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Probabilities DeÞnitions

Basic deÞnitions

Probability theory provides a mathematical description of the possible
outcomes of experiments. LetE be an experiment which provides a Þnite
number of outcomes! 1, ! 2, . . . , ! n.
We have the following deÞnitions:

Trial is the execution ofE which leads to a outcome, or sample,!
and only one.

Space or stochastic universe associated with the experimentE is
the setS = ! 1, ! 2, . . . .! n of all possible outcomes ofE.

Event is any setA of outcomes and what is a any subset ofS.

An Elementary Event (or Sample Event) is a setE ! S with a
single outcome.
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Probabilities DeÞnitions

Basic deÞnitions

(contÕd) deÞnitions:

A Certain Event is the event corresponding toS.

The Impossible Event is the empty set" .

Events can be combined with operations in use in Set theory,
obtaining events such asunion (or sum) events,conjunction (or
product or intersection) events,complement events, anddi! erence
events.

We say that in a trial event A occurs if the outcome of the trial
belongs to A.
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Probabilities DeÞnitions

Basic properties

Some basic properties directly follow from deÞnitions:

The certain event always occurs;

The impossible event never occurs;

A union event occurs if at least one of the component events occurs;

A joint event occurs if all the components events occur
simultaneously;

Disjoint events can not occur simultaneously, and for this reasons
they are called mutually exclusive (as for example sample events and
complementary events).
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Probabilities DeÞnitions

Probability deÞnition

The probability P(A) of an event A! S is ameasure deÞned on S so as
to satisfy the following axioms:
Axiom I : P(A) is a nonnegative real number associated with the event.

P(A) # 0 (1)

Axiom II : the probability of the certain event is one.

P(S) = 1 (2)

Axiom III : if A e B are disjoint events

P(A + B) = P(A) + P(B) (3)
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Probabilities DeÞnitions

Probability deÞnition

Based on the axioms, probabilities have the following properties:

P(A) = 1 $ P( øA) % 1 (4)

P(" ) = 0 (5)

If B ! A, then
P(B) % P(A) (6)

If A1, A2, . . . , An are disjoint events, andA = A1 + A2 + . . . + An, then we
have

P(A) = P(A1) + P(A2) + . . . + P(An). (7)
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Probabilities DeÞnitions

Probability space description

A complete stochastic description of an experiment is obtained when
a su! cient number of probabilities to events have been assigned

From a mathematical point of view the assignments are arbitrary
within the limits of the axioms but obviously for applications we use
probability for measuring the likelihood that an event occurs

A formal link between probabilities and occurrence of events in
repeated trials is provided by the law of large numbers (see later).

We say that an experimentE (or probability space S) is completely
described from the probabilistic point of view when probabilities are given
for each elementary event Ei

pi = P(Ei )

The probability of any eventA can then be obtained as the sum of the
probabilities of its elementary events.
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Probabilities DeÞnitions

Uniform spaces

If all the nS elementary eventsEi are equally probable, the spaceS is
calleduniform

For a uniform spaceS of nS elements, the probability of an eventA
composed ofrA elementary events is:

P(A) =
rA

nS
(8)

Therefore for uniform spaces, probability calculations are performed
by counting techniques (as in combinatorial calculus) in order to get
rA and nS.
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Probabilities Uniform spaces

Urn model

A useful way of describing uniform Þnite spaces is through theurn
model

It is an ideal experiment consisting in drawingk objects (elements)
from an urn containingn objects (like e.g. numbered or colored balls)

The model assumes that all possible outcomes consisting of all the
groups that can be formed withk out of n objects are equally
probable
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Probabilities Uniform spaces

Counting groups

Counting the number ofk out of n objects and the number of groups
in a given event allows to completely characterize experiments in the
urn model

If groups di" er in at least one element or in the order they appear in
the group, and if objects are drawn together or one by one with no
replacement

nS = ( n)k = n(n $ 1) . . . (n $ k + 1) =
n!

(n $ k)!
.

While, if objects are drawn one by one with re-insertion/replacement
of the drawn element in the urn

nS = nk
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Probabilities Uniform spaces

Counting groups

If the order does not count we have to divide by the numberk! of
possible permutations and we get:

nS =
!

n
k

"
=

(n)k

k!
=

n!
k!(n $ k)!

,

in the case of drawn with no replacement, and

nS =
nk

k!
,

in the case of with replacement.
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Probabilities Uniform spaces

Example (1)

In an urn there are ten objects representing the ten digits 0, 1, . . . , 9.
Evaluate the probability that, upon drawing of 3 elements, the three digits
form the event

A = number 567

B = number with three consecutive increasing digits

We havenS = (10) 3 = 10 á9 á8 = 720

rA = 1 P(A) =
1

720

rB = 8 P(B) =
8

720
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Probabilities Uniform spaces

Example (2)

Like in previous example but assuming that we have three consecutive
drawings with the replacement of the element previously drawn. Evaluate
the probability of events:

A = number 567

B = number with three consecutive increasing digits

C = number with all equal digits.

nS = 103

rA = 1 P(A) =
1

1000
rB = 8 P(B) =

8
1000

rC = 10 P(C) =
10

1000
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Probabilities Uniform spaces

Example (3)

Evaluate the minimum number of peoplek you need to pick so that the
probability of having at least two people born on the same day is greater
or equal 0.5.
The experiment is equivalent to drawingk numbers out of an urn that
contains 365 objects, each representing a di" erent day of the year.
Denoting with Dk = { extraction k objects all di! erent } we have

P(Dk) =
(365)k
(365)k

k % 365

The probability that at least two people are born in the same day is:

P(Dk) = 1 $ P(Dk) = 1 $
365!

(365$ k)! 365k > 0, 5.

The non linear equation can be solved numerically. The result isk = 23.
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Probabilities Conditional spaces

Union of non disjoint events

Given eventsA and B & S we have:

P(A + B) = P(A) + P(B) $ P(AB) (9)

S

A B

AB
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Probabilities Conditional spaces

Example (4)

In a throw of dice, evaluate the probability that number is either even or
less than 3.
Denote the event Óeven numberÓ asA and the event Óless than threeÓ as
B we have

P(D) = P(A + B) = P(A) + P(B) $ P(AB),

We evaluateP(A), P(B), and P(AB) with the counting process and we
Þnd

P(A) =
3
6

, P(B) =
2
6

, P(AB) =
1
6

.

Substituting we get

P(D) =
1
3

+
1
2

$
1
6

=
4
6

.
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Probabilities Conditional spaces

Conditional events

It is often useful evaluating probabilities of events when we know that
another event certainly occurs (conditional events)

Formally, we want to evaluate the conditional probability that the
outcome of a trial ofE, ! ' A knowing that ! ' M.

Obviously, knowing that the outcome is in setM gives some
additional information on the possible occurrence of a given! , since
all ! that do not belong toM are excluded.

For this reason the probability of the occurrence ofA is no longer the
original oneP(A), usually referred to as Óa prioriÓ probability, but a
di" erent one, usually referred to as Óa posterioriÓ (after knowing
! ' M).
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Probabilities Conditional spaces

Conditional probability

The probability description of conditional events can be given as a
function of unconditional probabilities considering a new space
S1 = M and a new eventA1 = AM

S

A M=S1

A1

Using axioms it is easy to show that the probability of A conditioned
to M is:

P(A/ M) =
P(AM)
P(M)

. (10)
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Probabilities Conditional spaces

Example (5)

Evaluate the probability that the outcome of a throw of the dice is 2
knowing that the result is even.
We have

S = { 1, 2, 3, 4, 5, 6} S1 = { 2, 4, 6}

and from (10)

P(2/ even) = P1(2) =
1
3
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Probabilities Conditional spaces

Total Probability

Theorem of Total Probability
GivenM1, M2, . . . Mn disjoint events such thatM1 + M2 + . . . + Mn = S
(or more in generalM1 + M2 . . . MN ( A), we have

P(A) =
n#

i=1

P(A/ Mi )P(Mi ). (11)

In fact, since eventsAMi are disjoint, and their union providesA, we can
write

P(A) =
n#

i=1

P(AMi ), (12)

and using the relation

P(AMi ) = P(A/ Mi )P(Mi ), (13)

we get (11). )
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Probabilities Conditional spaces

Example (6)

Note: in all cases where calculating the probability of an event conditioned to
others is easier that direct calculation, total probability theorem is particularly
useful

A box contains three types of objects, some of which are defective, in
these proportions

type A - 2500 of which 10% defective
type B - 500 of which 40% defective
type C - 1000 of which 30% defective

If we draw an object at random, what is the probabilityP(D) that,
drawing an object, this is found to be defective?
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Probabilities Conditional spaces

Example (6)

The probability to draw an object of typeA, B, C are respectively

P(A) =
2500
4000

=
5
8

; P(B) =
500
4000

=
1
8

; P(C) =
1000
4000

=
2
8

.

Then we have

P(D/ A) =
10
100

; P(D/ B) =
40
100

; P(D/ C) =
30
100

;

and, Þnally, from total probability equation:

P(D) = P(D/ A)P(A) + P(D/ B)P(B) + P(D/ C)P(C) =
3
16
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Probabilities Conditional spaces

Example (7)

A game is based on the following experiment. A box containsn tags, each
one reporting a number arbitrarily determined. The player draws at Þrstr
tags and observes their maximum valuemr . Then, further drawings are
performed until a valuem is observed such asm > Mr .

Player wins ifm = M, whereM is the maximum value among those
reported on then tags. We want to evaluate the probabilityP(V ) to win.
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Probabilities Conditional spaces

Example (7)

Since the positions of the maximum are equally likely, the probability that
M is in positionk is

P(M in k) =
1
n

The probability to win, withM in k, is zero ifk % r .
For k > r player wins if the maximummk! 1 among the Þrstk $ 1 tags is
within the Þrstr , and this happens with probability

Pr (V / M in k) =
r

k $ 1
.

with k > r .
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Probabilities Conditional spaces

Example (7)

By the Total Probability Theorem (11) we have:

Pr (V ) =
n#

k=1

Pr (V / M in k)P(M in k) =

=
r#

k=1

Pr (V / M in k)P(M in k) +
n#

k= r +1

Pr (V / M in k)P(M in k) =

=
n#

k= r +1

r
k $ 1

1
n

=
r
n

n! 1#

k= r

1
k

.
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Probabilities BayesÕ Formulas

BayesÕ Formulas

If we use total probability two times in a direct and a reverse way we get:

P(M/ A) =
P(AM)
P(A)

= P(A/ M)
P(M)
P(A)

. (14)

Using the total probability theorem (11) for the denominator, the above
expression can be re-written as:

P(Mk / A) =
P(A/ Mk)P(Mk)

$ n
j =1 P(A/ Mj )P(Mj )

. (15)
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Probabilities BayesÕ Formulas

BayesÕ Formulas

BayesÕ formulas are particularly useful for evaluating conditional
probabilities before and after observing the occurrence of an event.

In particular, the second formula is referred to as ÓBayesÕ rule for the
Õa posterioriÕ probabilityÓ, that is after observing the occurrence of
the eventA.

In this case,P(Mi ) are called Óa priori probabilitiesÓ andP(Mi / A) Óa
posteriori probabilitiesÓ.

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 29 / 93



Probabilities BayesÕ Formulas

Example (8)

An object drawn at random from the box in Example (6) is found to be
defective. Evaluate the probabilities that it is of typeA, B and C
respectively.

Using BayesÕ formula and the preceding results we have

P(A/ D) =
P(D/ A)P(A)

P(D)
=

10
30

; P(B/ D) =
P(D/ B)P(B)

P(D)
=

8
30

.

Similarly we have

P(C/ D) =
12
30

.

Note that while Óa prioriÓ the most likely type of object isA, after
observing that the object is defective the most likely type of object isC.
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Probabilities BayesÕ Formulas

Example (9)

Assume that you are presented with three dices, two of them fair and the
other a counterfeit that always gives 6. If you randomly pick one of the
three dices, the probability that itÕs the counterfeit is 1/3.

This is the a priori probability of the hypothesis that the dice is
counterfeit. Now after throwing the dice, you get 6 for two consecutive
times. Seeing this new evidence, you want to calculate the revised a
posteriori probability that it is the counterfeit.
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Probabilities BayesÕ Formulas

Example (9)

The Õa prioriÕ probability of counterfeit dice is

P(Dc) =
1
3

,

while that of a fair dice is
P(Df ) =

2
3

.

We have:
P(66/ Df ) =

1
6

*
1
6

=
1
36

P(66/ Dc) = 1

and then using BayesÕ formula:

P(Dc/ 66) =
P(66/ Dc)P(Dc)

P(66/ Dc)P(Dc) + P(66/ Df )P(Df )
=

18
19
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Probabilities Statistical independence

Statistical independence

Two eventsA and B ! S are said statistically independent if and only if

P(AB) = P(A)P(B) (16)

The meaning of statistical independence is immediate if we observe that if
A and B are independent:

P(A/ B) = P(A), P(B/ A) = P(B).

This means that the probability ofA is not inßuenced by the occurrence of
B and vice versa.
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Probabilities Statistical independence

Example (10)

In a throw of the dice, check whether the following events
A = even number
B = number one, or two or three
are statistically independent.

We have

P(A) = 1 / 2; P(B) = 1 / 2; P(AB) = 1 / 6;

that is
P(AB) += P(A)P(B)

Hence, eventsA e B are not statistically independent.
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Probabilities Statistical independence

Example (11)

In a throw of the dice, check whether the following eventsA = an even
number appears
B = number one, or two, or three, or four appears
are statistically independent.

We have
P(A) = 1 / 2; P(B) = 2 / 3; P(AB) = 2 / 6

and
P(AB) = P(A)P(B)

Hence, eventsA e B are indeed statistically independent.
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Random Variables Spaces with inÞnite outcomes

Spaces with countable outcomes

To deal with spacesS with inÞnite outcomes, we must add another axiom
that extends the summation of the probability measure over inÞnite terms:

Axiom IIIa : If A1, A2, . . . , An . . . are disjoint events and
A = A1 + A2 + . . . + An + . . ., then

P(A) = P(A1) + P(A2) + . . . + P(An) + . . . (17)

An example of this type of space is the number of coin ßips to get a head.
This number is not limited, as the head could never appear inn trial,
whichevern is.
These spaces are saidcountable (number of elements of the same
cardinality of natural numbers), and can be managed with the methods of
Þnite spaces.
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Random Variables Spaces with inÞnite outcomes

Spaces with uncountable outcomes

We can consider alsouncountable spaces, such as is the case when
the outcomes is, for example, a point in an interval, or in any general
geometrical space

The extension to these spaces is however not straightforward and
require new instruments

The approach used is that of ÓtransformingÓ the space of outcomes
into another one more convenient for assigning probabilities.

In particular, we map outcomes and events (subsets) ofS into the
space of real numbers (using integer numbers as a subset to include
countable spaces as a special case)
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Random Variables Spaces with inÞnite outcomes

DeÞnition of Random Variable

Let us consider a real functionX(! ) deÞned on the spaceS of the
outcomes that binds the setS and the set of real numbersR in order
to match every! ' S with one and only one valueX(! )inR

With this function, each eventA ! S corresponds a setI ! R such
that for every! ' A we haveX(! ) ' I .

In this way the description of an experiment in terms of results! , A
and probability events forPS(A) in S, can be replaced with
description in terms of real numbersx, setsI and probabilitiesPR(I )
in R.

A function X(! ) which satisÞes the above conditions is calledrandom
variable.

Typically, the notation is simpliÞed omitting the relation with! and
capital letters, such as X, Y, Z, are used to indicate random variables.
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Random Variables Spaces with inÞnite outcomes

Cumulative Distribution Function (CDF)

Let X be a Random Variable (RV) andx a real number.
The probability of the event{ X % x} is a function of the real variablex:

FX (x) = P(X % x) (18)

and is calledCumulative Probability Distribution Function (CDF) of X .

FX (x) completely describes RVX.
In fact we have, for anyx1, x2 and x:

P(x1 < X % x2) = F(x2) $ F(x1) (19)

P(X = x) = F(x) $ F(x! ) (20)

We denoteF(x+ ) = lim ! ! 0 and F(x" ) = lim ! ! 0 F(x ! ! )
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Random Variables Spaces with inÞnite outcomes

Cumulative Distribution Function (CDF)

The CDF has the following properties:
1 it has the following limits

F($, ) = 0 F(+ , ) = 1 (21)

2 it is a monotonic non decreasing function ofx:

F(x1) % F(x2) per x1 % x2 (22)

3 it is right continuous :
F(x+ ) = F(x) (23)
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Random Variables Continuous Random Variables

Continuous Random Variables
Probability Density Function (pdf)

A RV X is continuous if its CDF FX (x) is a continuous function in
R, together with its Þrst derivative, except at most a countable set of
points where the derivative does not exist.

Since for a continuous RVFX (x), we have

P(X = x) = 0 .

It is therefore useful introducing theprobability density function
(pdf) of RV X, fX (x) deÞned as the derivative of the corresponding
CDF:

fX (x) =
dFX (x)

dx
(24)

The deÞnition is then completed by assigning arbitrary positive values
where the derivative does not exist.
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Random Variables Continuous Random Variables

Probability Density Function (pdf)

From the deÞnition and properties ofF(x) we have

f (x) # 0 (25)
%"

!"
f (x)dx = 1 (26)

P(X % x) = F(x) =
%x

!"
f (x)dx (27)

P(x1 < X % x2) = F(x2) $ F(x1) =
%x2

x1

f (x)dx (28)

Directly from the deÞnition we have:

f (x) = lim
! x# 0

P(x < X % x + # x)
# x

. (29)

This shows that the pdf can be interpreted as the normalized probability
that the RV belongs to a small interval aroundx and, dimensionally, is a
density, hence the name.
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Random Variables Continuous Random Variables

Example (12) - Uniform RV

We want to Þnd the CDF and pdf of RVX, deÞned as the coordinate of a
point randomly selected in interval [a, b] of x axis.

We have

FX (x) =

&
'''(

''')

x $ a
b $ a

(a % x % b)

0 (x < a)
1 (x > b)

(30)

and from deÞnition (29):

f (x) = lim
! x# 0

# x
b $ a

1
# x
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Random Variables Continuous Random Variables

Example (12)

we get

fX (x) =

&
'(

')

1
b $ a

(a % x % b)

0 elsewhere

(31)

1

a b x

FX(x)

a b x

fX(x)

ab !
1

A RV that satisÞes (30) and (31) is called Óuniformly distributedÓ and the
pdf is said ÓuniformÓ.

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 45 / 93



Random Variables Continuous Random Variables

Example (13)

A point P is drawn uniformly on a circumference of radius R and center in
the origin of axes. Find the pdf of RV X, deÞned as the coordinate of
orthogonal projection of P on the horizontal axis.

xR-R

R

O
x x+dx

dl

dl

a b

fX(x)

To Þnd the pdf let us use the deÞnition (29). With reference to the Þgure,
P(x < X % x + # x) is the probability thatP lies in one of two small arcs
shown in the Þgure, each having a length

d#=
*

dx2 + dy2 = dx

+

1 + (
dy
dx

)2
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Random Variables Continuous Random Variables

Example (13)

Being y =
-

R2 $ x2, we get:

dy = $
xdx

-
R2 $ x2

by replacing it in the expression above we get

d#= dx

,

1 +
x2(dx)2

R2 $ x2

1
(dx)2 =

dx
+

1 $ (
x
R

)2
.
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Random Variables Continuous Random Variables

Example (13)

Then we have:

fX (x) = lim
! x# 0

1
# x

2# l
2$R

= lim
! x# 0

1
# x

1
2$R

2# x
*

1 $ (x/ R)2
=

=
1

$R
1

*
1 $ (x/ R)2

for (| x |% R) and zero elsewhere.

xR-R

R

O
x x+dx

dl

dl

a b

fX(x)
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Random Variables Continuous Random Variables

Example (14)

A point P is drawn uniformly in a circle of radius R. Derive the pdf of RV
Z, deÞned as the distance of P from the center O of the circle.

P(z < Z % z + # z) is the probability thatP is taken in the annulus
shown in the Þgure, whose area is 2$z# z.

R

O z

z+dz

R z

fZ(z)

2/R

a b

By deÞnition (29) we get

fZ (z) = lim
! z# 0

2$z# z
$R2

1
# z

=
2z
R2 (0 % z % R)
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Random Variables Continuous Random Variables

Example (15) - Negative Exponential RV

The ÓNegative ExponentialÓ pdf is deÞned as:

F(x) = 1 $ e! ! x (x # 0) (32)

we have:
f (x) = %e! ! x (x # 0) (33)

1

x

FX(x)

x

fX(x)
!

a b
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Random Variables Discrete Random Variables

Discrete Random Variables
Probability Distribution

A discrete RVX is characterized by a CDFFX (x) of a staircase type, with
discontinuities in a countable set of pointsxi (i = 0 , ± 1, ± 2. . .), where it
presents steps of valuepi :

x

FX(x)

x3x2x1

1

p1

p1+p2
p1+p2+p3

In this case we get

P(X = x) =
-

pi x = xi

0 x += xi
(34)

This is calledProbability Distributionof X .
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Random Variables Discrete Random Variables

Probability Distribution

For the Probability Distribution, we have

pi # 0 (35)

"#

i= !"

pi = 1 (36)

F(x) =
M#

i= !"

pi (37)

whereM is the maximumi for which xi % x.
If the valuesxi are integers, then RVX is said aninteger RV .
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Random Variables Discrete Random Variables

Examples of discrete variables

Distribution of a constantc:

P(X = x) =
-

1 for x = c
0 elsewhere

(38)

The Bernoulli (binary) distribution:

P(X = x) =

&
(

)

p for x = 1
1 $ p = q for x = 0
0 elsewhere

(39)

The uniform distribution

P(X = x) =

&
'(

')

1
n

for x = xi (i = 1 , . . . , n)

0 elsewhere

(40)

already encountered in examples with dices, draws from urns, etc.
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Random Variables Discrete Random Variables

Binomial distribution

We can consider experiments obtained from repeating a single
experiment multiple independent times

Repeated independent trials, each of which with only two possible
outcomes, saysuccess(S) and failure (F) are calledBernoulli trials.

DenotedP(S) = p and P(F) = q = 1 $ p, the probabilityP(Sn = k)
that in n Bernoulli trialsk successes andn $ k failures occur is given
by the following distribution

P(Sn = k) =
!

n
k

"
pkqn! k (0 % k % n) (41)

This distribution is calledBinomial of order n
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Random Variables Discrete Random Variables

Example (16)

A quality control process tests some components out of a factory and
components are found defective with a probability p= 10! 2. Evaluate the
probability that out of 10 components checked there are
A = only one defective
B = two defective
C = at least one defective
The 10 tests can be modeled as Bernoulli trials with success probability
p = 1

100. Then we have

P(A) = (
10
1

)(
1

100
)1(

99
100

)9 = 0 , 0913. . .

P(B) = (
10
2

)(
1

100
)2(

99
100

)8 = 0 , 00415. . .

P(C) =
10#

k=1

(
10
k

)(
1

100
)k (

99
100

)10! k = 1$ (
10
0

)(
1

100
)0(

99
100

)10 = 0 , 0956. . .
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Random Variables Moments of a pdf

Moments of a pdf

For the pdf we can deÞne some parameters that resume some properties of
the function. These are calledmoments, and the most used are:

1 k$ th order moments (k = 1 , 2, . . .)

mk =
%+ "

!"
xk f (x)dx (42)

2 k$ th order central moments

µk =
%+ "

!"
(x $ m1)k f (x)dx (43)

Note that, depending on the speciÞc pdf, some moments may not exist.
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Random Variables Moments of a pdf

Moments of a pdf

Parameters of the same meaning can be given also for discrete variables in
the form:

mk =
"#

i= !"

xk
i pi (44)

µk

"#

i= !"

(xi $ m1)k pi (45)
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Random Variables Moments of a pdf

Moments of a pdf

The Þrst order moment:

m1 =
%+ "

!"
x f (x)dx (also denotedmX )

This can be considered as the coordinate of the center of mass
interpreting the pdf as a mass distribution along thex with density
f (x).

The indexµ2:

µ2 =
%+ "

!"
(x $ m1)2f (x)dx (also denoted&2

X )

provides an index of the dispersion of the distribution aroundx = mX

we have
µ2 = m2 $ m2

1
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Random Variables Moments of a pdf

Law of large numbers

Let X be a RV whose pdf has Þrst order momentm1

Denote withX1, X2, . . . , xn the outcomes of the RV inn independent
repetitions of the experiment

and X n their arithmetic mean:

X n =
1
n

n#

i=1

Xi

we have the followingLow of large numbers:

P( lim
n#"

X n = m1) = 1 (46)
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Random Variables Moments of a pdf

Law of large numbers

Law of large numbers states that the average performed on a number
n of outcomes ofn independent trials, tends with probability 1 tom1

whenn tends to inÞnity.

For this reason,m1 is also called themean valueor expected valueof
RV X and it is also denoted byE[X ].

This law is of great importance since it provides a relationship
between a pure mathematical parameter,m1, to another oneX n

directly derived from an experiment.
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Random Variables Moments of a pdf

Interpretation of probability

LetÕs formulate the law of large numbers for probabilitypA of eventA
DeÞne the binary RVX such that it isX = 1 if A occurs andX = 0
otherwise
If we performn trials we have

n#

i=1

Xi = nA

beingnA the number of timesA occurs
we also observe that

m1(X ) = pA

and
X n =

nA

n
.

Therefore, the law of large numbers can be written as

P( lim
n#"

nA

n
= pA) = 1 (47)

The above formulation of the law provides the interpretation of
probability P(A) as the limit of frequenciesnA/ n.
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Random Variables Moments of a pdf

Properties of E[X]

Some properties ofE[X ] are (for proofs see lecture notes):
1 If f (x) is symmetric around a value ofa and m1 exists, thenm1 = a
2 If m1 exists, it can be expressed as

m1 =
%"

0
(1 $ F(x))dx $

%0

!"
F(x)dx (48)

3 If FX (x) = 0 for x < 0, for ! > 0 the following inequality holds

P(X # ! ) %
E[X ]

!
(49)

Setting v =
!

E[X ]
we get a di" erent expression

P(X # vE[X ]) %
1
v

(50)

that shows how to establish a constraint upon the part of pdf that lies
above the mean value (v > 1), based on the sole knowledge of the
mean value.
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Random Variables Moments of a pdf

Tchebichev inequality

Central momentµ2, is also calledvarianceof RV X and denoted by
&2

X , whereas&X is calledstandard deviation

The variance represents a measure of the dispersion off (x) around its
average value

This is shown by theTchebichev Inequality

P(| X $ m1 | # v&) <
1
v2 (51)

By setting v& = ' we get alternatively

P(m1 $ ' < X < m1 + ' ) # 1 $
&2

' 2 (52)

P(|X $ m1| # ' ) %
&2

' 2 (53)

Antonio Capone (Politecnico di Milano) Basics of Probability Theory 63 / 93



Random Variables Moments of a pdf

Example (17)

Let us apply Tchebichev inequality to bound the probability that the
frequency of HEADS in ßipping a fair coin n times exceeds0.5 ± ' .

The frequency of HEADS inn trials is H/ n whereH is the RV number of
HEADS inn trials. This has a Binomial distribution with averagen/ 2 and
&2(H) = n/ 4. Therefore,

m1(H/ n) =
1
2

&2(H/ n) =
1
4n

Tchebichev inequality says

P(|H/ n $ m1| # ' ) %
&2

' 2

and substituting

P(|H/ n $ 0.5| # ' ) %
1

4n' 2
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Random Variables Moments of a pdf

Example (17)

we have

' = 0 .1, n = 10, P % 2.5(???)

' = 0 .1, n = 100, P % 0.25

' = 0 .1, n = 1000, P % 0.025

' = 0 .1, n = 10000, P % 0.0025

We also see that

lim
n#"

P(|H/ n $ 0.5| # ' ) = 0 , . ' > 0

that provides a kind of demonstration of the law of large numbers.
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Random Variables Conditional distributions and densities

Conditional distributions and densities

Let M be an event of spaceS where RVX is deÞned. We deÞne CDF of
X conditional toM (provided thatP(M) += 0) the function:

FX (x/ M) = P(X % x/ M) (54)

and similarly for the density a

fX (x/ M) =
dFX (x/ M)

dx
= lim

! x# 0

P(x < X % x + # x/ M)
# x

(55)

It is easy to check that the above deÞned functions have all the properties
of the CDF and pdf.
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Random Variables Conditional distributions and densities

Conditional distributions and densities

Interesting cases are those where also eventM is described in terms of RV
X.
We deÞne probability of an eventA conditional to the valuex assumed by
a RV X, assuming thatfX (x) += 0, as the limit

P(A/ X = x) = lim
! x# 0

P(A/ x < X % x + # x) (56)

From Bayes formula (14) we get:

P(A/ X = x) = lim
! x# 0

P(x < X % x + # x/ A)P(A)
P(x < X % x + # x)

and multiplying by# x above and below, and taking the limit, we have
Þnally

P(A/ X = x) =
fX (x/ A)P(A)

fX (x)
(57)
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Random Variables Conditional distributions and densities

Total probability law for the continuous case

From (57) we have by integrating left and right sides:

%+ "

!"
fX (x/ A)P(A)dx =

%+ "

!"
P(A/ X = x)fX (x)dx

and, by observing that
%+ "

!"
fX (x/ A)dx = 1, we have

P(A) =
%+ "

!"
P(A/ X = x)fX (x)dx (58)

This is the Total probability law for the continuous case.
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Random Variables Conditional distributions and densities

BayesÕ formula for the continuous case

Furthermore from (57), and using (58), we obtain:

fX (x/ A) =
P(A/ X = x)fX (x)

P(A)
=

P(A/ X = x)fX (x)
%+ "

!"
P(A/ X = x)fX (x)dx

(59)

which represents the Bayes theorem extended to the continuous. case.
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Random Variables Conditional distributions and densities

Example (18)

Four points A, B, C and D are chosen uniformly and independently on a
circumference. Find the probability of event
I = { intersection of chords AB and CD} .

Denoted byL the length of the circumference and byx the RV length of
arc .AB(oriented), and assumedX = x, we have

P(I / X = x) = P(D ' .AB)P(C ' .BA) + P(D ' .BA)P(C ' .AB) =

= 2
x(L $ x)

L2

.

.
.

.

A

D

B

C
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Random Variables Conditional distributions and densities

Example (18)

From total probability law, and being

fX (x) =
1
L

, (0 < x < L),

we get

P(I ) =
%L

0
P(I / X = x)fX (x)dx =

%L

0
2

x(L $ x)
L3 dx =

1
3

The result can be found also observing that, onceA is taken, the
sequences derived from the permutations of the other 3 points are equally
likely, and among these only two lead to a chord intersection.
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Random Variables Vectorial Random Variables

Multiple Random Variables

We can extend deÞnitions of a scalar RV (deÞned on real numbersR)
to the case of multiple RVÕs deÞned on multidimensional spaces

We focus on the case of two RVs, being the extension to more than
two RVs straightforward

Consider two RVX(! ) and Y (! ) deÞned in the same result spaceS

We have a correspondence between each eventA ! S and a setDxy

of the Cartesian plane, such that for every! ' A the point with
coordinatesX(! ) and Y (! ) belongs toDxy .

Thus, a joint event inS is represented by a domainDxy in the
Cartesian plane.
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Random Variables Vectorial Random Variables

Joint CDF

The probability of the joint events{ X % x, Y % y} = { X % x}{ Y % y} is
a function of the pair of real variablesx and y:

FXY (x, y) = P(X % x, Y % y) (60)

Such a function is calledjoint CDF of RVsX and Y .

y

x

(x,y)
y2

x2

y1

x1

a b
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Random Variables Vectorial Random Variables

Joint CDF

From the deÞnition we can easily verify the following relations:

F(x, , ) = FX (x); F(, , y) = FY (y) (61)

F(, , , ) = 1 (62)

F(x, $, ) = 0; F($, , y) = 0 (63)

P(x1 < X % x2, y1 < Y % y2) = F(x2, y2)$ F(x1, y2)$ F(x2, y1)+ F(x1, y1)
(64)

y

x

(x,y)
y2

x2

y1

x1

a b
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Random Variables Vectorial Random Variables

Joint pdf

Assuming now thatFXY (x, y) is derivable, the joint pdf of RVsX and Y is

fXY (x, y) =
( 2F(x, y)

( x( y
(65)

The properties hold
f (x, y) # 0 (66)

%"

!"

%"

!"
f (x, y)dxdy = 1 (67)

Furthermore, from the deÞnition of the joint derivative we have

f (x, y) = lim
! x,! y# 0

P(x < X < x + # x, y < Y < y + # y)
# x# y

(68)
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Random Variables Vectorial Random Variables

Joint pdf

The event including all results whereX(! ) and Y (! ) belong to a domain
D can be written as a union or intersection of elementary events of the
type

{ x < X % x + # x, y < Y % y + # y}

and, therefore, we have

P((X , Y ) ' D) =
% %

D
f (x, y)dxdy (69)

where the integral is extended over the domainD.
It also follows that

fX (x) =
%"

!"
f (x, y)dy; fY (y) =

%"

!"
f (x, y)dx (70)

When dealing with multiple RVs, the pdf of each RV is calledmarginal.
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Random Variables Vectorial Random Variables

Example (19)

Find the joint and marginal pdf of RVÕs X and Y Cartesian coordinates of
a point Q chosen uniformly in a

a) square of side L and centered at the origin

b) circle of radius R and center at the origin

y

x
L/2-L/2

y

xR

a b
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Random Variables Vectorial Random Variables

Example (19)

To Þnd the joint density we use deÞnition (68).
In this expression the probability at the numerator the probabilityQ lies
into the rectangle of coordinatesx, x + # x, y, y + # y, but sinceQ is

picked uniformly, this probability has value
# x# y

S
, S being the area of the

domain, regardless of the location of the small rectangle. Therefore, we
obtain

f (x, y) =

&
'(

')

1
S

for(x, y) ' S

0 elsewhere

(71)

Such a pdf is still called Uniform inS and the value of the constant 1/ S
depends only from the area of the domain and not by its shape.
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Random Variables Vectorial Random Variables

Example (19)

About the marginal pdf we have
a)

fX (x) =
%+ "

!"
f (x, y)dy =

% L
2

! L
2

1
L2 dy =

1
L

;
!

$
L
2

< x <
L
2

"

and similarly

fY (y) =
1
L

;
!

$
L
2

< y <
L
2

"

In this case, the marginal pdf are uniform.
b)

fX (x) =
%+ "

!"
f (x, y)dy =

%$
R2! x2

!
$

R2! x2

1
$R2 dy =

2
$R2

*
R2 $ x2; (| x |< R)

Here, the marginal pdfÕs are no longer uniform. In fact, the shape of the
domain of point (X , Y ) inßuences the result.
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Random Variables Vectorial Random Variables

Conditional pdf

¥ pdf of RV Y conditioned by the value assumed by another RVX

fY (y/ X = x) =
fXY (x, y)

fX (x)
(72)

¥ Total Probability Theorem

fY (y) =
%+ "

!"
fY (y/ X = x)fX (x)dx (73)

¥ BayesÕ Theorem

fY (y/ X = x) =
fX (x/ Y = y)fY (y)

fX (x)
(74)
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Random Variables Vectorial Random Variables

Conditional pdf

¥ Conditional mean

E[Y / X = x] =
%+ "

!"
yfY (y/ X = x) (75)

¥ Total Probability Theorem with respect to the mean

E[Y ] =
%+ "

!"
E[Y / x]fX (x)dx (76)
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Random Variables Vectorial Random Variables

Example (20)

A point of coordinate X is uniformly selected within interval[0;L] of x
axis; Another point of coordinate Y is uniformly selected within interval
[X ; L]. Find the joint pdf of X, Y , the marginal pdf of Y and the
probability P that the three segments of length X , Y , and Y$ X can
form a triangle.

x

y

L

L

L/2

y

x1

ba

D
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Random Variables Vectorial Random Variables

Example (20)

We have
fX (x) =

1
L

; (0 < x < L)

fY (y/ X = x) =
1

L $ x
; (x < y < L)

Using (72) we get

fXY (x, y) =
1

L(L $ x)
; (0 < x < y < L)

and from (73), by observing that the expression under integration is zero
for x > y, we have

fY (y) =
%y

0

1
L(L $ x)

dx =
1
L

ln
L

L $ y
; (0 < y < L)
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Random Variables Vectorial Random Variables

Example (20)

The domainD, whereX and Y are such as to allow the construction of
the triangle, is shown in the Þgure

x

y

L

L

L/2

y

x1

ba

D

and we thus have

p =
% L

2

0
dx

%x+ L
2

L
2

1
L(L $ x)

dy = ln2 $
1
2

= 0 , 1931. . .
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Random Variables Vectorial Random Variables

Statistically independent RVs

Two RV X and Y are said to be statistically independent if events
{ X % x} e { Y % y} are statistically independent for eachx and y.
It follows then that two random RV are independent if one of the following
relations holds

FXY (x, y) = FX (x)FY (y)

fXY (x, y) = fX (x)fY (y)

fX (x/ Y = y) = fX (x)

fY (y/ X = x) = fY (y)
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Random Variables Vectorial Random Variables

Example (21)

Given two RVÕs X and Y independent and exponentially distributed with
the same average1/ %, Þnd:

a) the probability of the event{ Y > ! X } with ! real positive;
b) the pdf fY (y/ Y > ! X ).

a) We could use the (69), beingD the domain in whichy > ! x, and given
the independence we have

fXY (x, y) = fX (x)fY (y) = %2e! ! (x+ y) (x, y > 0)

More immediately we can use the Total Probability Theorem

P(Y > ! X ) =
%"

0
P(Y > ! X / X = x)fX (x)dx =

%"

0
e! !" x %e! ! xdx =

=
1

! + 1

%"

0
%(! + 1) e! ! (" +1) xdx =

1
(! + 1)
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Random Variables Vectorial Random Variables

Example (21)

b) From the deÞnition of conditional pdf, and from the result of point a)
we get:

fY (y/ Y > ! X ) = lim
! y# 0

1
# y

P(y < Y % y + # y, Y > ! X )
P(Y > ! X )

=

= lim
! y# 0

1
# y

P(y < Y % y + # y, X < y/ ! )
P(Y > ! X )

=

=

%y/ "

0
fXY (x, y)dx

P(Y > ! X )
=

%e! ! y
%y/ "

0
%e! ! xdx

1/ (! + 1)
=

= ( ! + 1) %e! ! y (1 $ e! ! y/ " ) (y > 0)
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Random Variables Vectorial Random Variables

Joint Moments

Given two RVÕsX and Y the joint moments of orderh and k are deÞned
as

mhk =
% %

xhyk fxy (x, y)dxdy

and the central moments of orderh and k

µhk =
% %

(x $ mx)h(y $ my)k fxy (x, y)dxdy.

The mixed second-order central momentµ11, said alsoCovariance of RVs
X and Y , is of particular interest. It is linked tom11 by the following
relation

µ11 = m11 $ m10m01 (77)
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Random Variables Functions of Random Variables

The sum of two continuous RVÕs

Given the two continuous RVÕsX e Y , whose joint pdf is known, we want
to Þnd the pdf of their sum

Z = X + Y (78)

To this purpose, we note that

fZ (z/ X = x) = fY (z $ x/ X = x) (79)

From the total probability theorem we have

fZ (z) =
%

fZ (z/ X = x)fX (x)dx =
%

fY (z $ x/ X = x)fX (x)dx (80)

which provides the Þnal formula

fZ (z) =
%

fXY (x, z $ x)dx (81)

Symmetrically we have

fZ (z) =
%

fXY (z $ y, y)dy (82)
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Random Variables Functions of Random Variables

The sum of two continuous RVÕs

If X and Y are statistically independent the two above become

fZ (z) =
%

fX (x)fY (z $ x)dx

fZ (z) =
%

fX (z $ y)fY (y)dy

The operations above are known as the convolution of pdfÕs.
In fact, the convolution of functionsf (x) and g(y) (need not to be pdfÕs)
is deÞned as

f (z) / g(z) =
%

f (x)g(z $ x)dx =
%

f (z $ x)g(x)dx
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Random Variables Functions of Random Variables

Example (22)

Find the pdf of RV Z= X + Y where X and Y are independent RVs with
the same pdf, namely

a) f (x) =
1
a

(0 < x < a)

b) f (x) = %e! ! x (x > 0)

a) The integrating function in (90) is di" erent from zero when both the
following conditions apply:

-
0 < x < a
0 < z $ x < a

or -
0 < x < a
z $ a < x < z
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Random Variables Functions of Random Variables

Example (22)

Such conditions depend onz and, therefore, we must distinguish the
following cases:

for z % 0 fZ (z) = 0
for 0 % z < a condition 0< x < z holds, and therefore we have

fZ (z) =
1
a2

%z

0
dz =

z
a2 ;

for a < z % 2a condition z $ a < x < a holds, and therefore we have

fZ (z) =
1
a2

%a

z! a
dx =

2 $ z
a2 ;

for z > 2a fZ (z) = 0;

fZ(z)

za 2a
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b) The integrating function in (90) is di" erent from zero when-
x > 0
z $ x > 0

that is
-

x > 0
x < z

and, therefore, we have

fZ (z) =
%z

0
%e! ! x%e! ! (z! x)dx = %2ze! ! z (z > 0)
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