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ABSTRACT
In this study we propose a set of semantic musical descriptors
that can be used for describing the timbre of violins. The pro-
posed semantic model follows a dimensional approach, which
allows us to express the degree of intensity of each descrip-
tor. A set of recordings of a number of violins (among them,
Stradivari, Amati and Guarnieri instruments) were annotated
with the descriptors through questionnaires. The recordings
are processed with deep learning techniques, to learn salient
features from the audio signal in an unsupervised fashion.
In this study we propose an automatic annotation procedure
based on a set of regression functions that model each seman-
tic descriptor using the learned set of features.

Index Terms— High-level music descriptor, violin, tim-
bre, sound quality

1. INTRODUCTION

The study of the timbral qualities of violins has been the sub-
ject of intense scientific investigation [1] for decades. How-
ever, the physical phenomena that are involved in the charac-
terization of their timbral quality are still far from being fully
understood [2].

Classical approaches to the study of sound proprieties of
musical instruments consists of extracting and analyzing a
large set of acoustic cues (Low-Level Features - LLF) [3].
Concerning the characterization of the sound quality violins,
in [4,5] the authors use a set of MPEG spectral and harmonic
descriptors, whereas in [6], the author uses long-term cepstral
coefficients. Such descriptors, however, are characterized by
a low level of abstraction. Musicians and instrument makers,
in fact, tend to describe the sound quality of their instruments
using terms coming from natural language (e.g. warm, bright,
...), and are therefore semantically rich [7]. This is why in our
work we focused on Semantic Timbral Descriptors, or High-
Level Features (HLF).
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Though semantic timbral descriptions are inherently sub-
jective, there exists a strong connection between sound de-
scription, sound perception and physics. Our brain, in fact,
processes stimuli from the auditory system in order to formu-
late a proper description. Understanding which aspects of the
sound influence our perception [8], however, is not an easy
task. For this reason, although some work has been done in
this direction [8–10], this connection is still not fully under-
stood. In the literature this is known as the semantic gap be-
tween Low-Level and High-Level Features. In the past few
year, the Music Information Retrieval (MIR) community has
focused a great deal on techniques to fill this gap, particularly
for the automatic semantic annotation of musical content [11].
In the area of musical acoustics, some studies have already
appeared in the literature, which focus on the semantic de-
scription of the violin timbre [12–14]. In [2], the correlation
between LLF and HLF was studied using a set of correla-
tion indexes. In that work, machine learning techniques were
employed for modeling Semantic Descriptors for automatic
annotation and retrieval. In particular, generative solutions
based on regression analysis were employed, which is an ap-
proach that was recently applied to Music Emotion Recogni-
tion [15–17] with remarkable results.

In order to build the model for semantic descriptors we
need to collect low-level and high-level representations of a
large set of instruments. In order to do so, we recorded nu-
merous violins, some of which were historical instruments
from the collection of the Museo del Violino in Cremona,
Italy (made by Antonio Stradivari, Giuseppe Guarnieri “del
Gesù” and Nicolò Amati). As far as the low-level representa-
tion is concerned, one typical approach consists of manually
selecting the most relevant (discriminant) features for the task
at hand [3, 8]. In this study, however, we followed a differ-
ent approach, in which the acoustic cues are “learnt” directly
from the available data using deep learning techniques [18].

Deep learning techniques are based on an inherently lay-
ered representation of the information, which enables the in-
ferral of features that describe the input data (learned fea-
tures) at various levels of abstraction, in an unsupervised fash-
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Fig. 1. Representation of a DBN, which is composed by sev-
eral stacked RBM.

ion. This is an approach whose effectiveness has been proven
in various tasks such as music emotion recognition [17] and
categorical audio classification [19]. The set of learned fea-
tures that are used for the modeling of HLFs follows a clas-
sical training-based approach. Machine learning regressions
allow us to adopt a dimensional representation for the seman-
tic descriptors, which express the degree of intensity of each
descriptor [8, 15, 20].

2. UNSUPERVISED FEATURE LEARNING

Deep learning [18] refers to a set of machine-learning tech-
niques that are based on multi-layer architectures to process
and represent input data with multiple levels of abstraction. It
aims at reproducing the way the human brain processes infor-
mation in a hierarchical fashion to address decisional prob-
lems decomposing them into simpler sub-problems.

In this study we use the Deep Belief Networks (DBN)
[18], which are composed by stacking layers of Restricted
Boltzman Machines (RBM) (Fig. 1), in order to provide a
hierarchical transformation of audio input data learned in an
unsupervised manner.

2.1. Restricted Boltzman Machine

An RBM is composed by two layers of neurons: an input
layer v and a hidden layer h. The neurons are fully connected
between different layers, whereas neurons of the same layer
are not connected.

The hidden layer h is trained in order to reconstruct the
input layer v by minimizing an energy-based function. More
formally, given a vector of input data v ∈ RM×1, a vector
h ∈ RH×1, we define the energy of a RBM configuration as

E(v,h) = −b>v − c>h− h>Wv, (1)

where W ∈ RH×M is the matrix of weights that connects
each input neuron to each hidden neuron, c ∈ RH×1 is a bias
term for the hidden neurons and b ∈ RM×1 is a bias term for
the visible neurons.

We can estimate the parameters of the RBM by minimiz-
ing the free energy function

F (v) = − log
∑

h∈Hv

e−E(v,h), (2)

where Hv is the set of hidden vector h that can be obtained
from the visible vector v. The optimal parameters are then
estimate by minimizing the free energy function over a set V
of training input vectors v :

{Ŵ, b̂, ĉ} = argmin
W,b,c

∏
v∈V

F (v). (3)

This minimization problem is typically solved using iterative
approaches [18].

The estimated parameters Ŵ and ĉ are finally used to
compute a representation h of new data as

h = T
(
Ŵv + ĉ

)
, (4)

where T is a non-linear operation applied element-wise.

2.2. Deep Belief Network

As it is shown in Fig. 1, in the DBN, each RBM receives as
input the hidden vector of the previous one. The RBMs are
sequentially trained from the bottom layer to the top layer.

Hence, given a generic input vector v and a DBN com-
posed by K layers of RBMs, the parameters Ŵ(k) and ĉ(k)

are estimated for each layer k = 1, ...,K and the k-th feature
vector h(k) ∈ RH(k)

is extracted as:

h(k) = T
(
Ŵ(k)h(k−1) + ĉ(k)

)
, (5)

where h(0) = v and in this study T is the sigmoid function
[18].

3. TIMBRE DESCRIPTION MODELING

In order to characterize the sound quality of violins, in this
study we selected a set of ND = 6 bipolar semantic de-
scriptors from [2]. In [2] the authors investigated the most
used terms by means of survey to a large set of violin mak-
ers. The selected descriptors are listed in Table 1. Each de-
scriptor represents an aspect of the sound quality and it is
modeled through a mono-dimensional spaces Di ⊆ R with
i = 1, ..., ND and a pair of terms t(l)i and t

(h)
i : a term and its

opposite. The terms represent the two extremes of the space.
Using this formalism, each instrument s is described

by the compact representation ys = [ωs,1, ωs,2, ..., ωs,ND
],
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Fig. 2. Overall scheme of the semantic descriptor modeling.

where ωi ∈ [0, 1] is the degree of the descriptiveness of the
i-th property. A low value of ωi, down to 0, means that the
violin can be properly described by t

(l)
i , whereas a higher

value, up to 1, represent that it can be described by t
(h)
i .

Each semantic descriptor is modeled following a classic
schema of a training-based technique. Figure 2 shows the
workflow of the method. The low-level characterization of
each recording is provided through the extraction of the set
of learned LLFs. Semantic descriptors are modeled through
a set of generative models (regressors) that are trained on the
high dimensional learned feature space computed on a train-
ing dataset of recordings.

The algorithm is validated by splitting the dataset of
recordings of the violins S into the training set Strain and the
test set Stest.

3.1. Feature Extraction

Each audio recording xs with s ∈ S is divided into a set of
F overlapping frames xs,f of fixed length in time, with f =
1, ..., F . The log-magnitude representations of the frequency
spectrum of the frames are provided:

vs,f = log10(|F(xs,f )|), (6)

where F is the Fourier transform. In the training phase, the
set of vz,f for z ∈ Strain is used to estimate the parameters of
the network {Ŵ(k), ĉ(k)} (eq. 3). The estimated parameters
are used to provide the learned representation h

(k)
s,f ∈ RH(k)

for either training and test sets, at each k-th abstraction layer.
In order to obtain a more compact representation that is

more robust to rapid variation, the feature vectors are aver-
aged over sliding overlapping 5s long segments h

(k)
s,a where

a = 1, ..., A is the index of the sliding segment.

3.2. Content-based music description

Regression analysis can be used to predict a real value from
a set of observed variable by projecting a multidimensional
feature space into a novel continuous space with a limited
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Dark Bright Not Deep Deep Not Full Full
Hard Soft Not Warm Warm Harsh Sweet

Table 1. Set of bipolar descriptors for violin timbre descrip-
tion.

number of dimensions [15]. In our case, for each semantic
descriptor, the LLF space is mapped into a novel conceptual
one-dimensional space of real values (HLF).

Formally, given (h
(k)
s,a, ωs), s ∈ Strain a set of Ns pairs,

where h
(k)
s,a is a generic learned LLF vector and ωs is the real

HLF value to predict, in the training phase the regressor r(·) :
RH(k) → R aims at finding the hypersurface that best fits the
data.

Whereas, in the test phase, generated models are used
to predict the real value label ω̂s on a set of previously
unseen recordings vq,f for q ∈ Stest. The overall de-
scriptions for the recordings in Stest is provided as ŷq,a =

[r1(h
(k)
s,a), ..., rND

(h
(k)
s,a)], where ri is the model for the i-th

descriptor.
Since it is not clear the correlation between LLF and

HLF, in order to discover the most appropriate method, in
this study we use a set of regression functions: linear re-
gression (LR) [21]; ridge regression (RR) [21]; polynomial
regression (PR) [21]; support vector regression (SVR) [16];
gradient-based boosting regression (GBR) [22]; ada boosting
regression (ABR) [23].

4. EXPERIMENTS AND RESULTS

We collected recordings for 28 violins to compose the data
set: thirteen historical violins (three Amati, two Guarnieri del
Gesú and eight Stradivari) and fifteen modern violins from
the collection of the Museo del Violino and of the Stradivari
International School of Lutherie, based in Cremona, Italy. In-
struments were played by a unique professional musician in
an acoustic dry room, in order to be independent on the acous-
tic environment and the executions were recorded at a sample
rate of 44,100 Hz and bit rate of 16 bits.

We used 20 randomly selected recordings to form the
Strain and the remaining 8 to compose the test set Stest. The
recordings xs were divided in frames xs,f with the duration
of 50 milliseconds with an overlap of 50%. We implemented
a three-layers DBN (K = 3) with 50 neurons for each layer
using Theano python library [24]. We used a pre-training
learning rate of 10−6 and 100 epochs (i.e., iterations) for each
layer. We averaged the learned features using the procedure
introduced in section 3.1. The final corpus is 700 segments,
500 compose the training set and 200 compose the test set.

As far as HLFs are concerned, we collected annotations
for each instrument by means of a questionnaire that was pro-
posed to four professional violin makers. The testers were



Descriptor Result r k RMSE R2

Bright - Best RR 1 0.13 0.15
Dark Worst LR All 0.16 -0.33
Warm Best ABR 2 0.13 0.35
Not Warm Worst LR All 0.20 -0.58
Sweet Best ABR All 0.13 0.42
Harsh Worst LR All 0.22 -0.79
Full Best ABR 2 0.13 0.49
Not Full Worst LR All 0.25 -0.76
Soft Best ABR 3 0.09 0.56
Hard Worst LR All 0.17 -1
Deep Best ABR 1 0.14 0.28
Not Deep Worst LR All 0.24 -1.08

Table 2. Best and worst results of the regression in the test set
Stest. Information about the regression function used and the
layer of the DBN are also provided.

asked to use the set of descriptors listed in Table 1 to anno-
tated the instruments using a 11-point scale ranging from 0
(total prevalence of t(l)i ) to 10 (total prevalence of t(h)i ). The
annotations were averaged over subjects and scaled between
0 and 1.

4.1. Results on automatic annotation

We evaluate the performance of the proposed regression
approach in terms of R2 ∈ (−∞, 1] index [21], which
is a standard metric that measures the accuracy of the re-
gression model, and in terms of Root Mean Squared Error
(RMSE). Results are presented as the average of 5-fold cross-
validation. Training and test sets are randomly populated. We
considered either the LLF characterization provided by each
layer of the DBN and the one provided by the grouping of all
the layers.

For reason of space, in Table 2 we present only the most
representative results which are the best and the worst per-
formance for each descriptor. The results highlight that Ada-
Boost regression reached the best performance in five out of
six cases, whereas the Linear regression is the worst predic-
tion model for all the descriptors. This trend is confirmed
by the Figure 3, which shows the best performance for each
prediction model and descriptor. As it can be noticed, ADA-
Boost, Gradient Boost and Ridge regression outperform the
other methods. We think that is mainly due to the feature
selection that these techniques embody. In fact the unsuper-
vised approach to features learning aims at represent the in-
put as most general as possible and a further feature selection
stage, tuned on the classification task, can radically improve
the performance.

From Table 2 we can also noticed that different descrip-
tors are better modeled by a different level of the DBN: Bright
/ Dark is better modeled with the features learned in the first
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Fig. 3. Best performance for each descriptor for each predic-
tion model in terms of R2

layer, whereas Sweet / Harsh descriptor is better modeled
with the collection of features learned at all the levels. In-
tuitively, there is a connection between these results and the
level of abstraction of the descriptors. Bright / Dark, in fact,
can be easily related to the behavior of some spectral LLFs.
Instead the meaning of Sweet / Harsh tends to be more ab-
stract.

The different performance among the descriptors, we be-
lieve, is mainly due to the consensus of the semantics of the
terms in the violin makers community. In the community, in
fact, the meaning of Deep is not as much clear as Hard/Soft is.
This makes the annotations less reliable and a larger dataset
of recordings and annotation would be required. However,
the overall accuracy of the method is promising.

5. CONCLUSIONS AND FUTURE WORKS

In this study we presented a method for modeling a set of
6 bipolar semantic descriptors for the sound quality of vio-
lins. Through a set of regression functions, the method builds
a model that predicts real values (HLF) from a large set of
LLFs. LLFs are learnt by exploiting the unsupervised Deep
Belief Network method. The models that we obtained turn
out to be quite accurate over a large set of descriptors. It is
worth emphasising the fact that the learned features have been
obtained through of a fully unsupervised approach and better
results can be achieved with a further fine-tuning step.

Future work will be devoted to enriching the dataset of
violin recordings and to exploiting other deep learning archi-
tectures, as well as fine-tuning the algorithms.
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