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ABSTRACT

This paper concerns the problem of localizing three-dimensional
planar obstacles through multiple emissions and acquisitions of
acoustic stimuli. The solution is based on the estimation of the
Times Of Arrival (TOAS) of the acoustic signal at multiple micro-
phones. These measures are converted into geometric constraints
acting directly on the parameters of the planar reflectors. The com-
bination of multiple constraints leads to the definition of a cost
function. The minimum of the cost function are the searched line
parameters. Some experiments show the feasibility of the pro-
posed approach for the localization of single and multiple reflec-
tors. This paper extends the technique in [1] to the localization of
three-dimensional reflectors.

1. INTRODUCTION

The role of the environment in audio space-time processing is cru-
cial, since it greatly influences the propagation of sound. As an
example, reverberations can affect the performance of a rendering
system or of a localization algorithm. However, when the geometry
of the environment is available, reverberations can be compensated.
As an example, in [2] the authors take advantage of the knowledge
of the room geometry to compensate its effect in sound field ren-
dering applications. A further example is given in [3], where the
authors make use of the room geometry model to improve the accu-
racy of sound source localization algorithms.

The problem of estimating the geometry of the room is there-
fore important. In the last few years many solutions relying on
acoustic signals have appeared. In [4] the authors present a solution
for the estimation of the room geometry, which is based on a “1 least
squares regularization. In [5] the authors adopt a technique that is
based on the inverse mapping of the acoustic multi-path propagation
problem. In [1] the authors present a solution for the localization of
obstacles in a two-dimensional configuration. In particular, given
source and microphone location, the measurement of the Time Of
Arrival of the reflective path is converted into a quadratic constraint
that acts on the parameters of the line on which the reflector lies. A
cost function that combines multiple constraints is then defined and
a minimization procedure leads to the searched solution. All these
approaches work, however, on the horizontal plane, which poses
some limits in a real scenario: source and microphones are, in fact,
bound to lie on the same plane and reflectors must lie on vertical
planes, which is not always the case in everyday environments. In
this paper we extend the methodology in [1] to localize planes in
a three-dimensional configuration and to allow the positioning of
sources and sensors in an arbitrary configuration.

An interesting evolution of the technique in [1] is presented in
[6], where a blind approach to localize acoustic reflectors is pre-
sented, where the position of the source is not known in advance.
The channel between the source and each microphone in the array is
blindly estimated. From this knowledge, using TDOA-based tech-
niques, the source location is inferred. This information is used to
convert the Time Difference Of Arrival related to the reflective paths
into Time Of Arrival. A methodology similar to [1] is then adopted
for the reflector localization.

As in [1], the Time Of Arrival is converted into a quadratic
constraint that directly acts on the parameters of the reflective plane.
While a line in 2D can be unequivocally parameterized by three
numbers, planes in a 3D geometry are unequivocally described by
four parameters. We initialize the minimization procedure that leads
to the reflector localization through a generalized Hough transform
that allows the source and the receiver to be located in arbitrary
positions, which represents an improvement of the Hough transform
proposed in [1]. Besides extending the algorithm in [1] to a 3D
geometry, in this paper we provide a generalization of the Hough
transform to arbitrary configurations of source and receivers.

The rest of the paper is organized as follows: Section 2 de-
scribes the data model and the problem formulation. Section 3 de-
scribes the derivation of the constraint from the acoustic measure-
ments and the localization of the reflector from such constraints.
Section 4 shows some experimental results. Finally, Section 5 draws
some conclusions.

2. DATA MODEL AND PROBLEM FORMULATION

In this Section we introduce the data model and we formulate the
problem of reflector localization. We assume that M sources are

that sources are synchronized with the microphones and a single
source is active at time. Figure 1 summarizes the notation. When
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Figure 1: Problem formulation: sources and receivers are located in
space. Reflective paths coming from a wall are acquired. We intend
to localize the wall by the analysis of the Time Of Arrival of the
reflective paths.

a single planar reflector is present in the acoustic scene, the micro-
phone n will acquire the direct path coming from the source n along
with an echo associated to a reflective path. If the laws of optical
acoustics are valid, the reflective path undergoes the Snell’s law.
The reflection point is denoted by Xp, . The signal acquired by the



microphone m when the source n is active is

Xnm() = aginmsn(t  tanm) F@rnmsSn(t  Tonm) o) (1)
where ag:n:m and arn;m are the attenuations of the direct and re-
flective paths, respectively; tq.n.m and trn:m are the corresponding
times of flight; and nn.m(t) is an additive noise. In order to infer
the TOAs we need to estimate the impulse response from source
to receiver, and one possible method to accomplish this task is the
cross-correlation between the signal generated by the source and the
signal received by the sensor. Under the hypothesis of unity energy
of the signal s(t) we have

Aman(®) = Xom()  s(t) = 2
agnmd(t  tgnm) +arnmd(t  teom) +rn,, ()

where hn:m(t) represents the estimated impulse response between
the source and the receiver, . (t) is the cross-correlation between
the signal s(t) and the noise nn:m(t), while d(t) is the Dirac func-
tion.

We observe the presence of two sharp peaks in the impulse re-
sponse. TOAs are estimated by picking peaks in h(t), i.e. we se-
lect the most relevant local maxima. We notice that the first peak
is related to the direct path, while the second one is related to the
reflective path.

Our problem is to estimate the position of the planar surface
that generated the reflective path by observing its Time Of Arrival
in multiple impulse responses. More specifically, a plane is repre-
sented by the parameters [p1; p2; ps; pa] so that a point [xq;X2; x3]"
is on the plane if and only if

P1Xy+ P2Xz +P3x3+ps =0 ()

In order to simplify the notation and the following discussion, we
use a homogeneous notation for points and planes. Equation (3)
then becomes

p'x=0; @)

where p = [p1;p2; ps; pa]” are the plane parameters and x =
[X1;%2;x3;1]" are the coordinates of the point using a homogeneous
notation. We notice that homogeneous coordinates are a class of
equivalence, as both x =[x1;x2; X3; 1] and kx = [kxq; kxo; kx3; K]; k &
0 belong to the plane p. With the homogeneous notation at hand,
therefore, our goal is to estimate the plane parameters p from the
observation of multiple TOAs of reflective paths bouncing once on
them.

In the following we denote the homogeneous coordinates of
sources and receivers with Xy, and X, respectively. Given the im-
pulse response hn:m(t) with multiple peaks, we extract from it only
the first peak (in order of time) after the direct path. As a con-
sequence, each impulse response is used for the localization of a
single reflector.

After the peak picking stage, the TOAs are organized into a set

where n and m are the indexes of the microphone and source, re-
spectively. When multiple walls are present in the environment, we
approach the problem by dividing the problem of estimating the ge-
ometry of the environment into sub-problems, each devoted to the
localization of a single reflector. As a consequence, we need to
know from which reflector each TOA in t comes from. A label-
ing issue arises, therefore, in dividing the set t into the new sets

address the issue of multiple reflectors localization in Section 3 us-
ing a generalized Hough-like transform.

3. REFLECTOR LOCALIZATION FROM ACOUSTIC
MEASUREMENTS

This Section concerns the localization of the reflectors from acous-
tic measurements. First we investigate on the case of a single reflec-
tor, we then extend the discussion to the case of multiple reflectors.

We assume, for the moment, that all the TOAs in t are asso-
ciated to the same reflector. The source is in X, and the receiver
is in X, and the TOA estimated in one of the impulse responses is
th:m, Where the subscript r is omitted for reasons of compactness
in the notation. The length of the reflective path from Xy, to X, is
th:mC, Where c is the sound-speed. We assume that the laws of opti-
cal acoustics are valid, therefore the reflection undergoes the Snell’s
law. The time of flight tn.m is the sum of the propagation time from
Xm to the reflection point (denoted by Xp,. ) and from Xp, . t0 Xn.
This means that the locus described by all the possible reflection

points x,(nF% associated to associated to the TOA tn:m is an ellipsoid,

whose foci are Xm and Xn and whose major diameter is Ctn:m.

Ellipsoids, as all the other quadrics, have a convenient for-
mulation using homogeneous coordinates, as already described
in [1] and [6] for the 2D geometry. A generic 3D point X =
[X1;X2;X3;%4] (Where the fourth variable k adopted in the notation
used for (3) has been "absorbed by x4) belongs to a quadric with

parameters[an;m;bn;m;cn;m;dn;m;en;m; frzm; On;ms hnm s inems |n;m]T if
and only if

an;mx% + bn; mx;x, +cn; mx% +dn;mx1X3 + en; mxoX3+ (5)

£n;mx3 + gn; mxyX4 + hn; Mxaxg + in; mxax4 + In;mx§ = 0:

A more compact representation of a quadric is possible using a ma-
trix notation. In fact the quadric constraint becomes

X" Crmx=0; (6)

where

2 3
an;m bnm=2 dnm=2 gnm=2

_ @bnm=2 Cn;m enm=2 hnm=2¢.
c _2 nm=2  €nm=2 _fn;m inm= g )
Onm=2 hnm=2  inm=2 In:m

is the quadric matrix.

The problem is now to estimate the quadric matrix (or, equiv-
alently, its parameters) from the knowledge of x,, Xm and of the
major diameter th:m. In [1] and [6] a solution that is based on
the computation of the minor diameter of the ellipsoid is presented.
However, this methodology envisions to pass through intermediate
results. Here we propose, instead, a different technique that directly
from the positions of source, receiver and TOA extracts the param-
eters of the quadric.

A generic 3D point X = [x1;X;x3;1]T (where the fourth coor-
dinate has been set to 1 for the sake of simplicity in the deriva-
tion) is on the ellipsoid with foci in Xn = [Xn1:Xn2;Xn3; 1] and
Xm = [Xm1; Xm2; Xma; 117 and major diameter Cty:m if and only if

q

(X1 Xm)?+ (X2 Xn2)?+(X3s Xn2)?+

q

(1 xm)?+ (2 Xm2)?+ (X3 Xm2)? =cCtym:  (8)

By expanding eq.(8) and comparing it with eq.(5) (where x4 = 1 for



uniformity with (8)) we obtain the quadric parameters

anm=4[(xm X1n)® T2,

Brm=8[(Xm Xun)(Yim Yin)l;

Com=4[(im X2n)® T2I;

Onm=8[(Xym  Xu;n)(Xam Xan)];

enm=8[(zm Xzn)(Xam Xan)l;

fam=4[(am Xan)® T2J;

Onm=4[T2(Xzn+Xzm) (Xum Xl;n)(xf;m Xf;n"'X%;m"'X%;m X%;n X%;n)];
hn;m=4[T2(X2;n+X2:m) (Xt;m Xl:n)(xim X%;n"'x%;n*’)‘%;n X%;n X%;n)];
inm=4[T2(kan+Xam) Oam Xun) G Gn Pt K %)
I =[G+ +3Em )+ (G HXn +X5y THP

4(X%;m+X%;m+X§;m)(X%:n+X§;n+X§;n);

where T = Ctym.

Equation (6) constrains, therefore, the reflection point to lie on
the surface of the ellipsoid. This formulation, however, is not conve-
nient when we are interested in finding the parameters of the plane.
However, the dual form of the quadric comes at our help. More
specifically, a plane p = [p1; p2; ps; pa]" is tangential to the quadric
Ch:m if and only if

pTCn;mPZO: 9)

Summarizing, the knowledge of the source and receiver position
and of the reflective TOA places a constraint on the reflector, that is
bound to be tangential to the ellipsoid Cp.m. By measuring multiple
TOAs (from different positions of receiver and/or source) referred
to the same reflector, we can bound the reflector to be tangential to
multiple ellipses, one for each TOA.

We end up, therefore, with an equation system in which the
vector of the plane parameters p is the unknown term:

8
p'Crip =0
p'Ciop =0
-

p'Cnmp =0

In a real scenario Times Of Arrival are affected by errors, such as
quantization or presence of spurious signals, which alter the correct
value. We resort, therefore, to a cost function J(p) that combines
all the individual constraints

M N
I(p) = jiPCrmpij? : (10)

m=1n=1
In order to avoid the trivial solution p = 0, we impose that the so-
lution has unitary norm. The estimated plane p is therefore

p=arg mgnJ(p) subject to jjpjj=1: (11)

The minimization is accomplished using the same approach adopted
in [1].

3.1 Extension to multiple reflectors

When multiple reflectors are present, the impulse response contains
multiple reflective paths and becomes

Nmn () = Xnym (1)

R

tynm) +  @rnmd (t
r=1

s(t) = (12)

agnmd (t trnm) + Mgy (1;

where R is the number of reflections that reach the microphone. In
this scenario, we have to associate each TOA in the set

to a specific reflector in the environment in order to obtain sets of

of multiple reflections, i.e. paths that bounce on more than one
reflector.

We tackle the association problem using a Hough-like trans-
form, which generalizes the one presented in [1], where the speaker
was located on a circular path around the microphone.

Consider one microphone and one source, located in
[X1i; Xok; Xa]T.  For simplicity in the derivation we consider the
microphone in the origin of reference system. The spherical co-
ordinates of the source are ry (distance from the origin), gy (co-
elevation) and Fy (azimuth). A planar reflector is present in the
environment. If we cast from the origin a line perpendicular to the
reflector, it intersects the plane at a point. We denote the spheri-
cal coordinates of the point with r, q and F. We notice that these
coordinates define the reflector in an unique way, therefore in this
Section we use spherical coordinates to represent a plane. The nota-
tion used for the derivation of the Hough transform is summarized
in Figure 2 The TOA ty of the reflective path bouncing on the re-

image
source

Figure 2: TOAs are computed through the distance d between the
source and the image source respect to the microphone (or vicev-
ersa) by using spherical coordinates: r, g, F for the reflector and
ry, gk, F for the k-th position of the source.

flector is related to the distance between the image source (obtained
by mirroring the source against the reflector plane) and the receiver,
and it is given by

tk(r;q;F):% (2rsin(g)cos(F)  rysin(ay) cos(Fi))?
+(rsin(q)sin(F)  rysin(go)sin(F))?  (13)

+(2reos(q)  rcos(a))? 7

where ¢ is the propagation speed.

Given the coordinates of the speaker; of the receiver; and the
coordinates r;q; F identifying the reflector position, we are able to
compute the TOA of the reflective path.

We call the coordinates (r;q; F) as the Hough parameter space.
We defineagrid (rq;0e; F¢);d =1;:::De=1;::0E; f =100 F
in the Hough parameter space. More specifically, 90 < qe <
+90, 180 < F; <+180 and rpyj, < rg < rmax, where the
threshold distances rmin and rmax are properly chosen. A voting
function v(rg;ge; F) is defined on the grid. For each point on the



grid, we compute the TOA associated to the potential reflector lo-
cated at (rq;qe; F¢). If

jt(rg;de;Ff) thmj<e (14)

then
V(rg;de; Fr) =v(rq;ge; Fe)+1; (15)

where e is an acceptance threshold properly defined. At the end
of the voting procedure, the position of the L most relevant local
maxima of the function v(ry;qe; F¢) that overcome the threshold
V are extracted. The TOAs that contributed to the Ith local maxima
are used for the set t;. The estimation of the geometry of the envi-
ronment becomes, therefore, the estimation of the plane parameters
of L individual reflectors. We notice also that the position of the
local maxima provide an useful initialization of the minimization
procedure described in the previous Section.

The derivation of the Hough transform can be easily general-
ized to the case of microphones not in the origin of the reference
frame. In particular, equation 13 will incorporate the position of the
microphone.

We notice that the definition of the minimum and maximum
distances rmin and rmax is crucial to exclude the localization of re-
flectors outside the range of interest. As an example, if we intend
to localize reflectors within the range of 3m from the origin of the
reference frame, we can establish rmax = 3m. As a consequence,
the adoption of a proper threshold rmax comes at our help also to
exclude the localization of “ghost” walls derived from multiple re-
flections.

4. EXPERIMENTAL RESULTS

In this section we present some experimental results on real data
that show the accuracy of the proposed methodology.

In order to assess the accuracy of the localization, we compare
the estimated plane parameters with the ground truth ones. In par-
ticular, we adopt two localization metrics. The first is based on the
comparison of

the distance r and ' between the origin of the reference frame
and the actual and estimated planes, respectively;

the co-elevation g and ci of the actual and estimated planes, re-
spectively;
the azimuth F and F of the actual and estimated planes, respec-
tively.
The second metric measures the co-linearity in the plane parameter
space between the vectors p and p, which are the plane parame-
ters of the estimated and hand-measured planes, respectively. This
metric therefore becomes

a=_PE_ (16)

PPl

We carried out three tests. First, we placed in a dry room a
single reflective wood panel. The goal of this test is to show the
accuracy of the localization in a controlled scenario. The second
setup is aimed at reconstructing the geometry of a simple environ-
ment composed by two parallel reflective wood panels placed in a
dry room. We notice that, although simple, in this configuration the
impulse response is characterized by multiple peaks, corresponding
to multiple bouncing on the parallel walls. Finally, the third test is
aimed at reconstructing the geometry of a real room.

The source used for all the tests is a custom-made 2 inches loud-
speaker. The signal has been acquired with up to 8 Beyerdynamic
MM1 microphones. A sampling frequency of Fs = 44100 Hz has
been adopted.

4.1 Localization of a single reflector

For this experiment we adopted a configuration of one source and
six microphones. The microphones have been randomly placed.
Their positions were then measured. Though random, the positions

s T T )

xu[m]

(a) Hand-measured plane

xu[m]

(b) Estimated plane

Figure 3: Example of localization of a single reflector

of the microphones grant that the direct path between the source and
each sensor is always present. The reflective panel has been tilted at
two different inclinations. Figure 3 shows the hand-measured and
estimated planes for each configuration. Table 1 shows the localiza-
tion results for both tilt angles.

Table 1: Localizing a single reflector tilted at two different inclina-
tions

Experiment | r[m];q[ I;F[ ] f[m];&[ LFL1] A= %
Position 1 (0.26,11,0) (0.3,20,355.5)
Position 2 (1.18,-16.6,134.6) | (0.9,-15,144) 0.9881

4.2 Localization of two parallel reflectors

In this situation we consider the case of two reflectors that lie on par-
allel planes, distant 3:4m each other. As in the previous experiment,
the microphones have been placed at random locations between the
two walls, where also the source is located. The source is directive,
therefore we acquired the impulse responses for two different orien-
tations, each facing to one reflector at time. We notice that the situa-
tion in this experiment is more complex, as the impulse response of
this simple environment exhibits multiple peaks, due to direct path,
first and higher-order reflections. In order to avoid the localization
of “ghost” walls related to multiple reflections we use rmax = 3:8m.
Figure 4 shows the localization of the reflectors. Table 2 shows the
accuracy of the localization. We notice that the localization of the
individual reflectors is not affected by the presence of multiple re-
flections.

4.3 Estimation of the room geometry

For this experiment we moved source and microphones in a rever-
berant room, whose bounding box is approximately 5m 4m  3m.
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Figure 4: Example of localization of two parallel re ectors

Table 2: Localizing two parallel re ectors

Experiment | r [m];q[ J;F[ ] Aml AL LA ] | A= PR
Tplane | (3.545,0,90) (3.4,5,90) 0.9996
2"9plane | (0.13,5,90) (0.1,0,90) 0.9958

X3[m]

xa[m] X[m]

(a) Actual geometry

Xg[m]

xa[m] -
2)

(b) Estimated geometry

Figure 5: Example of estimation of a complex geometry

This methodology is an improvement of a previously developed
technigue [1] conceived for the estimation of 2D geometries. We
also discussed the problem of localizing multiple re ectors. This
extension is based on a divide and conquer approach by grouping

TOAs coming from the same re ector and then performing sepa-
rate localizations, one for each re ector in the environment. Some

Four microphones are disposed in the center of the room. Six a
quisitions have been performed, and for each of the acquisition
the source is moved close to each wall. As a consequence, we end
up with 24 impulse responses. For this experiment, the parameters
I max @andr min have been set toBm and Om, respectively.

Figure 5 shows the actual and estimated geometries, while 141!
ble 3 details the accuracy of the localization for each of the six re-
ectors.

[2]
Table 3: Inference of a real environment. _

Plane (n) | rimial Lf[] | AmidE LR ] | A= i

1 (0,0,0) (0.03,0,0) 1 3]
2 (4.8,-11,0) (4.81,-10,45) | 1

3 (0.45,0,90) (0.48,0,90) 1

4 (4,0,90) (4.02,0,90) 1

5 (0,90,0) (0.02,90,0) 1

6 (2.75,90,0) (2.68,90,0) 0.99 [4]

We notice that also in this case the accuracy of the localization
is not affected by the presence of multiple walls in the environment[s]

5. CONCLUSIONS

In this paper we have investigated on the problem of localizing plasg
nar re ective surfaces using acoustic measurements. The techniqLé
described is based on the use of multiple quadratic constraints, as-
sociated to measurements of the Time Of Arrival of re ective paths.

experimental results show that the proposed method is capable of a
ood accuracy, even for complex geometries of the environment.
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