
Chapter 3
Optimization Algorithms for Design Space
Exploration of Embedded Systems

Enrico Rigoni, Carlos Kavka, Alessandro Turco, Gianluca Palermo,
Cristina Silvano, Vittorio Zaccaria, and Giovanni Mariani

Abstract This chapter is dedicated to the optimization algorithms developed in the
MULTICUBE project and to their surrounding environment. Two software design
space exploration (DSE) tools host the algorithms: Multicube Explorer and mod-
eFRONTIER. The description of the proposed algorithms is the central part of the
chapter. The focus will be on newly developed algorithms and on ad-hoc extensions
of existing techniques in order to face with discrete and categorical design space
parameters that are very common when working with embedded systems design.
This chapter will also provide some fundamental guidelines to build a strategy for
testing the performance and accuracy of such algorithms. The aim is mainly to build
confidence in optimization techniques, rather than to simply compare one algorithm
versus another one. The “no-free-lunch theorem for optimization” has to be taken
into consideration and therefore the analysis will look forward to robustness and
industrial reliability of the results.

3.1 Introduction

The optimization problems emerging in the design of embedded systems—and in
particular those addressed within the MULTICUBE project— are multi-objective and
characterized by the fact that all configuration parameters are discrete and possibly
categorical.

Having more than one objective to be optimized (maximized or minimized) im-
plies that the outcome of the optimization process is not a single solution but a set
of solutions. This set of solutions, which is called the Pareto front, represents the
trade-offs between the different (and possibly conflicting) objectives. A design is a
Pareto design (or point) if it is not possible to improve one of its objective values
without deteriorating at least another one, like in Fig. 3.1.

A. Turco (�)
ESTECO, Trieste, Italy
e-mail: alessandro.turco@esteco.com

C. Silvano (eds.), Multi-objective Design Space Exploration of 51
Multiprocessor SoC Architectures,
DOI 10.1007/978-1-4419-8837-9_3, © Springer Science+Business Media, LLC 2011

52 E. Rigoni et al.

Fig. 3.1 An example of
Pareto-dominance in a
two-objective minimization
problem. The circles represent
non-dominated points, while
squares are dominated

0.60

0.50

0.40

0.30

0.20
0.10 0.20 0.30 0.40

Minimize x

M
in

im
iz

e
y

In problems with discrete categorical configuration parameters, the types of the
input variables are discrete ranges and might also be unordered collections, meaning
that optimization methods which assume an order relation cannot be used profitably.
For example, the number of processors on the platform is a discrete ordered variable
since it is an natural number. Instead, the type of branch predictor to be used (e.g.,
static, two-level adaptive, etc.) is a categorical variable since an ordering between
the different instances cannot be defined.

The evaluation of the objective values for the designs selected for exploration
is usually performed through a simulator during the optimization phase. Simulators
accuracy depends on their level of abstraction which is inversely proportional to their
computational complexity. A manual procedure may include additional delays to the
already long simulation time.

Two examples of automatic optimization frameworks will be considered in this
chapter. The first framework is the open source Design Space Exploration (DSE)
Multicube Explorer. It has been initially conceived for the kind of problems dis-
cussed above. Throughout this chapter, a description of its optimization algorithms
introduced within the framework will be provided.

The second tool is modeFRONTIER, a commercial software which has been
widely used worldwide for more than ten years in different domains like aerospace,
appliances, pharmaceutics, civil engineering, manufacturing, marine multi-body de-
sign, crash, structural, vibro-acoustics and turbo-machinery.All these domains define
multi-objective optimization problems, but in continuous or mixed (continuous and
discrete) domains, not in complete discrete and possibly categorical domains like the
SoC design problems. Due to this reason, an initial re-target process to add support
for categorical variables to modeFRONTIER has been carried out and the actual
release of the software contains this work as well as the algorithms developed within
the project.

The automatic design space exploration performed by one of these two tools is
governed by an optimization algorithm. The algorithm is responsible for choosing the
new configurations which have to be simulated and for analyzing the results obtained.
The optimization phase can be preceded by a Design Of Experiments (DOE) study
and it can be followed by some Post Processing analysis.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 53

The optimization algorithms implement the mathematical strategies, or heuris-
tics, which are designed in order to obtain a good approximation of the actual Pareto
frontier. Real-world optimization problem are solved through rigorously proven con-
verging methodologies only in an extremely few instances, since the high number of
input parameters and the low smoothness of objective functions involved limit the
possible usage of classical algorithms. Therefore a wide catalogue of heuristics have
been designed trying to achieve a good balance between exploration of the design
space and exploitation of the information carried by the best solutions found.

The Design of Experiments (DOE) usually precedes the optimization stage. The
aim of a DOE is to test specific configurations regardless the objectives of the op-
timization run but rather considering their pattern in the input parameters space. It
provides an a priori exploration and analysis which is of primary importance when
a statistical analysis has to be performed: for example, a reduced factorial DOE can
be the basis for a principal components analysis, since it avoids correlations among
input parameters and therefore it highlights input-output relationships. Moreover,
almost all optimization algorithms require a starting population of designs to be con-
sidered first and the DOE can provide it, eventually generating random input values
if no other preference has emerged yet.

The Post Processing analysis could represent the starting point for a new attempt
of optimization, but at the same time it conveys a deep insight into the problem
structure. Starting from a correlation matrix, for example, it is possible to recognize
if some objectives are conflicting or if they are correlated and there is no need to
involve all of them in the optimization process.

A comprehensive list of publication on this topic is out of the aim of this introduc-
tion. The description of the algorithms listed in Sect. 3.3 will include the references
necessary to understand them. The theoretical structure of multi-objective optimiza-
tion as well as classical methods are deeply investigated in the book by Miettinen [10].
The paper by Erbas et al. [5] describes in details a MPSoC design problem solved
with genetic algorithms (GA) and it introduces important concepts like evaluation
metrics and repair mechanisms.

The innovation of the algorithms developed within the MULTICUBE project can-
not be correctly evaluated without considering the whole picture: it is mathematically
proven that it is not possible to rank optimization algorithms on the basis of their
performances over all possible problems. On the contrary, it is possible to specialize
an optimization strategy in order to solve “better” (later in this chapter the concept of
quality for a multi-objective solution set will be addressed more precisely) a defined
class of problems. The work done by MULTICUBE partners results in a very satis-
factory trade-off between applicability and accuracy which is the true achievement
of the project. Not only algorithms contribute to this result and this is the reason why
this chapter will introduce also some feature of the software framework containing
them and also an anticipation of the validation procedure necessary for an industrial
knowledge transfer.

This chapter is organized as follows: Sect. 4.2 presents the problem description
and the software framework while Sect. 4.3 introduces the design space exploration
algorithms used throughout the project. Section 4.4 presents a detailed descriptions
of validation strategy while Sect. 4.5 summarizes the main content of this chapter.

54 E. Rigoni et al.

3.2 Problem Description and Software Framework

To define an optimization problem it is necessary to identify the input parameters of
the problem, which constitute the Design Space, and the output parameters, often
called metrics. Among the output parameters some objectives must be selected in
order to build the Objective Space. Other outputs can be considered as constraints, but
also input parameters can be combined in order to obtain the desired constraints. A
typical example is the couple of variables processor type-cache size: some processors
may support only certain values of cache size and a constraint must be added to the
problem to enforce this requirement.

The output values associated to a given configuration of input parameters are
obtained through a simulator. The choice of which designs have to be explored is
responsibility of the optimization algorithm and of the DOE designer for what con-
cerns the starting points. The whole structure comprising inputs, outputs, simulator,
algorithm is called workflow.

One of the first achievements of the MULTICUBE project is the definition of
a common framework for generating a complete workflow using a standard XML
format. Both DSE tools, Multicube Explorer and modeFRONTIER, can accept the
same configuration file and they are able to run optimization starting from the infor-
mation listed in it. Specific tags have been created in order to specify input and output
values, a precise syntax is used to define constraints and the path to the executable
simulator is included.

The communication between the optimization algorithm and the simulator is per-
formed through XML file as well. The DSE tool is also responsible for launching
parallel instances of the simulator, if the computational resources available allow
them.

From the strictly mathematical point of view, the problems addressed can be
characterized as follows. The vector of input variables x = (x1, . . . , xN) can take
values into different sets depending on the nature of its components. An integer
variable is usually comprised between a lower and an upper bound, xL

i ≤ xi ≤ xU
i ,

where i ∈ [1, N]. However it is possible that only some integer may be of interest,
for example only the powers of 2. This kind of variables are similar to categorical
variables, but they maintain the notion of order. On the contrary, another way of
calling a categorical variable is discrete unordered variable since this is their main
feature. The list of admissible values is called catalogue. The optimization problem
is then ⎧⎨

⎩
min f(x1, . . . , xN),

such that g(x1, . . . , xN) ≥ 0,

h(x1, . . . , xN) = 0.

(3.1)

The vector functions f , g and h can have arbitrary dimensions. It is not necessary that
all the functions involved in the problem are minimization targets. For example if a
function φ(x) has to be maximized and it should occupy the i-th component of f , a
simple change of sign can solve the problem defining fi := −φ. The same procedure
can be applied to “less or equal to” constraints.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 55

A point is said to be feasible, if it satisfies all the constraints addressed in g and
h. If the number of objectives is M , then given two feasible points x and y, the point
x is said to dominate y if fi (x) ≤ fi (y) for i = 1, . . . , M and there exists at least one
index j ∈ [1, M] such that fi (x) < fi (y). Dominance induces a partial ordering onto
the design and the objective space.

A vector of input parameters x̄ is said to be a Pareto design if there is not any
other point dominating it. The corresponding point in the objective space f(x̄) is said
to be a Pareto point. The set containing all the Pareto points is the Pareto front and
it is the solution of problem 3.1.

3.3 Algorithms

This section presents a brief description of the multi-objective optimization algo-
rithms that have been tested within the project and implemented in the Design Space
Exploration tools, highlighting the algorithm characteristics that are related to the
specific properties of the optimization of an Embedded System. The algorithms
presented in this section can be divided in three groups:

• Standard algorithms. This first group includes the algorithms that are well known
in the multi-objective optimization field and have been implemented in the De-
sign Space Exploration tools by following the models proposed by their original
designers with none or minimal enhancements. The algorithms NSGA–II and
MOGA–II belong to this group.

• Enhanced algorithms. This group includes all algorithms that are based on a
previously defined algorithm but include noticeable enhancements that make them
adequate for the specific problems addressed. The algorithms Enhanced-MOSA,
Enhanced-ES and Enhanced-MOPSO belong to this group.

• New algorithms. This group includes all algorithms that have been specifically
defined in the MULTICUBE project for multi-objective optimization in the context
of System-on-Chip (SoC) design optimization. The algorithms MFGA and APRS
belong to this group.

3.3.1 Standard Algorithms

The algorithms described in this section have been employed successfully in multi-
objective optimization for years. They were not precisely designed for categorical
variables, but they can treat them as simply discrete ones without excessively
deteriorating their performances.

3.3.1.1 NSGA–II

The Non-dominated Sorting Genetic Algorithm II (NSGA–II) was developed by
Prof. Deb et al. [3] at Kanpur Genetic Algorithms Laboratory (KanGAL). NSGA–II

56 E. Rigoni et al.

is a fast and elitist multi-objective evolutionary algorithm which shares the basic
structure with all genetic population-based algorithms.

The basic mechanism can be summarized as follows: starting from a parent popu-
lation, some individuals are selected for generating a child population. The algorithm
applies operators that work on the input variables of the selected individuals trying to
improve their outputs: mutation and crossover are the standard choices for NSGA–II.
This procedure is iterated for the requested number of generations.

This algorithm has some peculiar and powerful characteristics:

• It includes a fast non-dominated sorting procedure. Sorting the individuals of
a given population according to the level of non-domination is a complex task,
which makes in general non-dominated sorting algorithms computationally ex-
pensive for large population sizes. The adopted solution in NSGA–II performs a
clever sorting strategy.

• The multi-objective search includes elitism. NSGA–II implements the multi-
objective search using an elitism-preserving approach, which is introduced storing
all non-dominated solutions discovered so far, beginning from the initial popula-
tion. Elitism enhances the convergence properties towards the true Pareto-optimal
set.

• A parameter-less diversity preservation mechanism is adopted. Diversity and
spread of solutions is guaranteed without the use of extra parameters (like sharing
parameters for example). NSGA–II adopts a suitable parameter-less niching ap-
proach called crowding distance, which estimates the density of solutions in the
objective space, and a crowded comparison operator, which guides the selection
process towards a uniformly spread Pareto frontier.

• The constraint handling method does not make use of penalty parameters. The
algorithm implements a modified definition of dominance in order to solve con-
strained multi-objective problems efficiently: usual dominance is the criterion to
sort feasible points. A feasible point will be always preferred to an unfeasible
one. Unfeasible points are sorted looking at the (normalized, possibly) constraint
violations sum.

The NSGA–II procedure is described graphically in Fig. 3.2. The individuals of the
parent population Pt of size N and the new population Qt of the same size (created
by applying the variation operators crossover and mutation, to individuals in Pt

selected by binary tournament) are grouped together. The combined population Rt

is then sorted based on its non-domination level obtaining sets of non-dominated
solutions (F1, F2, . . .). The new population Pt+1 is created by selecting the best
non-dominated sets that can be completely inserted into the new population (with
a combined size smaller or equal than N) plus members from the last set (which
cannot be fully accommodated) selected using the crowded comparison operator.

NSGA–II allows both continuous (real-coded) and discrete (binary-coded) de-
sign variables. Specific mutation and crossover operators are applied to each kind of
variables. Categorical (non-ordered discrete) parameters are treated as simple dis-
crete ones. This drawback can be compensated by increasing the exploration
capabilities of the algorithm allowing a larger mutation probability. NSGA–II tests a

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 57

Pt

F1

Pt+1

F2

F3

Qt

Rt

Rejected

non-dominated sorting crowding distance sorting

Fig. 3.2 NSGA–II sorting procedure

wider range of candidate solutions (hence the fictitious locality is damped) and its ef-
ficient elitism and selection routines drive the optimization towards the Pareto front.
This algorithm has been implemented in Multicube Explorer while it was provided
by modeFRONTIER from early releases.

3.3.1.2 MOGA–II

MOGA–II (Multi-Objective Genetic Algorithm, with elitism) was originally formu-
lated by Poloni [11] and it reached the actual implementation with the introduction
of elitism. This second version is equipped also with an optional improved crossover
operator (directional crossover), but since it is not suited for discrete problems, its
description is omitted.

This algorithm accepts only discrete variables (possible continuous variables have
to be discretized with the desired accuracy), which are encoded as in classical genetic
algorithms. Three operators govern the reproduction phase: one-point crossover,
mutation and selection. The probabilities under which one of them is chosen are
user-defined parameters.

Elitism guarantees that the best points remain in the parent population and hence
hopefully their children will exhibit a similar behavior. MOGA–II achieves this result
keeping a record of all non-dominated points found up to the current generation. The
new population is created extracting randomly the requested number of new parents
from the union (without repetitions) of the elite set and the set of newly generated
children. This procedure gives to the algorithm a good balance between exploration
and exploitation phase. This balance is fundamental for the performance of a multi-
objective global search: the search space has to be sufficiently explored, but at the

58 E. Rigoni et al.

same time the number of evaluated points must be kept low and the algorithm has to
converge rapidly to the Pareto set.

Elitism in MOGA–II works in this direction. The elite set usually contains a few
points in early stages of the optimization. Moreover, these points belong to the last
generation with a high probability. Hence only a fraction of them will enter the next
parents population promoting exploration. As long as new generations are created,
the elite set grows and the probability of finding out a new elite point decreases.
Therefore in the updated population there will be many points coming from the elite
set exploiting their features.

In order to save simulation time, steady evolution was preferred against the clas-
sical generational evolution in MOGA–II. In almost any industrial application, the
computational time spent in evaluating a point is much larger than the time employed
by the optimization algorithm to prepare and request a new evaluation. A genera-
tional algorithm would keep a significant part of computational resources idle (in a
cluster or grid systems), since before every generation is created, the algorithm needs
to get the results of the evaluation of all the individuals of the previous generation.

Within a steady evolution, the child point replaces its parent immediately. Every
time an evaluation ends, a new one is requested choosing randomly a parent from
the actual population and applying the chosen operators. The elitism procedure is
scheduled with the same frequency as in the case of a generational evolution, but it
can be performed while some points are still being evaluated, using the information
stored so far. This introduces a little delay in the propagation of the information, but
it prevents delays in the computational grid or cluster system. The negative effects of
this issue increase with the dimension of the population, but decrease as the number
of requested generations increases. This algorithm is proprietary of ESTECO and it
was provided by modeFRONTIER from early releases.

3.3.2 Enhanced Algorithms

Literature reports a continuous improvement of available methods since multi-
objective optimization is a research field constantly pressed by new applications.
New applications require new and better answers. In this section we considered as
enhanced algorithms the implementations of well known algorithms which have
been rewritten within the MULTICUBE project in order to better adapt to the SoC
design problem. Indeed, specific operators have been designed for treating categori-
cal variables and a careful attention has been addressed to the problem of optimizing
also the computing resources needed for design evaluation.

3.3.2.1 Enhanced-MOSA

The Simulated Annealing (SA) method for optimization was introduced by Kirk-
patrick [6], on the basis of a thermo-dynamical analogy.

The evolution of such a system is controlled by an external parameter called
temperature. A related energy can be assigned to every possible configuration of the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 59

system. When an initial configuration is perturbed, the difference in energy between
the two states is responsible for the evolution of the system: if the new state is
favorable, i.e. if it decreases the energy, then the new configuration is accepted. If
this is not the case, the new state is accepted or rejected according to a probability
distribution derived by Boltzmann. This distribution is a function of the temperature
and when the temperature is high, the probability of accepting an unfavorable state
is larger (see Metropolis et al. [9]).

The energy for the MOSA algorithm is (a suitable function of) the non-dominated
ranking already described for NSGA–II. Hence a new point is always accepted if
it is non-dominated by its parent. It will be also accepted in the opposite situation
depending on a temperature-based probability distribution.

Temperature is simply a parameter, initially user-defined, which evolves during
the optimization. MOSA starts with a hot phase accepting many points in order to
explore the design space. Afterwards, a cold phase, during which only the best points
survive, represents the exploitation part of the algorithm.

The creation of a child configuration from a parent one in the original formulation
of the algorithm is a directional perturbation. A random direction versor represents
the direction of the perturbation, while its length is predicted by a schedule similar
to the temperature one: starting from a specified upper bound, the value decreases
during the hot phase and it reaches the imposed lower bound in the cold phase. If the
perturbation vector brings the point out of variables space boundaries, a bouncing
routine will maintain the feasibility of the samples. This procedure also helps in
differentiating and enhancing the exploration and the exploitation capabilities of the
algorithm.

The concept of direction has no meaning working with categorical variables. The
enhanced version of MOSA takes in account this problem keeping at the same time
the idea of a tunable perturbation. Every categorical variable at each iteration has a
probability to change its value depending on a law similar to the one applied to the
temperature and perturbation length. If the value has to be changed, a new value is
chosen randomly from the available list.

A lifespan counter is introduced in order to compensate for the uncontrolled ran-
domness in the search for the best values for categorical variables. Especially during
the hot phase there could be sequences of parents and children moving towards dom-
inated regions of the objective space because of the Metropolis acceptance criterion.
If the number of subsequent unwanted increasing in energy exceeds a threshold,
Enhanced-MOSA replaces the child with its better-fitting parent.

A steady state evolution is a second enhancement of the algorithm. The procedure
is very similar to the evolution implemented in MOGA–II with the obvious change of
the updating schedule: there is no elite set to be updated, but instead Enhanced-MOSA
changes the value of the temperature, the perturbation length and the probability of
replacement for categorical variables.

The standard implementation of MOSA is available in modeFRONTIER from
early releases and it has also been implemented in Multicube Explorer. The described
enhancements were developed for the MULTICUBE project and were implemented
in modeFRONTIER.

60 E. Rigoni et al.

3.3.2.2 Enhanced-ES

Evolution Strategies (ES) is a multi-objective optimizer that is able to reproduce
different evolutionary algorithms. These algorithms share the selection operator and
the operators schedule, while they differ in the ratio between parents and children
points and in the definition of the set of points among which the new parents are
selected.

The ES approach was first used at the Technical University of Berlin. During
the search for the optimal shapes of bodies in a flow, the classical attempts with
the coordinate and the well-known gradient-based strategies were unsuccessful. So,
the idea was conceived of proceeding strategically. Rechenberg and Schwefel [14]
proposed the idea of trying random changes in the parameters defining the shape,
following the example of natural mutations.

Usually, there is a huge difference between mathematical optimization and opti-
mization in the real-world applications. Thus, ES were invented to solve technical
optimization problems where no analytical objective functions are usually available.

The general Evolutionary Strategy scheme is the following:

1. Initial population creation;
2. Individuals evaluation;
3. Selection of the best individual(s);
4. Recombination;
5. Mutation;
6. Individuals evaluation;
7. Return to step 3 until the required number of generation is achieved

Selection of the best results may be done only on the set of children or on the
combined set of parents and children. The first option, which is represented usually
with the notation (λ, μ)-ES, can “forget” some good results when all the children are
worse than their parents. The second option, which is represented with the notation
(λ + μ)-ES, applies a kind of elitist strategy for the selection.

The best solutions may be identified in different ways: the implementation of
ES provided in modeFRONTIER is capable of approximating the Pareto Set in
multi-objective optimization using the Non-dominated/Crowding distance sorting
technique as done in NSGA–II.

The main source of variation is a mutation operator based on a normal distribution.
The standard deviation of this distribution changes during the generations in an
adaptive manner. Each input variable has its own deviation with an initial and a
minimal value that can be arbitrarily tuned.

A completely different operator has been introduced for categorical variables in
the context of MULTICUBE. If such a variable is selected for mutation, its value is
changed following an uniform distribution (i.e. the choice is completely random),
since locality has no meaning. An adaptive strategy is instead performed over the
probability of mutating each variable.

A discrete recombination operator is a second source of variability. It resembles the
classical crossover operator, where information coming from two different parents

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 61

is exchanged producing a child point. The value of each variable has the same
probability of coming from both parents.

The standard implementation of ES is available in modeFRONTIER from early
releases and it has also been implemented in Multicube Explorer. The described
enhancements were developed for the MULTICUBE project and were implemented
in modeFRONTIER.

3.3.2.3 Enhanced-MOPSO

Particle Swarm Optimization (PSO) is an optimization methodology that mimics
the movements of a flock of birds finding food [7]. PSO is based on a population of
particles moving through an hyper-dimensional search space. Each particle possesses
a position and a direction; both variables are changed to emulate a well known social-
psychological phenomenon: mimic the success of other individuals in the population
(also called swarm).

More formally, the position x for a single particle i is updated by means of a
velocity vector vecv by means of the following equation:

xi (t) = xi (t − 1) + δi(t) (3.2)

while the direction vector is updated with the following equation:

δi(t) = Wδi(t − 1) + C1r1(xpbesti − xi (t − 1))

+ C2r2(xgbest − xi (t − 1))

where W is called the inertia weight, C1 is the cognitive learning factor, C2 is the
social learning factor, r1, r2 are random numbers in the range [0, 1], xpbesti is the best
position of particle i with respect to the minimization problem, xgbest is the global
best found up to time t . The formulation of the problem leads to solutions which
try to ‘follow’ the leader’s xgbest position as well as attracting solutions versus the
personal best solution of the particle xpbesti .

Dealing with Multi-objective problems. So far, several approaches have been
proposed for extending the formulation of the PSO technique to the multi-objective
domain [2, 13]. The Enhanced-MOPSO technique is based on an “aggregating”
approach where the swarm is equally partitioned in n subswarms, each of which
uses a different cost-function which is the product of the objectives combined with
a set of exponents randomly chosen.

In other words, given the original set of objectives {f1 . . . fm}, each sub-swarm i

solves the following problem:

min
x∈X

∏
j=1...m

f
pi,j

j (x) (3.3)

where pi,j is a set of randomly chosen exponents. It can be shown that solutions
to Problem 3.3 lie on the Pareto surface of the original problem. This approach

62 E. Rigoni et al.

is different with respect to [2] because the latter uses a linear combination of cost
functions {f1 . . . fm}. Linear combination can be heavily biased on highly valued
cost-functions disregarding low-valued ones.

Dealing with the discrete design space. The essential nature of the solution
space of the problems faced within the MULTICUBE Project is discrete, while the
approaches presented so far deal with a continuous search space. Several proposals
have been made so far in the literature to extend classical PSO to the discrete do-
main. One method for addressing the discrete design space exploration problem is
applying particle swarm optimization to binary-valued solution elements [8]. In this
case, while the velocity term is still real-valued, the position term is actually chosen
between 0 and 1 by means of a sigmoidal function. Another method leverages the
construction of a probability distribution for each value of the position vector [12].
The probability distribution is derived from the current value of the position vector
which, in turn, depends on the velocity vector. The probability distribution is then
transformed into a single integer number during fitness evaluation of each particle.

Enhanced-MOPSO is based on the concepts of random walk theory. A random
walk is a path with the following properties:

• It has a starting point.
• The distance from one point to the next is constant
• The direction from one point to the next is picked up at random.

The position of the particle is still updated with the traditional rule:

xi (t) = xi (t − 1) + δi(t) (3.4)

while each component k of the direction vector is updated with the following rule:

δi,k(t) =
{

sign(xgbest,k − xi,k(t − 1)) if(rand() < p)

randint(−1, 1) otherwise
(3.5)

where p ∈ [0, 1] is a parameter of the algorithm.
As can be noted, the direction of the particle is updated following two rules: rule 1

attracts the particle versus the leader of the swarm (gbest), rule 2 forces the particle
to follow a random walk. This ensures us to jump out from local minima in the
objective function shown in Eq. 3.3.

3.3.3 New Algorithms

The algorithms listed below can be considered as completely new proposal in the
scientific literature [17].

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 63

3.3.3.1 MFGA

The acronym of this new algorithm stands for Magnifying Front Genetic Algorithm
since its main purpose is to work on the local Pareto front in three directions: to-
wards (approaching the true front), laterally (obtaining a wider front) and internally
(enhancing the uniformity of the front samples).

With the introduction of elitism, genetic algorithms such as NSGA–II found a very
good answer to the problem of converging faster than previous implementations. The
question now is how to converge better, without slowing down.

Elitism is considered as the main cause of too concentrated Pareto fronts [1, 4].
If the optimization problem is difficult, only a few points will be non-dominated and
will become a sort of basin of attraction. Indeed, elitist strategies will keep these
points in the parent population and crowding distance or similar techniques are not
useful to “dilute” them until a large number of Pareto points are found. However
without elitism the request for quality cannot even be addressed, since the algorithm
would converge too slowly. Literature reports two promising ideas in order to modify
this operator without removing it.

Deb and Goel [4] proposed a controlled elitism approach. Their algorithm selects
the new parent population accepting also dominated points with a preference for
those points coming from less crowded regions. Computed points are ranked by
domination and ordered by crowding distance. An exponentially decreasing number
of points are selected from each rank starting from the top of the list. Figure 3.3
shows how a combined population Rt of size 2N (parents plus children) is reduced

Fig. 3.3 Controlled Elitism sorting procedure vs NSGA–II

64 E. Rigoni et al.

to a population Pt+1 of size N by selecting ni individuals from each non-dominated
front of size nt

i , using crowded tournament selection to reduce each front if necessary.
This choice helps in obtaining a more uniform front, filling possible gaps with

points coming from higher ranks. It is remarkable that slight improvements are
achieved also in convergence rate and in lateral spreading of the computed front, as
reported in the cited paper.

Aittokoski and Miettinen [1] studied a different strategy called variable size popu-
lation. Their idea is to transform all first-rank points into new parents regardless their
number. The result is an algorithm that cannot perform worse than a classical elitist
one considering convergence rate (since it does not waste any useful information)
and it guarantee a better diversity maintenance.

MFGA is an algorithm that tries to managing elitism mixing the two cited ideas in
an original scheme, including also a steady state evolution. The algorithm switches
automatically between the two approaches depending on the dimension of the local
Pareto front, allowing:

• wider exploration of the design space: new generations are created following
the reduced elitism approach until the local Pareto front reaches one third of the
population size (fixed by the DOE size).

• better exploitation of the obtained information: the parents update is done follow-
ing the variable size scheme, only for local fronts that contain a number of points
from one to two third of the population size.

• diversity preservation: the reduced elitism is reintroduced for larger fronts.

The steady state evolution implemented together with this mixed procedure is quite
demanding from the computational point of view, since every time the evaluation of
a new point is performed, the parent population is completely recomputed including
the new achieved information. This choice is well suited for problems involving long
simulation time.

Classical operators govern the parents-children recombination, but they are re-
built trying to enlarge the kind of problems treatable using them [17]. Mutation
and crossover operators act in MFGA variable-wise in order to treat easily mixed
problems involving real, integer and categorical variables. MFGA was completely de-
signed by ESTECO for the MULTICUBE project. Its inclusion in future commercial
releases of modeFRONTIER is planned.

3.3.3.2 APRS

The acronym of this new algorithm stands for Adaptive-windows Pareto Random
Search. It is an iterative optimization algorithm that tries to optimize locally the each
Pareto solution found up to the previous iteration.

The main characteristics of the algorithm are represented by the three keywords
of its name: adaptive-windows, Pareto and random search.

• Adaptive-windows: the APRS is an algorithm that has a dynamic windows size
which is reduced with the time spent in the exploration and with the goodness of
the point found in the current windows.

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 65

Objectives Space Design Space

Pareto
Solutions

Search
Windows

X1

F2

F1

X2

Fig. 3.4 Serach window idea in the APRS algorithm

• Pareto: the starting points of each iteration of the algorithm are the current Pareto
solutions (found up to previous iteration) where the search windows are centered
on.

• Random search: the new configurations to be evaluated are randomly selected
within those windows.

The idea behind the algorithm is simple and it is based on iterative local search in
the neighborhood of good points: the current Pareto set (see Fig. 3.4). Moreover,
as for temperature in Simulated-Annealing strategies, the algorithm has a parameter
represented by the search-window size that reduces the dynamism of the algorithm
during the optimization life-time. In particular, the search-window centered on each
Pareto point is reduced whenever no better solutions are found in the iteration.

More in detail, the general structure of the algorithm is the following:

1. Creation of an initial set of solutions selected within the entire DS by using a DoE
2. Initial solutions evaluation (S)
3. Identification of the Pareto solutions (P ′ = ParetoF ilter(S))
4. While the termination condition is not met

(a) Use the Pareto set as initial set for each iteration S < −P ′
(b) For each point in the Pareto set (p ∈ P ′)

i) Randomly select a configuration within the reduced DS delimited by the
search window centered on the pareto point (W(p))

ii) Evaluate the selected configuration s (S = S + s)

(c) If the Pareto set is not changed from the previous iteration (i.e. if P ′ ==
ParetoF ilter(S)), reduce the search window (|W | = |W | ∗ α)

(d) Otherwise, Identification of the new Pareto set (P ′ = ParetoF ilter(S))

The algorithm exposes three parameters, the initial set |S| size, the initial size of
the windows |W | and the windows reduction coefficient α. APRS was completely
designed by POLIMI for the MULTICUBE project and has been implemented in
Multicube Explorer.

66 E. Rigoni et al.

3.4 Validation Strategies

The so called no-free-lunch theorem for optimization [18] is a rigorous mathematical
theorem which states the impossibility of ranking algorithms on the basis of their
performances: averaging on all possible problems, every algorithm will obtain results
exactly equal to all the others. A direct corollary is that if one algorithm appears better
than another one in solving a specific problem, there must exist another problem in
which the original algorithm appears worse than the other.

This theorem implies that an optimization algorithm is as important as the valida-
tion strategy which may reveal its ability in solving a specific set of problems. This
issue is not a mere academic question, but it has relevant effects on the industrial
exploitation of the achievement obtained. It is of primarily importance to build confi-
dence on the proposed algorithmic strategies and to prove their robustness. This is the
main achievement of the researches carried on by the MULTICUBE project, whose
partners agreed on the need of a validation step in order to transfer the (possibly
academic) high quality knowledge to the industrial world.

This section focuses on the first two steps performed in this direction within the
project. The first one consists in showing that all the algorithm described in Sect. 3.3
can solve a benchmark problem of SoC design in a satisfactory manner. The second
step is to show the advantages of an automatic optimization process with respect
to a traditional approach. The combination of these two results can guarantee the
reliability of the proposed approach. At the same time, the validation process must
be intended as an iterative process which follows but at the same time precede the
development of new optimization strategies.

3.4.1 Algorithm Comparison

The problem selected as benchmark for the algorithms validation is based on the
Low-Power Processor Use Case delivered by STM-C described in Chap. 8. In this
paragraph, we compare the previously introduced algorithms to identify the most
suitable to the architecture under consideration. The executable model for the design
space exploration is the sp2sim simulator, which models the SP2 microprocessor
design. The benchmark application selected is the 164.gzip application, based on the
popular gzip application.

The design space consists of 11 configuration parameters, 7 system metrics
and 3 objectives. The configuration parameters are grouped in three categories:
out-of-order execution parameters, cache system parameters and branch prediction
parameters, as shown in Table 3.1. The system metrics are grouped in three cate-
gories: performance, power dissipation and area occupation metrics, as shown in
Table 3.2. The three objectives to be minimized have been selected from each one
of the metrics group: total_cycle, power_dissipation and area.

In order to compute optimization metrics that provide a reasonable measure of
quality of the algorithms, it is necessary to compare the Pareto fronts obtained by

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 67

Table 3.1 Input parameters for the benchmark problem

Category Parameter Description Values

Out of order execution rob_depth Reorder buffer depth 32, 48, 64, 80, 96, 112, 128
mreg_cnt Rename register number 16, 32, 48, 64
iw_width Instruction window width 4, 8, 16, 24, 32

Cache system icache_size Instruction cache size 16, 32, 64
dcache_size Data cache size 16, 32, 64
scache_size Secondary cache size 0, 256, 512, 1024
lq_size Load queue size 16, 24, 32
sq_size Store queue size 16, 24, 32
mshr_size Miss holding register size 4, 8

Branch prediction bht_size Branch history table size 512, 1024, 2048, 4096
btb_size Branch target buffer size 16, 32, 64, 128

Table 3.2 Output parameters for the benchmark problem

Category Metric Description

Performance total_cycle Total cycle number
total_instr Total instruction number
IPC Instruction per cycle

Power dissipation total_energy Total energy consumed
total_dissipation Average power dissipation
peak_power_dissipation Peak power dissipation

Area occupation Area Area occupied

the algorithms with a reference Pareto front, which should be the real Pareto front of
the optimization problem, or at least a good approximation of it. The design space of
the problem outlined above consist of 1,161,216 designs. Since the time required to
evaluate all these designs is too large to be considered as an option, a statistical study
of the configuration parameters was performed in order to try to identify parameters
which could be fixed to a constant value to reduce the size of the design space without
a significant reduction of the problem interest for SoC designers. A statistical study
was performed with random exploration using Multicube Explorer, exploring a set
of 5,000 randomly selected designs.

In order to reduce the size of the design space, the following parameters with low
contribution where identified: rob depth, lq size, sq size and mshr size. Adequate
constant values were selected for them, reducing the size of the design space to only
9,216 designs. The reduced problem was considered valid both from the point of
view of SoC designers and from the point of view of the mathematical properties of
the design space and its associated Pareto front. All designs in the reduced design
space were evaluated by performing a full factorial multi-level exploration obtaining
the real Pareto front in a few days of execution time. This Pareto front consists of 18
points. Figure 3.5 shows if and when the considered algorithms discover them.

The performance measures selected for the algorithm comparison concern both
time and quality. Since by far the most time consuming component of the optimization
procedure is the simulator execution, its number of evaluations has been selected as a
fair measure of the required algorithm execution time. Concerning the quality of the

68 E. Rigoni et al.

Fig. 3.5 Algorithm
performance comparison on
the reduced benchmark
problem

Percentage of evaluated points

N
um

be
r

of
 P

ar
et

o
po

in
ts

 fo
un

d

40% 50%30%20%10%5%2%

Es
MFGA
MOGA-II
MOSA
NSGA-II
MOPSO
APRS

18

16

14

12

10

8

6

4

2

solutions found by each algorithm, a set of four metrics has been selected considering
the following criteria:

• Accuracy: measured as the distance between the obtained Pareto front and the
reference (or real) front.

• Uniformity: measured as the distribution of the solution set in the trade-off curve.
• Extent: measured as the coverage of the objective space considering boundary

points.

The D-metric, �-metric and ∇-metric have been selected from [5], while the ADRS
(Average Distance from Reference Set) metric has been selected from [15]. Both
D-metric and ADRS provide indication of accuracy, �-metric of uniformity and
∇-metric of extent.

A fair evaluation of non-deterministic algorithms requires several repeated runs
without changing any parameter besides the random generator seed. Notwithstanding
the relative small search space consisting of only 9,216 designs, very large variations
can be observed in the algorithms behavior and a rigorous study needs to analyze also
this aspect. It was agreed that 10 repetitions were a good trade off among statistical
issues, purposes of the evaluation and significance of the problem. Preliminary tests
were performed in order to estimate the best choices for the tunable parameters which
then have been kept fixed.

Algorithms parameters are usually problem-dependent. Some of them depend
also on the user expectations: the optimal choices (if any) for parameters controlling
the ratio between exploration and exploitation phase (like temperature schedule in
MOSA, for example) are strictly related to the number of evaluations the user can
afford. It was decided to tune these parameters considering the largest target (i.e.
50% of the design space, as described below) and accepting possible worse results
in the partial samples.

The evaluation process then proceeds checking at fixed numbers of explored
points the quality of the non-dominated front found so far. The steps selected for the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 69

evaluation are: 184 designs (corresponding to about 2% of the design space), 461
(5%), 922 (10%), 1,843 (20%), 2,765 (30%), 3,686 (40%) and 4,608 (50%). Only the
requests of evaluation of new designs were counted, since sometimes the algorithms
request the evaluation of an already evaluated design due to the inherent behavior
of their random engines. In any practical application, the time needed to retrieve the
stored information is incomparably smaller than the time that would be spent by a
new evaluation. Besides the fact that in this experiment it is known in advance any
value thanks to the previous full factorial exploration, the real optimization process
was simulated by counting each design only once.

Some algorithms occasionally cannot generate new designs when working with
discrete problems if some parameters are not set properly. The chosen benchmark
problem has a small variable space and in the exploitation phase (where usually re-
combination is less effective than in the exploration one) the algorithms may get stuck
in the endless repeated evaluation of the same designs. This behavior was observed
and was overcame by increasing the explorative capabilities of the algorithms.

A last remark concerns the input variables nature. They are all discrete, but none
of them is categorical. This choice allows to test fairly a wider range of algorithms,
but on the other hand, the test cannot highlight completely the improvements gained
with the enhancements described above.

With a small variance, all algorithms reach an ADRS value below 2% evaluating
30% of the design space (see Fig. 3.6). This result can be considered very promising.
Variations in the slope of the lines for some algorithms are a consequence of possible
different behaviors in successive phases of the optimization process. The most clear
example is MOSA with its hot and cold phase. MOSA is tuned to reach the top of
the exploitation phase at 50% of evaluations and therefore its results are the worst up
to 20–30%, while at the end it is one of the most effective algorithms. APRS shows
a similar behavior.

It is very difficult to analyze the uniformity and the extent of the partial front
found by the algorithms during the optimization process. The true Pareto front is

Fig. 3.6 Algorithm
performance comparison on
the reduced benchmark
problem in terms of ADRS
metric [15]

Percentage of evaluated points

A
D

R
S

 v
al

ue
s

40% 50%30%20%10%5%2%

Es
MFGA
MOGA-II
MOSA
NSGA-II
MOPSO
APRS

0.14

0.12

0.10

0.08

0.06

0.04

0.02

70 E. Rigoni et al.

not uniform itself, since the problem is highly discrete both in the search space and
in the objective space: notwithstanding the real values achievable by the objective
functions, it is observed the formation of clusters of points with a cylindrical shape.
Only some tips belong to the Pareto front and the distance between two nearby
solution points is relatively large.

Extent metric gives some insight into the evolution of the non-dominated front.
Some algorithms (MOPSO, MOSA, and APRS) span a wider range than others. This
is due to a sharper division between exploration and exploitation phase. Indeed, the
higher values of ∇-metric are achieved when the local front contains points which
will be dominated by the following generations. These designs may span a wider
area in the objective space resulting in a higher value of the extent metric.

The analysis of the metrics values obtained offer a deep insight into the algorithms
structure in addition to the comparison information. Efficiency assessments can be
drawn in terms ofADRS metric and of number of Pareto points found. Under this per-
spective, all algorithms behaved in a satisfactory manner on the proposed benchmark
problem: as remarked before, starting from 30% of the design space exploration, all
scored less than 0.02 in ADRS metric. The worst score in the achievement of Pareto
points can be taken as an indicator of the reliability of the proposed algorithms: ES
found 15.6 points which however corresponds to 86.6% coverage of the true Pareto
front. Since in real-world problems the solution set is unknown, this percentage is
clearly a good guarantee that the algorithms will reach at least a significant part of
the Pareto front.

3.4.2 The Complete Optimization Problem

The problem proposed for algorithm comparison can be very useful for validating
the whole optimization process as well. The procedure followed for obtaining the
subspace of points for the comparison can be summarized as:

• simulate an initial set of 5,000 random points;
• perform statistical analysis on the sample in order to detect the most significant

variables and the most appropriate values for the remaining ones;
• simulate all the configurations (full factorial exploration, 9,216 points) obtained

varying the selected variables;
• extracting the non-dominated set.

The approximated Pareto set obtained counts 18 designs and it cost about 14,000
simulations. This procedure is similar to a manual optimization, which however in
most of the cases would have produced only a reduced number of pseudo-optimal
designs. The idea is to perform a first exploration in order to extract useful information
about the problem. The second step is the analysis of the data obtained and their
consequent exploitation through a second exploration phase, this time limited on a
restricted and affordable search space.

The sequence exploration-exploitation-exploration is exactly the same hypothe-
sized by the elitism operator of MFGA algorithm in Sect. 3.3. However that algorithm

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 71

AREA

TO
TA

L_
C

Y
C

LE

1.00

0.80

0.60

0.40

0.20

0.00
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 3.7 Pareto fronts obtained with the reduced (diamonds) and the complete problem (circles).
The Area and the Total Cycle objectives values are plotted on the horizontal and vertical axes,
respectively. The Power Dissipation objective is represented by the size of the points: a larger point
means an higher value. The highlighted points are non-dominated. The values of the metrics are
normalized since the model is proprietary of STM

shows to be able of much faster convergence. An optimization run of the original
problem, without the restriction introduced on the input variables, can support this ob-
servation. Indeed, MFGA after only 3,000 evaluation can produce a non-dominated
set which outperform the one obtained by the procedure just described [16]. In
Fig. 3.7 the two sets are plotted on a 2D plot where the third object is represented by
the size of the points.

Moreover, the analysis of the input variable values producing this new and en-
hanced solution set contributes to the insight in the problem structures more than
the statistical calculation previously carried on. A better front is found violating the
prescription proposed by this latter one.

Notwithstanding these results, the validation process cannot be considered as
concluded. On the contrary, it must be a complementary tool to the research for new
and better algorithms. The two processes should provide new problems each other.
Once a detailed validation has stated the reliability of the optimization technique over
one applicative field, new field could open and new algorithms become necessary.
Following these ideas, an industrial validation step will be described in Chap. 8.

3.5 Conclusions

The results contained in the present chapter shows the expertise gained within
the MULTICUBE project in handling optimization problems arising in MP-SoC
architecture design. Two different but complementary meanings can be associated to

72 E. Rigoni et al.

the word “handling” in this context. First, the proposed methodologies can solve the
problems concretely and in a satisfactory manner: the Design Exploration tools em-
ployed within the project can support all the phases of the process, since they provide
appropriate solutions to define correctly the problem, they contain algorithms able to
optimize the selected metrics and they include many post-processing resources. The
second meaning refers to the validation path which builds the necessary reliability
to exploit the research results in an industrial context.

The definition of the problem is extremely flexible, but at the same time the
fixed XML vocabulary is universal in the sense that all the components (tools and
simulators) needed to work on the problem are able to speak the same language.
Different simulators with different level of abstraction can be connected with the
same optimization work-flow and the different optimization tools can work with all
the simulators without additional modifications.

The algorithm presented are obviously the central part of the process. Although
they follow different approaches, they all try to exploit the a priori knowledge of the
problem structure in order to better investigate the unknown objective space shape.
The presence of categorical variables is a first obstacle to overcome and indeed
many of the proposed algorithms implement particular strategies for handling this
kind of variables. Following this direction there is still room for improvements: is
it possible, for example, to design a categorical crossover operator? It should be
an operator which mixes information between the parent designs trying to conserve
possible structures or good combinations among their categorical variables.

The computational cost of the simulations is another important element to ex-
amine. The steady-state evolution implemented by some of the algorithm is a first
answer. However the final number of evaluations required to achieve an accurate
and uniform sample of the Pareto front is the key issue. Since all the MULTICUBE
algorithms seemed to perform equivalently well, the result obtained by MFGA on the
complete benchmark problem can represent a guarantee that also other algorithms
can save many simulations.

Other quality of the solution set have been considered besides accuracy. Unifor-
mity and extent are considered as complementary objectives. This opens a complete
new field of research: if the result of the optimization stage is a very detailed sample
of a large Pareto set, which are the points on the front that should be selected for
the prototyping stage? How is it possible to help the so called Decision Maker? This
stage has been considered as a separate step for long time, however recent research
results in optimization tries to combine the two steps. The objective is an algorithm
which returns a user-defined number of points taken from the Pareto set selecting
them for their diversity.

The validation strategy proposed has a twofold merit. On one hand, simply the fact
that a validation strategy has been addressed is relevant from the applicative point of
view, since this is the only way of building confidence on the proposed optimization
strategy. On the other hand, the validation procedure described in Sect. 3.4 contains
some elements that can constitute a paradigm for evaluating optimization algorithms.
A first element is to define a large set of indicators for the quality of the solution
sets: a single metric can hide more than what it shows, while a deep insight in the

3 Optimization Algorithms for Design Space Exploration of Embedded Systems 73

problem and in the algorithms can be obtained combining the results of different
measurements. Another important suggestion is to check the chosen metric values
at previously defined fixed numbers of evaluations. Finally, the validation stage
can be considered concluded only when the new optimization algorithms have been
tested against other kind of approaches (classical algorithms, manual optimization
protocols, etc).

The algorithms and the procedure described in this chapter prove the overall
reliability of the Design Space exploration tools, modeFRONTIER and Multicube
Explorer in handling and in solving optimization problems in the field of Embedded
System Design. The peculiarities of such an environment have been sufficiently
recognized and exploited in order to provide solutions in affordable computational
time (considering also the high consuming simulators). The study has been enough
deep to open new questions for improving the capabilities of the algorithms in this
field as well as for opening new research directions.

References

1. Aittokoski, T., Miettinen, K.: Efficient evolutionary method to approximate the pareto opti-
mal set in multiobjective optimization. In: Proc. International Conference on Engineering
Optimization (EngOpt) (2008)

2. Baumgartner, U., Magele, C., Renhart, W.: Pareto optimality and particle swarm optimization.
IEEE Transactions on Magnetics 40(2), 1172–1175 (2004)

3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting ge-
netic algorithm for multi-objective optimization: Nsga–ii. IEEE Transactions on Evolutionary
Computation 6(2), 181–197 (2002)

4. Deb, K., Goel, T.: Controlled elitist non–dominated sorting genetic algorithm for better
convergence (2001). KanGal Report 200004

5. Erbas, C., Cerav–Erbas, S., Pimentel, A.: Multiobjective optimization and evolutionary algo-
rithms for the application mapping problem in multiprocessor system-on-chip design. IEEE
Transactions on Evolutionary Computation 10(3), 358–374 (2006)

6. Gelatt Jr., C.D., Vecchi, M., Kirkpatrik, S.: Optimization by simulated annealing. Science
220(4598), 671–680 (1983)

7. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

8. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In:
Proceedings of the Conference on Systems, Man and Cybernetics, pp. 4104–4109 (1997)

9. Metropolis, N., Rosenbluth, A., Teller, A., Teller, E.: Equation of state calculation by fast
computing machines. J. Chem. Phys. 21(1953), 1087–1092 (1953)

10. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publisher (1999)
11. Poloni, C., Pedirola, V.: Ga coupled with computationally expensive simulations: Tools to im-

prove efficiency. In: Genetic Algorithms and Evolution Strategy in Engineering and Computer
Science, chap. 13. John Wiley & Sons (1998)

12. Pugh, J., Martinoli, A.: Discrete multi-valued particle swarm optimization. In: Proceedings of
IEEE Swarm Intelligence Symposium, pp. 103–110 (2006)

13. Reyes-Sierra, M., Coello, C.A.: Multiple-objective particle swarm optimizers: A survey of the
state of the art. http://www.lania.mx/∼ccoello/EMOO/reyes06.pdf.gz (2006)

14. Schwefel, H.: Evolution and Optimum Seeking. Wiley & Sons (1995)

74 E. Rigoni et al.

15. Silvano, C., Zaccaria, V., Palermo, G.: ReSPIR: A response surface-based pareto iterative
refinement for application-specific design space exploration. IEEE Transactions on Computer-
Aided Design of Integrated Circuit and Systems 28(12) (2009)

16. Turco, A., Kavka, C., Bocchio, S.: Optimization of an embedded parallel system-on-chip
platform using modeFRONTIER. In: Poster Session at DATE’10 Conference (2010)

17. Turco, A., Kavka, C.: MFGA: a genetic algorithm for complex real-world optimization
problems. International Journal of Innovative Computing and Applications 3(1), 31–41 (2011)

18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation 1(1), 67–82 (1997)

