Data-Level Parallelism in SIMD and Vector Architectures
Current Trends in Architecture

• Cannot continue to leverage Instruction-Level parallelism (ILP)

• Beyond ILP: new models for managing parallelism:
 – Data-level parallelism (DLP)
 – Thread-level parallelism (TLP)
 – Request-level parallelism (RLP)
ILP, DLP

• Instead of going in the direction of complex out-of-order ILP processor
• An in-order vector processor can achieve the same performance, or more, by exploiting DLP (Data Level Parallelism)
 – With more energy efficiency
Flynn’s Taxonomy

- **SISD** Single instruction stream, single data stream
 - uniprocessors (including ILP processors)

- **SIMD** Single instruction stream, multiple data streams
 - Vector architectures
 - Multimedia extensions
 - Graphics processor units

- **MISD** Multiple instruction streams, single data stream
 - No commercial implementation

- **MIMD** Multiple instruction streams, multiple data streams
 - Tightly-coupled MIMD (thread-level parallelism)
 - Loosely-coupled MIMD (request-level parallelism)
SIMD and Vector Architectures
Introduction to SIMD

- SIMD architectures can exploit significant data-level parallelism for:
 - Matrix-oriented scientific computing
 - Media-oriented image and sound processors
- SIMD is more energy efficient than MIMD
 - Only needs to fetch one instruction per data operation
 - Makes SIMD attractive for personal mobile devices
- SIMD allows programmer to continue to think sequentially (compared to MIMD) and achieve parallel speedups.
SIMD Architecture

- Central controller broadcasts instructions to multiple processing elements (PEs)

- Only requires one controller for whole array
- Only requires storage for one copy of program
- All computations fully synchronized
Three variations of SIMD Machines

1. Vector architectures
2. SIMD extensions:
 - x86 multimedia SIMD extensions: MMX 1996, SSE (Streaming SIMD Extension), AVX (Advanced Vector Extension)
3. Graphics Processor Units (GPUs)
Vector Architectures

• Basic idea:
 – Load **sets** of data elements into **“vector registers”**
 – Operate on those registers
 – Disperse the results back into memory

• A single instruction operates on **vectors of data**
 – Synchronized units: **single Program Counter**
 – Which results in dozens of register-to-register operations
 – Used to hide memory latency (memory latency occurs one per
 vector load/store vs. one per element load/store).
 – Leverage memory bandwidth
Vector Architectures

From Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory
Vector Processing

• Vector processors have high-level operations that work on linear arrays of numbers: "vectors"

SCALAR
(1 operation)

\[r1 \rightarrow r2 \rightarrow r3 \]

(add r3, r1, r2)

VECTOR
(N operations)

\[v1 \rightarrow v2 \rightarrow v3 \]

(add.vv v3, v1, v2)
Properties of Vector Processors

• Each result **independent** of previous result
 => long pipeline, compiler ensures no dependencies
 => high clock rate

• Vector instructions access memory with known pattern
 => highly interleaved memory
 => amortize memory latency of over 64 elements
 => no (data) caches required! (Do use instruction cache)

• Reduces branches and branch problems in pipelines

• Single vector instruction implies lots of work (loop)
 => fewer instruction fetches
Styles of Vector Architectures

- **Memory-memory vector processors**: all vector operations are memory to memory
- **Vector-register processors**: all vector operations between vector registers (except load and store)
 - Vector equivalent of load-store scalar architectures
 - Includes all vector machines since late 1980s: Cray, Convex, Fujitsu, Hitachi, NEC
Components of Vector Processors

- **Vector Register**: fixed length bank holding a single vector
 - has at least 2 read and 1 write ports
 - typically 8-32 vector registers, each holding 64-128 bit elements

- **Vector Functional Units (FUs)**: fully pipelined, start new operation every clock
 - typically 4 to 8 FUs: FP add, FP mult, FP reciprocal (1/X), integer add, logical, shift; may have multiple of same unit

- **Vector Load-Store Units (LSUs)**: fully pipelined unit to load or store a vector; may have multiple LSUs

- **Scalar Registers**: single element for FP scalar or address

- **Cross-bar** to connect FUs, LSUs, registers
Scalar Registers vs Vector Registers

Scalar Registers
- Each register holds a 32-bit element

Vector Registers
- Each vector register holds VLRMAX elements, 32-bit per element

16 Scalar Registers:
each register holds a 32-bit element

16 Vector Registers:
each vector register holds VLRMAX elements, 32-bit per element
Vector Arithmetic Instructions

ADDV v3, v1, v2

Example architecture: VMIPS

- Loosely based on Cray-1
- **Vector registers**
 - 8 registers. Each register holds a 64-element, 64 bits/element vector
 - Register file has (at least) 16 read ports and 8 write ports
- **Vector functional units**
 - Fully pipelined so they can start a new operation every cycle
- **Vector load-store unit**
 - Fully pipelined, one word per clock cycle after initial memory latency
- **Scalar registers**
 - 32 general-purpose registers
 - 32 floating-point registers
• The basic structure of a vector architecture, VMIPS.

• This processor has a scalar architecture just like MIPS.

• There are also eight 64-element vector registers, and all the functional units are vector functional units.

• The vector and scalar registers have a significant number of read and write ports.
<table>
<thead>
<tr>
<th>Instruction</th>
<th>Operands</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDVV.D</td>
<td>V1, V2, V3</td>
<td>Add elements of V2 and V3, then put each result in V1.</td>
</tr>
<tr>
<td>ADDVS.D</td>
<td>V1, V2, F0</td>
<td>Add F0 to each element of V2, then put each result in V1.</td>
</tr>
<tr>
<td>SUBVV.D</td>
<td>V1, V2, V3</td>
<td>Subtract elements of V3 from V2, then put each result in V1.</td>
</tr>
<tr>
<td>SUBVS.D</td>
<td>V1, V2, F0</td>
<td>Subtract F0 from elements of V2, then put each result in V1.</td>
</tr>
<tr>
<td>SUBSV.D</td>
<td>V1, F0, V2</td>
<td>Subtract elements of V2 from F0, then put each result in V1.</td>
</tr>
<tr>
<td>MULVV.D</td>
<td>V1, V2, V3</td>
<td>Multiply elements of V2 and V3, then put each result in V1.</td>
</tr>
<tr>
<td>MULVS.D</td>
<td>V1, V2, F0</td>
<td>Multiply each element of V2 by F0, then put each result in V1.</td>
</tr>
<tr>
<td>DIVVV.D</td>
<td>V1, V2, V3</td>
<td>Divide elements of V2 by V3, then put each result in V1.</td>
</tr>
<tr>
<td>DIVVS.D</td>
<td>V1, V2, F0</td>
<td>Divide elements of V2 by F0, then put each result in V1.</td>
</tr>
<tr>
<td>DIVSV.D</td>
<td>V1, F0, V2</td>
<td>Divide F0 by elements of V2, then put each result in V1.</td>
</tr>
<tr>
<td>LV</td>
<td>V1, R1</td>
<td>Load vector register V1 from memory starting at address R1.</td>
</tr>
<tr>
<td>SV</td>
<td>R1, V1</td>
<td>Store vector register V1 into memory starting at address R1.</td>
</tr>
<tr>
<td>LVWS</td>
<td>V1, (R1, R2)</td>
<td>Load V1 from address at R1 with stride in R2 (i.e., R1 + i \times R2).</td>
</tr>
<tr>
<td>SVWS</td>
<td>(R1, R2), V1</td>
<td>Store V1 to address at R1 with stride in R2 (i.e., R1 + i \times R2).</td>
</tr>
<tr>
<td>LVI</td>
<td>V1, (R1+V2)</td>
<td>Load V1 with vector whose elements are at R1 + V2(i) (i.e., V2 is an index).</td>
</tr>
<tr>
<td>SVI</td>
<td>(R1+V2), V1</td>
<td>Store V1 to vector whose elements are at R1 + V2(i) (i.e., V2 is an index).</td>
</tr>
<tr>
<td>CVI</td>
<td>V1, R1</td>
<td>Create an index vector by storing the values 0, 1 \times R1, 2 \times R1, \ldots, 63 \times R1 into V1.</td>
</tr>
<tr>
<td>S--VV.D</td>
<td>V1, V2</td>
<td>Compare the elements (EQ, NE, GT, LT, GE, LE) in V1 and V2. If condition is true, put a 1 in the corresponding bit vector; otherwise put 0. Put resulting bit vector in vector-mask register (VM). The instruction S--VS.D performs the same compare but using a scalar value as one operand.</td>
</tr>
<tr>
<td>S--VS.D</td>
<td>V1, F0</td>
<td></td>
</tr>
<tr>
<td>POP</td>
<td>R1, VM</td>
<td>Count the 1s in vector-mask register VM and store count in R1.</td>
</tr>
<tr>
<td>CVM</td>
<td></td>
<td>Set the vector-mask register to all 1s.</td>
</tr>
<tr>
<td>MTC1</td>
<td>VLR, R1</td>
<td>Move contents of R1 to vector-length register VLR.</td>
</tr>
<tr>
<td>MFC1</td>
<td>R1, VLR</td>
<td>Move the contents of vector-length register VLR to R1.</td>
</tr>
<tr>
<td>MVTM</td>
<td>VM, F0</td>
<td>Move contents of F0 to vector-mask register VM.</td>
</tr>
<tr>
<td>MVFM</td>
<td>F0, VM</td>
<td>Move contents of vector-mask register VM to F0.</td>
</tr>
</tbody>
</table>

Figure 4.3 The VMIPS vector instructions, showing only the double-precision floating-point operations. In
Accommodating varying data sizes

• Vector processors are good for several applications (scientific applications, but also media applications)
 – Because they can adapt to several width: a vector size can be seen as 64 64-bit elements, or 128 32-bit elements etc.
DAXPY operation

- DAXPY operation, in scalar vs vector MIPS
- DAXPY stands for: double precision a X plus Y
 - i.e. $Y = a \times X + Y$

```c
for (i=0; i<64, i++)
{
    Y[i]=a*X[i]+Y[i];
}
```
Scalar version of DAXPY

(assume that Rx and Ry are holding the addresses of X and Y)

L.D F0, a ; load scalar a
DADDIU R4, Rx, #512 ; last address to load

Loop:
L.D F2, 0(Rx) ; load X[i]
MUL.D F2, F2, F0 ; a * X[i]
L.D F4, 0(Ry) ; load Y[i]
ADD.D F4, F4, F2 ; a * X[i] + Y[i]
S.D F4, 0(Ry) ; store into Y[i]
DADDIU Rx, Rx, #8 ; increment index to X
DADDIU Ry, Ry, #8 ; increment index to Y
DSUBU R20, R4, Rx ; compute bound
BNEZ R20, Loop ; check if done
Scalar version of DAXPY

(assume that Rx and Ry are holding the addresses of X and Y)

L.D F0, a ; load scalar a
DADDIU R4, Rx, #512 ; last address to load
Loop: L.D F2, 0(Rx) ; load X[i]
 MUL.D F2, F2, F0
 L.D F4, 0(Ry)
 ADD.D F4, F4, F2
 S.D F4, 0(Ry)
 DADDIU Rx, Rx, #8
 DADDIU Ry, Ry, #8 ; increment index to Y
 DSUBU R20, R4, Rx ; compute bound
 BNEZ R20, Loop ; check if done

Scalar version of DAXPY:
8 instructions per iteration
=> (64 x 9) + 2 = 578 instructions per loop
plus stalls
Analysis of scalar version (1)

Loop:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.D F2, 0(Rx)</td>
<td>load $X[i]$</td>
</tr>
<tr>
<td>MUL.D F2, F2, F0</td>
<td>$a \times X[i]$</td>
</tr>
<tr>
<td>L.D F4, 0(Ry)</td>
<td>load $Y[i]$</td>
</tr>
<tr>
<td>ADD.D F4, F4, F2</td>
<td>$a \times X[i] + Y[i]$</td>
</tr>
<tr>
<td>S.D F4, 0(Ry)</td>
<td>store into $Y[i]$</td>
</tr>
<tr>
<td>DADDIU Rx, Rx, #8</td>
<td>increment index to X</td>
</tr>
<tr>
<td>DADDIU Ry, Ry, #8</td>
<td>increment index to Y</td>
</tr>
<tr>
<td>DSUBU R20, R4, Rx</td>
<td>compute bound</td>
</tr>
<tr>
<td>BNEZ R20, Loop</td>
<td>check if done</td>
</tr>
</tbody>
</table>
Analysis of scalar version (2)

Scalar version stalls at EVERY iteration

\[
\begin{align*}
\text{stall} & \quad \text{L.D} \quad \text{F2, 0(Rx)} \quad ; \text{load } X[i] \\
\quad & \quad \text{MUL.D} \quad \text{F2, F2, F0} \quad ; \text{a } \ast X[i] \\
\text{stall} & \quad \text{L.D} \quad \text{F4, 0(Ry)} \quad ; \text{load } Y[i] \\
\quad & \quad \text{ADD.D} \quad \text{F4, F4, F2} \quad ; \text{a } \ast X[i] + Y[i] \\
\text{stall} & \quad \text{S.D} \quad \text{F4, 9(Ry)} \quad ; \text{store into } Y[i]
\end{align*}
\]
VMIPS Instructions

- **ADDVV.D**: add two vectors
- **MULVS.D**: multiply vector to a scalar
- **LV/SV**: vector load and vector store from memory address
- Vector processor version of DAXPY:

 L.D F0,a ; load scalar a
 LV V1,Rx ; load vector X
 MULVS.D V2,V1,F0 ; vector-scalar multiply
 LV V3,Ry ; load vector Y
 ADDVVV.D V4,V2,V3 ; add two vectors
 SV Ry,V4 ; store the result

- **Requires 6 instructions per loop vs. almost 600 for MIPS: greatly decreased! But how many clock cycles?**
Analysis of advantages vs. scalar version

- Very compact code: it requires only 6 vector instructions per loop!
- No branches anymore!
- The scalar version can try to get a similar effect by loop unrolling, but it cannot get the same instruction count decrease.
- Pipeline stalls greatly decreased in the vector version:
 - It must stall ONLY for THE FIRST vector element; after that, results can come out every clock cycle
Operation Chaining

- Results from FU forwarded to next FU in the chain
- Concept of forwarding extended to vector registers:
 - A vector operation can start as soon as the individual elements of its vector source operand become available
 - Even though a pair of operations depend on one another, chaining allows the operations to proceed in parallel on separate elements of the vector
Operation Chaining (2)

- **Without chaining:** must wait for last element of result to be written before starting dependent instruction

- **With chaining:** a dependent operation can start as soon as the individual elements of its vector source operand become available

Vector Execution Time

• Execution time depends on three factors:
 – Length of operand vectors (number of elements)
 – Structural hazards
 – Data dependencies

• VMIPS functional units consume one element per clock cycle
 – So, the execution time of one vector instruction is approximately given by the vector length
Convoys

• Simplification: to introduce the notion of *convoy*
 – Set of vector instructions that could potentially execute together (no structural hazards)
• Sequences with read-after-write dependency hazards can be in the same convoy via *chaining*
Chimes

- **Chime** is a timing metric corresponding to the unit of time to execute one convoy
 - m convoys execute in m chimes
 - Simply stated: for a vector length of n, and m convoys in a program, $n \times m$ clock cycles are required
 - Chime approximation ignores some processor-specific overheads
DAXPY Example

LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum

Let assume to have 1 LV/SV unit:

Convoys:
1 LV MULVS.D (chaining)
2 LV ADDVV.D (chaining)
3 SV (struct. hazards with 2nd LV)

3 convoys (3 chimes); 2 FP ops per result; 1.5 cycles per FLOP

For 64 element vectors, requires 64 x 3 = 192 clock cycles instead of about 600 cycles for scalar MIPS
Multiple Lanes

- Instead of generating an element per cycle in one lane, spread the elements of the two vector operands into multiple lanes to improve vector performance.

SINGLE ADD PIPELINE:
- 1 add per cycle
- 64 cycles for a vector of 64 elements

FOUR ADDs PIPELINE:
- 4 adds per cycle
- 16 cycles for a vector of 64 elements
Multiple Lanes

Vector Unit with 4 lanes

Vector registers are divided across 4 lanes
Vector Length Control

• The *Maximum Vector Length (MVL)* is the physical length of vector registers in a machine (64 in our VMIPS example)

• What do you do when the vector length in a program is not exactly 64?
 – Vector length *smaller* than 64
 – Vector length *unknown* at compile time and maybe *greater* than MVL
Vector length smaller than 64

for (i=0; i<63; i=i+1)
 Y[i] = a * X[i] + Y[i];

for (i=0; i<31; i=i+1)
 Y[i] = a * X[i] + Y[i];

- There is a special register, called vector-length register (VLR).
- The VLR controls the length of any vector operation (including vector load/store).
- It can be set to any value smaller than the MVL (64).
Vector length unknown at compile time

Restructure the code using a technique called *strip mining*:

- Sort of loop unrolling where the length of first segment is the remainder and all subsequent segments are of length MVL.

```c
for (i=0; i<N; i++)
    C[i] = A[i]+B[i];
```

Vector length unknown at compile time

for (i=0; i<n; i=i+1)
 Y[i]=a * X[i] + Y[i];

Restructure the code using a technique called *strip mining*:

- Code generation technique such that each vector operation is done for a size less than or equal to MVL
- Sort of loop unrolling where the length of the first segment is \((n \mod MVL) \) and all subsequent segments are of length MVL

<table>
<thead>
<tr>
<th>Value of (j)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>\ldots</th>
<th>\ldots</th>
<th>(n/MVL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<m>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< MVL ></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>< MVL ></td>
</tr>
<tr>
<td>Range of (i)</td>
<td>0</td>
<td>(m)</td>
<td>((m+MVL))</td>
<td>((m+2 \times MVL))</td>
<td>\ldots</td>
<td>\ldots</td>
<td>((n-MVL))</td>
</tr>
<tr>
<td>(\cdots)</td>
</tr>
<tr>
<td>(m-1)</td>
<td>((m-1))</td>
<td>((m-1))</td>
<td>((m-1))</td>
<td>((m-1))</td>
<td>\ldots</td>
<td>\ldots</td>
<td>(n-1)</td>
</tr>
<tr>
<td></td>
<td>(+MVL)</td>
<td>(+2 \times MVL)</td>
<td>(+3 \times MVL)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td>(\cdots)</td>
<td></td>
</tr>
</tbody>
</table>
Vector Mask Registers

for (i = 0; i < 64; i=i+1)
 if (X[i] != 0)
 X[i] = X[i] – Y[i];

Control Dependence in a loop
This loop cannot normally be vectorized because of the if clause inside it

- Use vector mask register to “disable” some elements:
- The vector-mask control uses a Boolean vector of length MVL to control the execution of a vector instruction
- When vector mask registers are enabled, any vector instruction operates ONLY on the vector elements whose corresponding masks bits are set to 1
Vector Mask Registers

```plaintext
for (i = 0; i < 64; i=i+1)
  if (X[i] != 0)
    X[i] = X[i] – Y[i];
```

This loop cannot normally be vectorized because of the if clause inside it

Use vector mask register to “disable” elements:

- **LV** **V1,Rx** ;load vector X into V1
- **LV** **V2,Ry** ;load vector Y into V2
- **L.D** **F0,#0** ;load FP zero into F0
- **SNEVS.D** **V1,F0** ;sets VM(i) to 1 if V1(i)!=F0
- **SUBVV.D** **V1,V1,V2** ;subtract under vector mask
- **SV** **Rx,V1** ;store the result in X

The cycles for non-executed operation elements are lost
But the loop can still be vectorized!
Stride

• How do you do with non-adjacent memory elements?
• The **stride** is the distance separating memory elements that are to be gathered into a single register.

![Diagram of Vector Load and Register](image)

- LVWS V1, (r1, r2)

- When a matrix is allocated in memory, it is linearized and laid out in row-major order in C => the elements in the columns are not-adjacent in memory
Stride

- When the elements of a matrix in the inner loop are accessed by column => they are separated in memory by a stride equal to the row size times 8 bytes per entry
- We need an instruction LVWS to load elements of a vector that are non-adjacent in memory from address R1 with stride R2:

 \[\text{LVWS } V1, (R1, R2) \quad ; \quad V1 \leftarrow M[R1 + i*R2] \]

- Example: \(\text{LVWS } V1, (C, 100) \quad ; \quad V1 \leftarrow M[C + i*100] \)

 while \(\text{LV } V2, B \quad ; \quad V2 \leftarrow M[B] \)
Stride

• Consider:

 \[
 \text{for } (i = 0; i < 100; i=i+1) \\
 \text{for } (j = 0; j < 100; j=j+1) \\
 \quad A[i][j] = 0.0; \quad \text{for } (k = 0; k < 100; k=k+1) \\
 \quad A[i][j] = A[i][j] + B[i][k] \times D[k][j]; \\
 \]

• Must vectorize multiplication of rows of B with columns of D
• Use non-unit stride for columns of D
• Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:
 – \#banks / LCM(stride, \#banks) < bank busy time
Scatter-Gather

• Primary mechanism to support sparse matrices using index vectors. Consider:

\[
\text{for } (i = 0; i < n; i = i+1) \\
A[K[i]] = A[K[i]] + C[M[i]];
\]

• Use index vector K and M to indicate the nonzero elements of A and C (A and C must have the same number of nonzero elements).

LV \quad V_k, R_k \quad ;\text{load } K

LVI \quad V_a, (R_a+V_k) \quad ;\text{load } A[K[]]

LV \quad V_m, R_m \quad ;\text{load } M

LVI \quad V_c, (R_c+V_m) \quad ;\text{load } C[M[]]

ADDVV.D \quad V_a, V_a, V_c \quad ;\text{add them}

SVI \quad (R_a+V_k), V_a \quad ;\text{store } A[K[]]
SIMD Instruction Set Extensions

• Multimedia applications operate on data types narrower than the native word size
 – Example: disconnect carry chains to “partition” adder

• Limitations, compared to vector instructions:
 – Number of data operands encoded into op code
 – No sophisticated addressing modes (strided, scatter-gather)
 – No mask registers
SIMD Implementations

• Implementations:
 – Intel MMX (1996)
 • Eight 8-bit integer ops or four 16-bit integer ops
 – Streaming SIMD Extensions (SSE) (1999)
 • Eight 16-bit integer ops
 • Four 32-bit integer/fp ops or two 64-bit integer/fp ops
 – Advanced Vector Extensions (2010)
 • Four 64-bit integer/fp ops
 – Operands must be consecutive and aligned memory locations