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ARTICLE INFO ABSTRACT

Points matching between two or more images of a scene shot from different viewpoints
is the crucial step to defining epipolar geometry between views, recover the camera’s
egomotion or build a 3D model of the framed scene. Unfortunately in most of the
common cases robust correspondences between points in different images can be
defined only when small variations in viewpoint position, focal length or lighting are
present between images. In all the other conditions ad hoc assumptions on the 3D scene
or just weak correspondences through statistical approaches can be used. In this paper,
we present a novel matching method where depth-maps, nowadays available from
cheap and off the shelf devices, are integrated with 2D images to provide robust
descriptors even when wide baseline or strong lighting variations are present. We show
how depth information can highly improve matching in wide-baseline contexts with
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respect to state-of-the-art descriptors for simple images.
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1. Introduction

Feature points matching between two shots of a scene
from different viewpoints is one of the basic and most
tackled computer vision problems. In many common
applications, like objects tracking in video sequences,
the baseline is relatively small and features matching
can be easily obtained using well known feature descrip-
tors [1,2]. However many other applications require
feature matching in much more challenging contexts,
where wide baselines, lighting variations and non-Lam-
bertian surfaces reflectance are considered.

Many interesting approaches based on two single
images have been proposed in the literature, starting
from the pioneering work of Schmid and Mohr [3] many
other interesting approaches followed: Matas et al. [4]
introduced the maximally stable extremal regions (MSER)
where stable subset of extremal regions invariant to affine
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transformations are used to find corresponding Distin-
guished Regions between images, or moment descriptors
for uniform regions [5] while other approaches are based
on clearly distinguishable points (like corners) and affine-
invariant descriptors of their neighborhood. One of the
most popular approaches in the last few years becomes
the Scale Invariant Feature Transform (SIFT) proposed by
Lowe [6] thanks to its outperforming capabilities, as
shown by Mikolajczyk and Schmid [7]. The SIFT algorithm
is based on a local histogram of oriented gradient around
an interest point and its success is mainly due to a good
compromise between accuracy and speed (is as also been
integrated in a Virtex II Xilinx Field Programmable Gate
Array, FPGA [8]). Actually some other approaches, always
based on affine invariant descriptors, got growing interest
like the Gradient Location and Orientation Histogram
(GLOH) [7] which is quite close to the SIFT approach but
requires a Principal Component Analysis (PCA) for data
compression, or the Speeded-Up Robust Features (SURF)
[9] a powerful descriptor derived from an accurate inte-
gration and simplification of previous descriptors.

All of the aforementioned approaches assume that,
even if nothing is known of the underlying geometry of
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the scene, the defined features, since are describing a very
small portion of the object, will undergo a simple planar
transformation that can be approximated with an affine
homography. This simplification has two main draw-
backs, first of all the extracted features are very general
and weak since wide affine transformations must provide
very similar results, moreover, whenever the framed
object presents abrupt geometrical discontinuities
(e.g. geometrical edges or corners) the affine approxima-
tion is not valid anymore.

A possible solution to these problems could be a rough
description of the underlying 3D geometry. In particular,
we investigated the opportunity to use scene depth-maps
to have a rough estimation of 3D underlying geometry:
we use depth-maps to estimate, with respect to the
observing camera, the orientation and distance of the
plane where the interest point is laying. We then apply a
homography in order to transform this plane parallel to
the camera’s image plane. If depth-map is also metric
(i.e. the metric distance of pixels from the image plane is
also known) we can also move the feature plane at a
specific distance from the image plane. In the first case
our descriptors can be just similarity invariant with 2
degrees of freedom, scale and rotation while, if the
depth-map is also metric, rotation becomes the only
variable among different views.

The local descriptors can then be less generic since
they have to take into account just rotations and, even-
tually, scaling, becoming more robust and discriminative
with respect to those thought for affine transformations
traditionally used in computer vision. Another important
aspect where depth-map can be really useful are the
geometric discontinuities in objects surface: when the
surface presents corners or edges the depth-map presents
abrupt changes and local texture will not undergo a
planar transformation in different views. The depth-map
can then be fruitfully adopted to discard those points in
matching search in different views using only points on
almost planar surfaces.

In the following we will show how low-cost depth-
map acquisition devices (like Microsoft Kinect®™) can be
fruitfully adopted to prove effectiveness of the aforemen-
tioned approach improving matching capabilities
between points even in wide-baseline comparisons.

2. Surface vs. texture relevant points

Actually the, by far, most used algorithm to define
significant points in a picture that can be used to be
matched with corresponding points in another image, is
the corner Harris detector. This pioneering algorithm from
Harris and Stephens [10] is still the basic element for the
localization of feature descriptors: [11]. Applying this
algorithm to depth-maps provides us with surface dis-
continuities like geometrical corners or edges. In particu-
lar, accordingly to [10], the analysis of the “Corner
Response” applied to depth-maps allows us to automati-
cally find abrupt jumps, edges or corners in the geome-
trical surface and the texture around those points can
then be skipped in the point match research. Once we
have the depth-map registered with its corresponding

image and we perform the Harris detector both on the
depth-map and on the relative image we are able to
distinguish between:

e Edges and corners due to textural variation but belong-
ing to a flat surface.

e Edges in the depth-maps corresponding to a folded or
truncated surface.

e Corners in the depth-maps (that are usually corners in
the image too) corresponding to abrupt variations in
the surface: e.g. spikes, corners or holes.

The capability to characterize different Harris features as
geometrical or not (i.e. if they are also present or not in
the depth-maps) is particularly important for definition of
robust invariant descriptors. The opportunity to recover
univocally the plane where the neighborhood of the
significant point lays, allows us, applying e.g. the proper
homography, to obtain a frontal view of the neighborhood
of a considered point independently from the viewpoint.
The direct effect of this transformation is that the com-
parison between significant points for images acquired
from different viewpoints can be simply performed com-
paring two frontal views of the regions around the points
themselves: these regions can undergo only rotation and
scaling: i.e. similarity transform where translation is dis-
regarded since we are comparing neighborhood of corners
that provide an univocal spatial localization. Furthermore
if the same device is used to acquired the analyzed depth-
maps or if the acquisition device is also metrically
calibrated (it provides us with the metric distance of each
point from the camera), we are able to compare all the
features as if they are placed at the same distance from
the camera and the only remaining degree of freedom is
rotation.

3. Fusion of geometric and texture descriptors

Many techniques have been developed to find flat
planes in depth-maps, a significant example can be found
in [12], and also surface curvature from cloud of points
has been deeply investigated [13].

In our case we followed a simplified approach to define
tangent plane to the surface around the interest point: in
Fig. 1 there is a sample image where a Rubik’s cube
presents textural corners and edges on faces and abrupt
geometrical corners and edges due to surface folds. The
first step of the proposed algorithm is then based on the
corner localization in the color image, once that possible
interest points are located we recover the local tangent
plane by the Principal Component Analysis on the depth-
map points surrounding the interest point, in particular,
accordingly to [14], we evaluated the covariance matrix
(3 x3) of the depth-map around the point (we used a
15 x 15 neighborhood window centered at the considered
point but it can be adapted accordingly to the surface
roughness or curvature) and then we performed the
eigenvector decomposition. The resulting eigenvector
associated to the lower eigenvalue represents the direc-
tion cosines for the “tangent” plane.
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Fig. 1. A synthetic representation of a Rubik cube.

REQ

Fig. 2. Texture reprojection from Fig. 1 into planes parallel to the image
plane. Planes information was recovered from the depth-map.

In particular, since the lower eigenvalue indicates the
dispersion (variance) around the plane normal direction,
we account that value as the local “flatness” index of the
tangent plane and we accept only values lower than a
threshold. In other words we are imposing to consider
only texture corners, which neighborhood belongs to a
flat surface. Once the laying plane is defined, the homo-
graphy to recover a frontal and centered image can be
easily obtained [15]. Then, through the homography, we
can recover a frontal view which is independent from the
viewpoint apart for rotation and scaling (Fig. 2).

4. Similarity invariant transform

Accordingly to the aforementioned steps we are able to
obtain a 2D representation of the same 3D object part
whose misalignment can be modeled by a four-parameter
geometric transformation that maps each point (x;,yy) in F
to a corresponding point (xg,y,) in G according to the
matrix equation (in homogeneous coordinates)

Xg pcosI psind —Ax] [xf
Ye|=|psind pcosd —Ay| |ys
1 0 0 1 1
Equivalently, defining the two images as two functions

denoted by f and g, representing a gray-level image
defined over a compact set of R?, for any pixel (x,y) is

true that
fxy)=g(px cos 3+y sin $)—Ax,p(—x sin 3+y cos $)—Ay).

where Ax and Ay are translations, p is the uniform scale
factor, and 6 is the rotation angle. In other words, when
we speak about similarity transformation we refer to the
operations in this order

RST =RS,4 - Taxay-

Since we are comparing image regions centered
around interest points, the translation invariance has no
relevance in our case and the similarity invariance can be
limited to rotation and scaling. Many approaches are
present in the literature to tackle this problem [16],
anyway most of them are incomplete like geometric
moments and complex moments, while we oriented our
research toward complete descriptors, that means that
only representations retaining all the information of an
image, except for orientation and scale, are considered. In
particular we used the Fourier-Mellin Transform (FMT)
that is the Fourier Transform of the image f(x,y) mapped
in its corresponding Log-polar coordinates f;p(u,&)

f(e* cos Eetsin &) ¢ €]0,2m),
0 otherwise.

frp(u,8) = {
The FMT is defined as

oo 2n
Fr(w,k) = / / fip(u,&)e TWHTKO dE dy.
0 0

Then we explored two possible invariant for orientation
and scale: the Taylor Invariant and the Hessian Invariant,
which are described in the following section. In particular
we recall that after a Log-polar transformation a rotation
corresponds to a circular shift along the axis representing
the angles while a scaling corresponds to a shift along the
logarithmic radial axis. Applying the 2D Fourier transform
to the Log-polar transform the aforementioned shifts are
reflected in a linear phase contribution while the ampli-
tude will remain unchanged.

5. Taylor and Hessian Invariant Descriptors

Many recent approaches integrate range data or
depth-maps together with geometrical descriptors to
improve matching rate in wide baseline or scene changing
contexts. In particular we point out two quite similar and
significant approaches: [17,18], that tackle 3D distortion
geometrical corrections, anyway both of them use as final
descriptor, after the geometrical corrections, the SIFT
descriptors. On the contrary, our aim is to explore, after
the rectification of the planar region around the interest
point, some less flexible and generic but more robust
descriptors.

In this section we depict the two orientation-scale
invariant descriptors that we used, both of them are based
on the FMT described in the previous section. The Taylor
Invariant Descriptor [19] is focused on eliminating the
linear part of the phase spectrum by subtracting the linear
phase from the phase spectrum. Let F(u,v) be the Fourier
transform of an image f(x,y), and ¢(u,v) be its phase
spectrum. The following complex function is called the
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Taylor Invariant:
Fr(u,v) = e 7@ F(u,v),

where a and b are respectively the derivatives with
respect to u and v of ¢(u,v) at the origin (0,0), i.e.

a=¢,0,0), b=¢,0,0).

The effect is then the registration of the input features
in such a way that the phase spectrum is flat in the origin,
i.e. if we should take the inverse transforms, all of them
will be rotated and scaled to accomplish to this constrain.

The idea behind the Hessian Invariant Descriptor [19]
is to differentiate the phase spectrum twice to eliminate
the linear phase terms, the invariant parts are then the
modulus of the spectrum and the three, second order,
partial derivatives of the phase spectrum

Fu(u,v) =[|F(u,v)

y Py W), (,OHV(U,U), (PW(U.U)].

As described in the following section, we evaluated
both descriptors obtaining very similar results anyway
the Hessian transform, thanks to its high-pass filter,
provides better results with intensity/light variations
while Taylor descriptor can be considered slightly better
when smoothly changing textures are present.

6. Proposed algorithm

In order to evaluate the matching quality with respect
to the state of the art descriptors we compare our Taylor/
Hessian Invariant Descriptor with the SIFT, that, accord-
ingly to [7] outperforms other multiple views matching
methods.

The proposed algorithm can be summarized as
follows:

e For each shot of the scene, significant points are
extracted using Harris corner detector applied on the
picture.

o The PCA is applied on the neighborhood 15 x 15 of the
corresponding point of each detected point on the
depth map and the lower eigenvalue and its associated
eigenvector are founded:

O If the lower eigenvalue is higher that a predefined
threshold the interest point is not assumed on a
planar region and it is skipped. The algorithm then
jumps back to the next point.

O Else the point is assumed on a planar region and the
eigenvector associated to the lower eigenvalue is
used to determine the homography that transform
the tangent plane into a frontal plane respect to the
camera.

e The homography is applied to each point around the
interest point, followed by a bicubic interpolation in
order to avoid artifacts (rectification process).

e The 2D Fourier-Mellin Transform is applied on the
reprojected region:

o If the depth-map is metrically calibrated the pre-
vious homography places the region around our
interest point at a constant distant from the image
plane, in this case the 2D Fourier Transform is

applied to the reprojected region expressed in polar
coordinates.

O Else the scale of the final region is not known and
the 2D Fourier-Mellin Transform is applied to the
reprojected region (2D Fourier Transform applied on
the reprojected region expressed in Log-polar
coordinates).

o At last the Taylor or the Hessian Invariant is applied to
Frn(w,k).

e The resulted vector is used as feature descriptor of the
significant point and correct match from different
images are selected as those for which the Euclidean
distance is minimum.

For completeness we summarize also the main step
of the SIFT algorithm implemented for comparing the
performances:

e Maximally Stable Extremal Regions (MSER) [4] are
found for each shot of the scene.

e All the MSER are approximated as elliptical and
oriented so that each major axis is horizontal.

e The ellipsis are deformed in circles and the intensity
gradient for each pixel is computed.

e Each circular region is divided in rectangular subre-
gions and the histogram of the gradient’s direction is
computed for each subregion.

e The feature vector is made linking all the histograms
computed on the circular neighborhood and, as for the
proposed algorithm, correct match from different
images are selected as those for which the Euclidean
distance is minimized.

7. Results

We checked the discriminative power of the proposed
Taylor/Hessian Invariant Descriptors with respect to state
of the art SIFT descriptor applying them on rectified
version of the original images acquired with different
view points. Obviously SIFT was built to find matches in
the more general case of affine/perspective transforms
but our aim is to demonstrate that, even when depth-
maps are available together with their texture images,
more detailed descriptors, robust to rotation and even-
tually scaling, can be adopted providing us with better
matching score.

We performed some experiments using snapshots
similar to those visible in Fig. 6. We also analyzed results
on synthetic images in order to insulate acquisition noise
contributions (see Fig. 3).

In Fig. 4 it is possible to see correspondences found by
the Taylor Invariant Descriptor (TID) and the SIFT applied
on rectified images after the homography, with metric
assumption on the depth-map. The results in terms of
correct matches vs. all the matches founded are 98% with
TID, while 87% with SIFT. The putative matches are
founded using a nearest neighbor classifier.

In order to test our results for real images, without
taking into account problems coming from wrong
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Fig. 3. Examples of (a) synthetic images obtained by a ray-tracing software and (b) the relative depth-maps. (c) Images obtained after the rectification

process.

Fig. 4. Point correspondences found by the Taylor Invariant Descriptor and the SIFT applied after rectification process performed on the global image.

estimation of the homography needed to project the
acquired scene in frontal view, we analyzed the results
on images of the famous wall proposed in the Mikolajczyk
database, where also the exact homography between
different snapshots is given. With the SIFT descriptor
applied to the rectified images of Fig. 5, we obtained a
correct match rate of 79%. Even if the nearest neighbor
classifier is implemented, we also analyzed the distances
ratio between the first nearest neighbor and the second
one: the lower is this ratio the higher is the discriminative
power of the proposed descriptor. For correct matches the
mean ratio of the Euclidean distances between the correct

one and the second one is around 0.8. Using the proposed
approach we obtained a correct match rate of 87% with an
average ratio of distances for the first match and the
second one of 0.65.

No databases of pictures and depth-maps associated
with a wide baseline are yet available nowadays, so we
decided to test our algorithm taking 10 pictures of the box
illustrated in Fig. 6 acquired from different viewpoints.
We used a Kinect® device for the acquisitions in an indoor
environment and without any restriction except avoid
that sun light directly on the IR device’s camera. In Fig. 7
we show how the planes, where the interest points lay,
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Fig. 5. A famous wall from Mikolajczyk database for feature matching tests acquired under different view-points. Comparisons were made on rectified

images.

<

Fig. 6. A box acquired from different viewpoints and its depth-maps.

Fig. 7. Images of interesting points after the homography to obtain a
frontal view of framed surface by the depth-map.

are reprojected in frontal views; the homographies have
been defined accordingly to the PCA analysis on the
underlying depth-map. Matching results are reported in
Table 1. The results proposed are obtained using the
Taylor Invariant Descriptor, but they are close for both
descriptors.

8. Conclusion

In this paper we propose a novel approach to define
putative correspondences between images where the
information from corresponding depth-maps are fruitfully
integrated to reduce variability in the neighborhood
around interest points, in particular projective or affine
distortions are reduced to similarity transforms making
available more robust and complete descriptors like
Taylor or Hessian Invariants applied to the Fourier-Mellin
Transform (or the Fourier Transform applied on the
rectified neighborhood mapped in polar coordinates).
We also showed how these descriptors, that are robust
only to rotation, or rotation and scaling, provide better
results with respect to state of the art descriptors like SIFT
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Table 1
Matching results with different descriptors.

Matching results Synthetic depth-map Graffiti Real box
SIFT

Correct match (%) 81 79 75

1st over 2nd best match 0.79 0.81 0.90
Fourier-polar 2D (calibrated) with Taylor Invariant

Correct match (%) 88 86 83

1st over 2nd best match 0.61 0.65 0.79
Fourier-Mellin 2D with Taylor Invariant

Correct match (%) 84 84 80

1st over 2nd best match 0.69 0.71 0.78
Fourier-polar 2D (calibrated) with Hessian Invariant

Correct match (%) 88 87 85

1st over 2nd best match 0.65 0.65 0.73
Fourier-Mellin 2D with Hessian Invariant

Correct match (%) 85 84 80

1st over 2nd best match 0.69 0.70 0.79

indicating that the auxiliary information from depth-map
improves features matching even for wide baseline views.
The resulting approach demonstrates the profitable
integration of depth-maps with acquired images to
strengthen matching capabilities and the proposed
descriptors hold much more information of the original
image patch with respect to more general descriptors.
Furthermore the computational complexity of the pro-
posed descriptors is also very close to state of the art
feature descriptors. Real examples have been obtained by
a low cost Kinect® device. Future work will try to extend
actual study to non-planar surfaces and investigate how
descriptors robustness can be strengthened to wide illu-
mination changes and to non-Lambertian surfaces.
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