Control of industrial robots

Course information

Prof. Paolo Rocco (paolo.rocco@polimi.it)
Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria
General information (1/3)

- Programs offering this course:
 - MSc in Automation and Control Engineering
 - MSc in Computer Science and Engineering
 - MSc in Electronics Engineering
 - MSc in Engineering Physics

- Schedule:
 - Monday 08:15-10:15 (room EG.6)
 - Wednesday 08:15-10:15 (room D.12)

- Course organization:
 - 32 hours of lectures
 - 18 hours of practice sessions (some of which with use of computer)
 - 5 credits
General information (2/3)

- Single or integrated course?

 This course can be taken in two ways:

 - As a standalone 5 credits course:
 090914 CONTROL OF INDUSTRIAL ROBOTS

 - As a module of an integrated 10 credits course:
 052368 CONTROL OF INDUSTRIAL AND MOBILE ROBOTS

- What is the difference?

 - Nothing in terms of contents and teaching activities
 - For the integrated course, a single integrated exam test will be offered
General information (3/3)

- **Prerequisites:**
 - Basics in Automatic Control
 - Basics in Mechanics
 - Essential elements in robot kinematics will be reviewed in the course

- **Aims:**
 - Current and advanced methodologies for the control of robotic manipulators
 - Tools for robot programming
 - Understand how the robot interacts with the environment

- **Course web page:**
 - http://home.deib.polimi.it/rocco/cir
 - Program, lecture notes, lab material, texts of previous exams...

- **Exams:**
 - Written examination (text in English, solutions preferably in English)
 - Oral integration at the instructor’s discretion
Textbooks

B. Siciliano, L. Scarcia, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control, 3rd Ed.* Springer, 2009 (In English)

https://www.springer.com/it/book/9781846286414

https://www.mheducation.it/9788838663222-italy-robotica-3ed

Program (1/3)

- **Introduction:**
 - Industrial robotics. Robots, applications, trends.

- **Robot kinematics:**
 - Quick review of direct, inverse and differential kinematics.
 - Kinematics of redundant manipulators
 - Inverse differential kinematics.

- **Robot dynamics:**
 - Dynamic models of robot manipulators
 - Euler-Lagrange and Newton-Euler formulations: main properties
 - Identification of dynamic parameters
 - Direct and inverse dynamics
Program (2/3)

- **Motion planning:**
 - Path planning and trajectory planning
 - Joint space trajectories: point to point motion and interpolation of points (splines)
 - Kinematic and dynamic scaling of trajectories
 - Cartesian space trajectories: position and orientation trajectories
 - Path planning with obstacle avoidance
 - Robot programming: examples

- **Control of robot manipulators:**
 - Review of independent joint control methods
 - Advanced schemes for joint control
 - Computed torque feedforward control
 - PD control with gravity compensation
 - Inverse dynamics control
 - Robust and adaptive control
 - Operational space control
Program (3/3)

- Interaction with the environment:
 - Force sensors
 - Impedance and admittance control
 - Hybrid position/force control

- Control with vision sensors:
 - Components of a visual system
 - Image processing
 - Image-based and position-based visual servoing
Contacts

- **Office hours:**
 - Tuesday 10:00 – 12:00 at DEIB, Building 20, 2nd floor. Check the official web page before.
 - By e-mail

- **E-mail:**
 - paolo.rocco@polimi.it

- **Personal web pages:**
 - http://home.deib.polimi.it/rocco
 - Other teaching material, old courses, …

- **MERLIN Lab page:**
 - http://merlin.elet.polimi.it

- **Theses:**
 - You are welcome: see my personal web page