandy.

It follows then that two random RV are independent if one of the followin
relations holds

Fxy (X,y) = Fx(X)Fv (y)

fxy (X, ¥) = fx(X)fy (y)
fx(XI'Y =y) = fx(x)
fy(y/ X =x) = fy(y)
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Example (21)
Given two RVOs X and Y independent and exponentially distributed wil
the same averagé&/ % bnd:

a) the probability of the even{Y > ! X} with ! real positive;
b) the pdf fy (y/Y > ! X).

a) We could use the (69), bein® the domain in whichy > ! x, and given
the independence we have

fxy (X,¥) = fx (X)fy (y) = %Be' ') (x,y > 0)

More immediately we can use the Total Probability Theorem

%. %.
P(Y > 1 X) = P(Y > | X/ X = X)fy (x)dx = e " X o ' Xdx
0 0
%.
1 e 1
= (/4] ! ( +1)X -
vt o, G TUe &=
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Vectoral Random Variables
Example (21)

b) From the dePnition of conditional pdf, and from the result of point a)
we get:

1 P(y<Y%y+#yY>!X)_

| -

fy (y/Y > 1 X) !II}fQo #y P(Y > 1X)
= lim LP(y<Y%y+#y,x<y/!)_
= Ly#0 #y P(Y> 'X) =

%oy ",
fxy (X, y)dx %' 'Y ve' ' Xdx
= 0 _ o _

P(Y > I X) V(i +1)

= (1 +1)% Y1se ) (y>0)
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Vectorial Random Variables
Joint Moments

Given two RVOX and Y the joint moments of ordeh andk are debned
as % %

Mhk = x"yKfey (X, y) dxdy
and the central moments of orddr and k
% %
Hpk = (x$ m)"(y $ my)*fxy(x,y)dxdy.

The mixed second-order central momenis, said alsoCovariance of RVs
X and, is of particular interest. It is linked tany; by the following
relation

H11 = M1 $ miomoy (77)
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Functions of Random Variables
The sum of two continuous RVOs

Given the two continuous RV3se Y, whose joint pdf is known, we want
to Pnd the pdf of their sum
Z=X+Y (78)
To this purpose, we note that
fz(zIX = x)= fy(z$ x/I X = x) (79)
From the total probability theorem we have
% %

fz(z) = fz(zI X = X)fx(xX)dx = fy(z$ x/ X = x)fx (x)dx  (80)

which provides the pbnal formu(l)/a
0

fz(z2)=  fxy(x,2z$ x)dx (81)
Symmetrically we have %
0

fz(2) = fxy(z$ y,y)dy (82)
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Functions of Random Variables
The sum of two continuous RVOs

If X andY are statistically independent the two above become
%
fz(z2) = fx(X)fy(z$ x)dx

%
fz(z)= fx(z$ y)fy(y)dy

The operations above are known as the convolution of pdfOs.
In fact, the convolution of functiong (x) and g(y) (need not to be pdfOs)
is debned as
% %
f(z2)/g(z)= f(X)g(z$ x)dx= f(z$ x)g(x)dx
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Functions of Random Veriables
Example (22)

Find the pdf of RV Z= X + Y where X and Y are independent RVs witl
the same pdf, namely

a)f(x)z%1 (0< x< a)

b) f(x)= %' '* (x> 0)

a) The integrating function in (90) is dierent from zero when both the
following conditions apply:

O<x< a
O0<z$x<a

or -
O<x<a

z$a< x<z
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RELLOINAYEYEGIES  Functions of Random Variables

Example (22)
Such conditions depend on and, therefore, we must distinguish the

following cases:
forz%0 fz(z)=0
for 0%z < a condition 0< X <& holds, and therefore we have
0Z
z

fz(z2) = = dz= —;
Z( ) a2 0 a2
for a< z % 2a conditionz $ ag x<a holds, and therefore we have

a 2% z
dx = 2 ;

fz(2) = = ;
Z() a2 1 a

forz>2a fz(z)=0;

f2(2)

7
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Functions of Random Veriables
Example (22)

b) The integrating function in (90) is dierent from zero when

> ) >
)z($ )?> 0 that is )): < g and, therefore, we have
%Z
f;(z) = %' ' Xoe' ' (Z Xdx = %Bze 'Z (z> 0)
0
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