Abstract

In this paper we propose a novel solution to the problem of combining a number of partial reconstructions through a process of 3D "patchworking". Our method is able to seamlessly "sew" the surface overlaps together, and to reasonably "mend" all the holes that remain after surface assembly, which usually correspond to the non-visible portions of the object surface. The approach is based on the temporal evolution of the zero level set a volumetric function, driven by surface curvature and distance from data and works entirely in a multi-resolution fashion.

1. Overview and global strategy

A complete 3D model of an object is usually obtained by combining a number of partial reconstructions (surface patches) through a process of 3D "patchworking". This operation is based on a preliminary registration phase, in which all the available surface patches are correctly positioned and oriented with respect to each other, followed by the actual fusion, which consists of merging all surface patches together into a single and closed surface. Notice that the fusion, as described here, has a twofold purpose: to seamlessly "sew" the surface overlaps together, and to reasonably "mend" all the holes that remain after surface assembly, which usually correspond to the non-visible portions of the object surface.

This "atlas" approach to 3D modeling is suitable for modeling solutions based on depth estimation (every depth map is a partial reconstruction), such as image-based depth estimation techniques, range cameras, and laser-scanners. Such methods, in fact, produce a depth map in explicit form, which could be made of a several non-connected surface patches, because occlusions and self-occlusions generate depth discontinuities [1]. Such surfaces usually need a lengthy assembly process in order to become a complete and closed surface.

The first step of the assembly process is registration (see Fig. 1), which consists of determining the correct relative positions and orientations of all surface patches. One rather standard strategy is the Iterative Closest Point (ICP) [2] algorithm, which consists of minimizing the mean square distance between overlapping portions of the surface, using an iterative procedure. The focus of this contribution, however, is the fusion process, which we illustrate in the next Section.

2. Surface fusion

Our fusion process is based on the temporal evolution of the zero level set a volumetric function [3,4], which is driven by two contrasting needs: that of following the motion by curvature and that of honoring the data (partial reconstructions).

A surface is said to follow the motion by curvature when the velocity field that describes the surface deformation is normal to the surface itself and its magnitude is proportional to the local curvature (with sign). Indeed, if the motion were purely by curvature, a surface would tend to deflate completely and disappear, while becoming progressively smoother and smoother (Fig. 1 left). The need to honor the available range data prevents this complete implosion from taking place (Fig. 1 right).

In order to implement this implosion-inhibition mechanism, we need to redefine the velocity field associated to the update equation that describes the zero level-set propagation. This velocity is bound to be orthogonal to the propagating front, and its amplitude is set to

$$ F(x) = F_1(K) + \alpha \frac{K_M}{K} F_2(d) $$

where K is the local curvature of the level-set, K_M is the local curvature of the facing surface; d is the distance (with sign) between the propagating front and the surface patch; and α is a parameter that balances local smoothness and proximity to the data. Indeed, this formulation assumes that only one surface patch is facing the propagating front. Given a point on the
propagating front, the distance from a surface patch is computed from the orthogonal projection of that point onto the surface patch itself (Fig. 2). If no point on the surface patch faces the point on the level-set orthogonally, then the distance function \(d \) is computed from the closest point on the border of the patch (within a pre-assigned range).

![Fig. 1: Motion by curvature: without contrasting action: the level set collapses into a point (left). Level set implosion with contrasting action (right).](image)

When more than one surface patches are facing the propagation front, then the distance function \(d \) is computed using the distances from the point on the propagating front and all the orthogonal projections onto the surface patches that face it; the surface orientation; the closeness to the border of the patch (the reliability tends to decrease in the proximity of extremal boundaries); and the mutual occlusion between surface patches.

![Fig. 2: Given a point on the propagating front, its distance from a surface patch is computed from the orthogonal projection onto the target triangle mesh.](image)

3. Key features

Our solution to the surface fusion problem exhibits a number of desirable characteristics. One of its most appealing features is the fact that it is very robust against topological complexity. In fact, a level-set of a volumetric function is adequate for describing multiple objects and arbitrary topologies (see Fig. 3).

The most important aspect of our solution is its modest computational requirements. In order to obtain high performance at low computational cost, besides updating the volumetric function just in a narrow region around the zero level-set (narrow-band implementation), we operate in a multiresolution fashion (see Figs. 4 and 5). This can be achieved by starting with a low-resolution voxset (e.g. a cuberille with 10 voxels per side) and letting the front settle down. Then we break down the voxels around the propagating front and resume the front propagation. The operation continues until the final resolution is reached.

A key aspect of this process is in the fact that the velocity field that drives the implosion of the level set can be pre-computed on the octree data structure that best fits the available range data.
The resulting model is bound to be a set of closed surfaces, therefore all the modeling “holes” left after mosaicing the partial reconstructions are closed in a topologically sound fashion. In fact, those surface portions that cannot be reconstructed because they are not visible, can sometimes be “patched up” by the fusion process. This ability to “mend” the holes can also be exploited in order to simplify the 3D acquisition session, as it allows us to skip the retrieval of some depth maps (see Figs. 6 and 7).

An interesting aspect of our fusion method is in the possibility to modify the surface characteristics through a processing of the volumetric function. For example, filtering the volumetric function results in a smoother surface model. Finally, the method exhibits a certain robustness against orientation errors, as the non perfect matching of surface borders can be taken care of by the fusion process through a careful definition of the distance function used in the specification of the volumetric motion field.

4. Example of application

As an example of application of the proposed fusion technique, we acquired six depth maps of an object with a handle (Fig. 6) and assembled together using an ICP algorithm. The result was a model with overlapping problems at the boundaries of the depth maps, and missing information due to self-occlusions. The front evolution is showed in Fig. 7, while the final model, which results as being topologically correct) is shown in Fig. 8.
5. Conclusions

In this paper we proposed a novel solution to the problem of combining a number of partial reconstructions through a process of 3D "patchworking". Our method proved able to seamlessly "sew" the surface overlaps together, and to reasonably "mend" all the holes that remain after surface assembly. Our approach was based on the temporal evolution of the zero level set a volumetric function, driven by surface curvature and distance from data and works entirely in a multi-resolution fashion.

6. References