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Short Papers
Estimation and Compensation of
Subpixel Edge Localization Error

Federico Pedersini, Augusto Sarti, and Stefano Tubaro

Abstract —We propose and analyze a method for improving the
performance of subpixel Edge Localization (EL) techniques through
compensation of the systematic portion of the localization error. The
method is based on the estimation of the EL characteristic through
statistical analysis of a test image and is independent of the EL
technique in use.

Index Terms —Feature extraction, edge localization, subpixel detection.

————————   ✦   ————————

1 INTRODUCTION

A precise localization of image edges can be of critical importance
for certain image applications, such as 3D reconstruction, photo-
grammetry, remote sensing, and automatic inspection [1]. Lumi-
nance edges, in fact, are important not only for the fact that they
normally carry significant information about the imaged scene [2],
[3], but also for the fact that they allow us to extract 3D informa-
tion on the geometry of the scene which is being imaged.

The accuracy of typical edge detection algorithms [3], [4] is
limited by the CCD camera resolution, which can be increased only
at very high costs. In alternative, one could look into the possibility
of using subpixel feature localization algorithms in order to reach
super-resolution performance with low-cost CCD cameras [1], [6].

In order to solve the edge localization (EL) problem with subpixel
accuracy, it is necessary to have some a priori information about the
nature of both image edges and acquisition systems. In fact, as the
CCD camera performs image sampling, its model is not invertible
for all signals. In particular, signals having high-frequency compo-
nents, such as abrupt luminance transitions (edges), cannot be re-
trieved beyond pixel resolution. In order to overcome the limitation
represented by Shannon’s sampling theorem, we may look at the
subpixel edge localization problem as that of inverting the camera
model for a very specific class of signals. This corresponds to deter-
mining the parameters of a specified edge transition model that, when
cascaded with the camera model, produces the available digital image.

In this article, we propose and evaluate a method for improving
the performance of subpixel edge localization techniques, based on
the correction of the Edge Localization Error (ELE), which performs
at its best on low-noise images, such as camera calibration patterns.
The method is particularly useful in those applications where the
accuracy of edge localization is more important than noise suppres-
sion [16] and acts on nearly-horizontal or nearly-vertical edges, i.e.,
where the ELE is the heaviest. In Section 2, we describe an accurate
model of the acquisition system and, in particular, that of a CCD
camera, while a characterization of the ELE is given in Section 3. In
Section 4, we propose and describe a method for estimating the EL
function and show how to derive an ELE compensation map from it.

Such a method is based on a statistical analysis of appropriate test
images, therefore, we do not need any a priori information either on
the camera system or on the adopted subpixel EL technique.

Tests have been performed in order to evaluate the impact of
the proposed technique on concrete situations. In particular, we
have embedded the ELE compensator into a complete camera
calibration procedure. The task of estimating intrinsic and extrinsic
camera parameters from the analysis of known image targets [8],
[9] is comparatively performed with subpixel detectors with and
without ELE-compensation. The results of such experiments, re-
ported in Section 5, show that the performance of the calibration
procedure improves significantly when ELE compensation is be-
ing employed in the localization algorithm.

2 A MODEL FOR THE ACQUISITION SYSTEM

The imaging systems that we consider in this article are standard
TV-resolution CCD cameras, either digital or equipped with a
frame-grabber (synchronized with the pixel clock). In either case
the acquisition system can be modeled as shown in Fig. 1, where a
nonlinear stretching of the image plane, followed by a low-pass
filter and an ideal sampler processes the image obtained with an
ideal lens (“pin-hole”), which performs a simple perspective pro-
jection onto the image plane. In fact, there are roughly two types of
aberrations that prevent the lens from behaving ideally: those that
cause a local shift of image points (distortion), and those that cause
blurring (lens aperture, CCD-sensor aperture, curvature of field,
astigmatism, coma, etc.) [11], [12].

Fig. 1. Overall model of the acquisition system.

Lens distortion causes image points to be shifted from the po-
sitions predicted through paraxial approximation. This positional
shift mainly occurs along the radial direction from the optical
center (intersection between the optical axis and the image plane),
in which case it is called radial distortion [8]. Radial distortion can
be rather accurately described in a compact parametric form by
truncating the series expansion ] ] ] ]u d d dk k � � �1 3

2
5

4
�3 8  that

expresses the undistorted radial coordinate ]u as a function of the

distorted one ]d. A truncation of this series to the third-order or
fifth-order term is usually sufficient for an accurate description of
the positional shift of the image points.

Besides distortion, real lenses always have a low-pass effect on
the image, even when the subject is perfectly in focus. As a matter
of fact, there always is a bandwidth limitation on the optical lens
due to its finite aperture, so that the image I(x, y) that actually
forms on the CCD surface is a low-pass version I(x, y) = h(x, y) 
Ig(x, y) of the ideal image Ig(x, y), h(x, y) being the impulse intensity
response of the lens, whose Fourier transform is known as Modu-
lation Transfer Function (MTF). The MTF is intimately related to
the shape of the lens aperture, in fact, it can be obtained by comput-
ing, through an appropriate change of variables, the autocorrelation
of the pupil function (which is equal to one in a circular region that
corresponds to the iris diaphragm, and is zero outside this region).
The MTF [11] is thus a circularly symmetric low-pass response.

The light coming from the lens focuses on the image plane, i.e.,
the CCD sensor surface, and forms an analog image, which is
sampled over time and space. The sampling process, however, is
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not ideal as the photosensitive regions have a nonnegligible size
and the time-integration period is not zero. The total light intensity
falling on each photosensitive area, for example, is integrated over
a shutter period, which is less than or equal to a frame period. As
far as spatial sampling is concerned, the light is integrated over the
photosensitive area of each pixel. This operation can be modeled
by a low-pass filter followed by an ideal 2D spatial sampling over
a grid defined by the geometry of the CCD sensor. The spatial
impulse response of the cell, which is normally called CCD aper-
ture function, corresponds to the light sensitivity map associated to
a pixel cell [10], and is normally assumed to be Wcell(x, y) = 1 inside
the photosensitive region and zero outside. The luminance sample
Ih,k associated to a pixel is thus proportional to the amount of energy
absorbed in one shutter period by its photosensitive area 3h,k, i.e.,

I I x y dx dy I x y W x h y k dx dyh k x y
h k

, , , ,
,

  � �IIII 1 6 1 6 3 8cell ' '
3

,

where pixels are assumed to be organized on a rectangular grid
whose horizontal and vertical sampling intervals correspond to
their relative intercell distances 'x and 'y. Notice that the actual
size of the photosensitive area is smaller than the size of the pixel
cell (usually about one third of the whole cell area [5]).

If the camera is not digital, after the readout process, the analog
stream of luminance samples of the CCD array is first processed
by a charge amplifier and then by a line amplifier. Image digitiza-
tion is then performed by a frame grabber through resampling and
quantization. The cascade of the charge amplifier and the line am-
plifier can be modeled as a low-pass filter whose cut-off frequency
is half the pixel clock frequency [14]. As the 1D analog video signal
is a time-sequential scanning of the 2D image, filtering the analog
1D signal corresponds to filtering the 2D signal only in the hori-
zontal direction. As a consequence, the bandwidth of CCD images
is normally wider along columns than along rows.

As far as other types of aberrations such as curvature of field,
astigmatism and coma are concerned, they can either be ne-
glected or included in the low-pass transfer function that models
the limited lens and CCD-sensor aperture [11], [12]. In conclu-
sion, the lens (radial/tangential) distortion is all included in the
first block of Fig. 1, while all sources of blurring (lens aperture,
aberrations, CCD sensor aperture, etc.) are all included in the
second block.

Notice that step-like luminance transitions undergoing lens
distortion remain step-like, therefore, if our goal is that of recov-
ering the location of the transition with subpixel accuracy, we can
compensate for the distortion after edge localization. This corre-

sponds to “incorporating” lens distortions into the imaged scene
and localizing the edges of a “distorted universe,” while leaving
the task of unwarping the universe to afterwards. This operation is
possible if we have a reliable estimate of the distortion coefficients,
which can be obtained through camera calibration [8], [9].

As far as noise is concerned, the most relevant sources in a
CCD camera are “dark current” noise, “fat-zero” noise, and
“reset” [13], [15]. Such types of noise are well modeled by an ad-
ditive gaussian noise. Furthermore, the digitization process intro-
duces a certain quantization error in the analog-to-digital conver-
sion. This type of noise can be neglected if an adequate number of
quantization levels is available.

In general, CCD cameras are designed in such a way to guar-
antee that the internally generated noise is not greater than quan-
tization noise. If the number of quantization levels is 256, in the
worst case of bilinear interpolation and quantization errors of the
same sign, the edge trabsition results as vertically shifted of '/2, '
being the quantization step. Such a vertical transition is to be com-
pared with a total edge transition of approximately 60' to� 80'.
The impact of such a relative vertical shift on the edge localization
is definitely below the tolerance of construction of a standard TV-
resolution CCD sensor. In conclusion, both internally generated
noise and quantization error can be neglected for the problem
approached in this paper.

3 EDGE LOCALIZATION ERROR

The subpixel EL methods that are currently available in the lit-
erature are all characterized by different levels of accuracy and
noise-rejection. Depending on the strategy adopted by the sub-
pixel method, the ELE associated to it may exhibit a certain system-
atic character [1], [6], [7]. It is quite evident that, if we can com-
pletely characterize and predict the ELE, then we can also com-
pensate for it.

Dealing with image edges that are either nearly horizontal or
nearly vertical greatly simplifies the analysis and the characteriza-
tion of the ELE, as the problem becomes one-dimensional. We will
see later on, however, that limiting our analysis to the case of
nearly horizontal or nearly vertical edges does not represent a
serious loss of generality, as the edges that predominantly suffer
from a systematic ELE are the horizontal and the vertical ones.

The 1D ELE corresponding to an abrupt luminance transition is
the distance between the sharp transition that would form on the
image plane when using an ideal optical lens and the edge that has
been actually detected. It is quite clear that, besides depending on

Fig. 2. Subpixel edge detection based on linear interpolation. (a) Ideal luminance profile. (b) Luminance profile incident on the image plane.
(c) Linear interpolation of the image samples.
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the acquisition system, the ELE critically depends on the subpixel
EL technique under exam. In order to clarify the concept, let us
consider the simplified situation shown in Fig. 2, where a sharp
luminance transition occurring at the coordinate p on the image
axis (horizontal or vertical coordinate of the image plane) is being
localized at subpixel precision by using of a simple linear interpo-
lation technique.

The luminance profile of Fig. 2a is a section of what would be
imaged on the image plane if an ideal lens were used instead of the
real one. Due to the limited aperture of the lens, the actual lumi-
nance profile is a filtered version of the ideal one, as shown in
Fig. 2b. When the light reaches the array of photosensors of the
CCD camera, the image is spatially sampled. The luminance sam-
ples that are actually collected by the CCD array, however, are
not the result of an ideal sampling of the luminance profile of
Fig. 2b, as they depend on the light that falls on the whole photo-
sensitive area of the pixel. In fact, assuming that the photosensitive
area is equally sensitive to the light, each luminance sample is
given by the area of the shaded regions in Fig. 2b, as shown in
Fig. 2c.

A simple way of estimating the subpixel location p of the ideal
edge from the samples collected from the CCD array consists of
linearly interpolating (see Fig. 2c) the collected samples, and de-
termining the intersection between the resulting piecewise linear
profile and an appropriate threshold. The threshold is set equal to
half the amplitude W of the luminance discontinuity, and the re-
sulting intersection can be taken as an estimate of the edge loca-
tion. Such an example of subpixel EL method is simple enough to
visualize the ELE associated to it, in fact the estimated edge loca-
tion �p  differs from the ideal location p of a quantity called Edge
Localization Error e. It is not difficult to realize that the ELE is a
periodic function of the edge location, provided that some condi-
tions of regularity in the acquisition system are satisfied (basically
a homogeneous CCD array). In this case, it is convenient to refer
ideal and estimated edge locations to the center of the pixel imme-
diately before the ideal edge location and limit the description to
one period of it.

In what follows, the function that maps the ideal relative edge
location r into the estimated one �r  is called Edge Localization
Function (ELF), �r = FEL(r), and the ELE can be written in terms of
the ELF as follows

e r ���r = EELE(r) = FEL(r) ��r                               (1)

4 ERROR COMPENSATION

As already mentioned in Section 3, if the ELF �r = FEL(r) is an in-
vertible function of the local coordinate r of the 1D (horizontal or
vertical) image axis, then we can compensate for the ELE provided
that a reliable ELF is available. In this section, we show how to
estimate the ELF and how to derive the relative compensation
function through statistical analysis of some test images.

4.1 Estimation of the Error Characteristic
With reference to Fig. 2, we have seen in Section 3 that the esti-
mated (affected by ELE) relative edge location �r  can be seen as a
function FEL(r) (EL function) of the actual (ideal) relative edge loca-
tion r. Since the response of the CCD camera can be considered
space-invariant, the ELE function e = �r �� r = EEL(r), must be peri-
odic of period 1 pixel, therefore, we can limit our analysis, for ex-

ample, to any interval like r0 � r � 1 + r0. The periodicity of the ELE

and (1) results in 1 + �r = FEL(1 + r). If FEL(r) is monotonic, then it is
also bijective, in which case its inverse function, r F rEL 

�1
�0 5 is bijec-

tive as well. The output range corresponding to r0 � r � 1 + r0 re-

sults as �r0  � �r  � 1 + �r0 , where �r0  = FEL(r0). The inverse FEL
�
¹� �

1  of
the ELF can thus be used as an error compensation function.

As the ELF is a map from the ideal edge locations onto the de-
tected edge locations, we can derive information on it from the
joint statistics of both its input and its output. The estimation of
the error compensation function, in fact, can be done through sta-
tistical analysis of an appropriate test image. The statistical distri-
bution of the estimated edge locations can be quite easily extracted
from the test image, while the statistics of the ideal edge location
can be inferred from the pattern characteristics in particular cases.
From a practical viewpoint, it is convenient to choose test images
whose ideal edge points (referred to the center of the pixel area
that they fall on) are uniformly distributed over pixel areas. An
example of image that satisfies these requirements is reported in
the next section (see Fig. 3a).

In order to avoid confusion in the notation, in what follows we
will denote with capital letters (R and �R ) the random variables
that represent ideal and estimated fractional edge locations, while

    
                                                             (a)                                                                                                            (b)

Fig. 3. (a) Test image used for the estimation of the error compensation function and for camera calibration. (b) Edges extracted from the test
image.
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lowercase letters (r and �r ) will be used for denoting the corre-
sponding instances.

If the probability density function (p.d.f.) of the ideal edge
point position R is uniform

f r
r r r

R
� �  

� � �%
&
'
1 10 0for
0 elsewhere                              (2)

then the p.d.f. of �R  = FEL(R) can be expressed as

F r
f r

F r
r F r

R
R

EL
EL�

� , �0 5 0 5 
� �

� � �
 

�1 ,                              (3)

where �r0  � �r  < 1 + �r0 , �FEL (r) is the first derivative of FEL(r), and the

absolute value can be omitted in the denominator of (3) as FEL(r) is
assumed to be a monotonically increasing function. By replacing
(2) into (3) and by applying a property of derivatives, we obtain

F r
F r

d
dr

F r
R

EL r F r
EL

EL

�

�

�
�

�0 5 0 5 
� � �

 

 � �

�

�

1

1

1 ,                            (4)

where r0 � r < 1 + r0 and �r0  � �r  < 1+ �r0 .
By integrating the p.d.f. of the subpixel edge locations �R  de-

tected from the image we obtain the compensation function

r C r F r F r f a daEL EL Rr

r
   � � �� � I� � �

�
�

�

0 5 0 5 2 71 1
0

0

.                      (5)

Notice that the value of �r0  is not a known parameter, therefore,
all that we can obtain from the analysis of the image is the statisti-
cal distribution of �R , computed over an arbitrary pixel-wide in-
terval like (A, 1 + A), generally not entirely contained in the inter-
val ( �r0 , 1 + �r0 ). Equation (5) could thus be expressed as follows:

r f a da f a da r f a da K
Rr

A

RA

r

RA

r

A � � � � � �  � � �I I I�
�

�

�

�

�

0
0 .              (6)

It is quite clear from (6) that different choices of the interval of

definition of �r  result in different vertical offsets KA for the com-
pensation function.

Notice that (5) can be used to compute F rEL
�1

�0 5  only for A � �r  �

1 + A. Since EEL(r) is a periodic function of period 1 pixel, we ex-

tend the range of FEL(¹) andFEL
�
¹� �

1  by using the relationships

F r k k F r
F r k k F r

kEL EL

EL EL

�� �  � � �

�  �
 � �� �1 1 0 1 2

� �
, , ,0 5 0 5 � .                   (7)

therefore, if A � �r  � A + 1, then we can use (5), otherwise we can
always find an integer k such that �r  = � �r �+ k, A � � �r  � A + 1, and
use (7).

It is worth emphasizing that the fact that the compensation
function is derived from a p.d.f. through integration gives us no
information on the offset KA, which means that we can linearize

the ELF (i.e., eliminate its ripple), but we still need to determine its
offset. The extra unknown can be determined by using further a
priori information on the test image, or through camera calibration.

4.2 The Estimation Procedure
The test image of Fig. 3 exhibits edges that are oriented in the ver-
tical and horizontal directions. We will see in the next section that
this image is the same one that we use for camera calibration. No-
tice that the fact that the luminance edges are slightly tilted guar-
antees their detected subpixel location to have uniform statistical
distribution, as required. Notice also that the presence of barrel
distortion does not affect the accuracy of the estimation of the ELE
characteristic. In fact, the edge coordinates can be assumed as be-
ing uniformly distributed over pixel areas when the edges can be
considered as locally straight in the absence of ELE, which is true
also in the presence of barrel distortion.

All edge points of the test image are localized with subpixel ac-
curacy by using an edge localization algorithm, for example one
based on cubic interpolation (with the edge location given by the
flex point), or even one based simply on linear interpolation. From
each edge coordinate x, we compute the local edge coordinate �r =
�x � n', where the pixel center n' is the nearest one to �x . Assum-

ing that the above lengths are measured in pixels, we have
� � �1

2
1
2e  and A  � 1

2 . The p.d.f. f r
R�
�0 5  of the detected subpixel

relative locations is estimated by building a histogram for �r , as
shown in Fig. 4. This operation corresponds to building a piece-
wise constant approximation of the desired p.d.f., and then nor-
malizing its amplitude. Finally, we integrate f r

R�
�0 5  in order to

compute the first term of (6). As far as the offset KA is concerned,
as we will see in Section 5, its determination depends on the spe-
cific application.

Fig. 5a shows an example of the p.d.f. f br�
� �  that is estimated

from the test image (only the edges localized along columns).
Compensation is performed by using (6) and the resulting compen-
sation function C r F rEL� �0 5 0 5 

�1 , is shown in Fig. 5b. The compensated
edge position r is then obtained by simply applying the compen-
sation C r�0 5  to the detected position �r , i.e., r F r C rEL  

�1
� �0 5 0 5 .

Notice that the compensation method described above does not
depend on the choice of subpixel edge localization technique that
is being used. However, it is reasonable to expect cubic interpola-
tion to outperform linear interpolation in the edge placement be-
cause of a different noise rejection. In fact, a cubic interpolator
averages over a larger number of samples, thus reducing the noise.

5 AN EXAMPLE OF APPLICATION

In order to improve the performance of an EL technique through
the ELE compensation method of Section 4 we first need to perform
subpixel edge localization on the test image and then estimate the

Fig. 4. Construction of the histogram of the local edge coordinates.
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compensation curve from the extracted edge points. At this point
we can perform subpixel edge localization on the scene image
and correct the edge coordinates through the estimated compen-
sation function. Notice that, if the edge points in the scene image
satisfy condition (2), then the ELE results as being uniformly
distributed, therefore the scene image can be used also as a test
image.

In order to evaluate the impact of the above compensation
technique on the performance of a subpixel edge localizator, we
have embedded the method into a camera calibration procedure
[8], [9] and compared the results with and without compensation.
Camera calibration consists in estimating intrinsic and extrinsic
parameters of an image acquisition system through the analysis of
the views of a calibration pattern. In the adopted camera model, the
intrinsic parameters are the optical center (intersection between the
optical axis and the image plane), the focal length and two pa-
rameters that describe the radial nonlinear distortion of the optical
lens. The extrinsic parameters are represented by the relative posi-
tion and orientation of the camera with respect to the target. It is
quite evident that the reliability of the calibration procedure criti-
cally depends on how accurately certain fiducial marks of the cali-
bration pattern are localized.

As already said in the previous section, the calibration pattern
used in the experiment is the same test image that we used for the
estimation of the ELE’s statistics. Such a target is planar and ex-
hibits a set of regularly spaced black squares on a white back-
ground, as shown in Fig. 3. The position of the fiducial marks on
the target, i.e., the corner points of the squares, is known with a
precision of ± 5Pm. In order to perform an accurate camera cali-
bration, it is necessary to localize the fiducial marks of the test
image with the best achievable precision. Being the fiducial marks
corner points of squares, they can be localized by intersecting
edges detected with subpixel accuracy.

The adopted calibration procedure estimates the camera pa-
rameters and provides us with a measure of the estimate’s accu-
racy, based on the standard deviation of the error between the
detected position of fiducial marks on the image plane, and their
position computed through the camera model. The accuracy
measurement has been used as an evaluation of the performance
of the edge localization algorithm, and a comparative evaluation
of the results with and without ELE compensation has been done.
As already mentioned in Section 4, the ELE compensation requires
the determination of offset parameters. In fact, the offsets have

been added to the list of intrinsic parameters of the CCD camera
and estimated by the calibration procedure. By doing so, the esti-
mated offsets can be used in other applications and for the ELE
correction.

The ELE statistics associated to the test image of Fig. 3 can be
assumed uniform with good approximation, therefore the calibra-
tion target is suitable also for the estimation of the compensation
curve. The edge points of the test image are obtained with a tech-
nique based on cubic interpolation and flex point search. From
such edges it is quite straightforward to visualize the ELE associ-
ated to the adopted subpixel technique. In fact, by magnifying all
horizontal (vertical) edges of one row (column) of squares, we
obtain the curves of Fig. 6, whose oscillations are mainly caused by
the ELE. By comparing the curves of Fig. 6, obtained with and
without compensation, we observe a substantial reduction of the
ELE.

In order to quantify the impact of the compensation method on
the accuracy of the calibration, we measured the standard devia-
tion of the calibration points before and after its adoption. The
standard deviation dropped from 0.081 pixel to 0.045 pixel, which
corresponds to an improvement of about 44 percent.

Notice that the proposed ELE compensation method is one-
dimensional, as it can be applied to either nearly horizontal or
nearly vertical edges. Extensions to the more general two-
dimensional case are possible by taking into account the fact that
we would have to construct an approximation of two EL sur-
faces (two EL functions of two parameters). In fact, we would
need to express position and orientation of a detected edge as a
function of position and orientation of the ideal edge that gener-
ated it. It is worth noticing, however, that edges that are either
nearly horizontal or nearly vertical are the most sensitive to ELE.
In fact, with reference to Fig. 6, it is not difficult to realize that
the density of ripples due to ELE increases with the edge angle
with respect to horizontality or verticality. In particular, a
nearly-horizontal edge gives rise to a very slow ripple. In this
case, we can correctly estimate the actual edge location only
when a large number of edge points is available. ELE compen-
sation allows us to dramatically reduce such a number. As the
edge slope increases, the ripple periodicity increases as well,
which makes ELE compensation progressively less useful.

Fig. 5. (a) Estimated p.d.f. of the detected subpixel residuals. (b) Relative compensation function.
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6 CONCLUSIONS

In this article, we have proposed and analyzed a method for im-
proving the performance of subpixel edge localization techniques,
which is based on the compensation of their ELE. In particular, we
have shown how to estimate the EL function and how to derive
the ELE compensator from it. We have also evaluated the per-
formance of the ELE compensation method in a concrete situation,
by determining its impact on the accuracy of a camera calibration
procedure.

The improvement in the calibration accuracy due to ELE com-
pensation has been shown to be quite significant (44 percent),
which can be crucial especially in applications of low-cost photo-

grammetry and 3D reconstruction from multiple views, and justi-
fies its adoption whenever it is important to maximize the preci-
sion of the edge localization without significantly affecting the
total cost of the acquisition system.
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