
This is the post peer-review accepted manuscript of:

Davide Gadioli, Emanuele Vitali, Gianluca Palermo, Cristina Silvano
mARGOt: a Dynamic Autotuning Framework for Self-aware Approximate Computing
IEEE Transactions on Computers, 2018

The published version is available online at: https://doi.org/10.1109/TC.2018.2883597

©2018 IEEE. Personal use of this material is permitted. Permission from the editor must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

1

mARGOt: a Dynamic Autotuning Framework for
Self-aware Approximate Computing

Davide Gadioli, Emanuele Vitali, Gianluca Palermo, Member, IEEE , Cristina Silvano, Fellow, IEEE

Abstract—In the autonomic computing context, the system is perceived as a set of autonomous elements capable of
self-management, where end-users define high-level goals and the system shall adapt to achieve the desired behaviour. Runtime
adaptation creates several optimization opportunities, especially if we consider approximate computing applications, where it is
possible to trade off the accuracy of the result and the performance. Given that modern systems are limited by the power dissipated,
autonomic computing is an appealing approach to increase the computation efficiency.
In this paper, we introduce mARGOt , a dynamic autotuning framework to enhance the target application with an adaptation layer to
provide self-optimization capabilities. The framework is implemented as a C++ library that works at function-level and provides to the
application a mechanism to adapt in a reactive and a proactive way. Moreover, the application is capable to change dynamically its
requirements and to learn online the underlying application-knowledge. We evaluated the proposed framework in three real-life
scenarios, ranging from embedded to HPC applications. In the three use cases, experimental results demonstrate how, thanks to
mARGOt , it is possible to increase the computation efficiency by adapting the application at runtime with a limited overhead.

Index Terms—Autonomic Computing, Dynamic Autotuning, Adaptive Applications, Self-optimization, Approximate Computing

F

1 INTRODUCTION

W ITH the end of Dennard scaling [1], the perfor-
mance of modern systems are limited by the power

dissipated. This shifted the focus of system optimization
towards energy efficiency in a wide range of scenarios,
not only related to embedded systems but also related to
high-performance computing (HPC) [2]. To further improve
efficiency, several approaches aim at finding good enough
results for the end-user, thus saving the unnecessary compu-
tational effort. A large class of applications implicitly expose
software-knobs at the algorithmic-level to find accuracy-
throughput tradeoffs, especially in image processing appli-
cations [3] and whenever it is possible to use approximation
techniques, such as loop perforation [4] and task skipping
[5]. Examples of software-knobs can be the number of
samples in a Monte Carlo simulation, the resolution of an
output image or the number of software threads used by an
application.

Among the implications of this trend, application re-
quirements are increasing in complexity. Typically, the
end-user has complex requirements which involve extra-
functional properties (EFPs) in conflict with each other,
such as power consumption, throughput, and accuracy.
Moreover, these extra-functional properties might depend
on the actual inputs of the application, on the resources
available for the application and on the configurations of
the underlying architecture (such as the core frequencies).
Therefore, it is not simple to define the relationship between
a software-knob configuration and the EFPs of interest.

� E. Vitali, D. Gadioli, G. Palermo, and C. Silvano are with Dipartimento
di Elettronica, Infomazione e Bioingegneria, Politecnico di Milano, Italy.

This work is supported by the European Commission Horizon 2020 research
and innovation program under grant agreement No 671623, FET-HPC
ANTAREX.

To address these problems, in this paper we propose
mARGOt, a dynamic autotuning framework to enhance the
target application with a flexible adaptation layer. The main
idea is that the end-user specifies high-level goals, such
as “maximize accuracy given a throughput of at least 25
frames per second“, while mARGOt tunes the application
software-knobs accordingly. Given that mARGOt is coupled
with the application execution, it is able to identify and
seize optimization opportunities at runtime. On one side,
mARGOt is capable to react to changes in the execution
environment: if the application performance degrades due
to a change of the core frequency, the violation of the
high-level goals triggers mARGOt, which selects a different
configuration to compensate. On the other side, mARGOt is
capable to leverage input features to select a configuration
tailored for the current input.

From the methodology point of view, mARGOt falls in
the context of autonomic computing [6] as an implemen-
tation of the well-known Monitor Analyze Plan Eexecute
feedback loop, based on application Knowledge (MAPE-
K). From the implementation point of view, mARGOt is
implemented as a standard C++ library to be linked to the
target application and working at function-level. With this
approach, each instance of the application can take decisions
autonomously. Our seminal work on autotuning started as
a component coupled with a resource manager [7]. Then,
we have shown in [8], [9] the benefits of using a dynamic
autotuning framework as a stand-alone component. The
main contributions of this paper are:

� We introduce a mechanism to adapt the application in
a reactive and proactive way, according to the input
features;

� We introduce the possibility to express a confidence in the
application requirements;

2

� We investigate the possibility to derive the application-
knowledge online;

� We evaluate mARGOt in a set of approximate applications,
from an embedded to an HPC context.

Furthermore, we publicly released the mARGOt source
code, along with build instructions and user manuals for
integration and implementation details [10]. Our goal is to
let application developers to easily integrate mARGOt in
their applications for improving the application efficiency.

The rest of the paper is organized as follows. Section 2
provides an overview of the state-of-the-art, outlining the
mARGOt contributions, while Section 3 formalizes the pro-
posed approach by focusing on the adaptation mechanisms.
Section 4 shows the integration workflow, describing the re-
quired effort. Section 5 validates the proposed framework in
terms of introduced overhead and exploitation in adaptive
applications. Finally, Section 6 concludes the paper.

2 RELATED WORK

The proposed framework belong to the domain of auto-
nomic computing [6]. In this context, a computing system
is perceived as a set of autonomic elements capable of
self-management without a human-in-the-loop. According
to the proposed vision, an autonomic element must have
self-configuration, self-optimization, self-healing and self-
protection capabilities. Self-configuration is the capability
to incorporate in the system new components whenever
they become available, as in the Rainbow framework [11].
Self-healing is the capability to recover from hardware or
software failures, as proposed in [12]. Self-protection is
the capability to defend itself against malicious attacks or
failures not corrected by any self-healing mechanism, as
proposed in [13]. Eventually, self-optimization is the capa-
bility to identify and seize opportunities to improve the
application performance or efficiency. Even if some previous
works (such as the ABLE framework [14]) aim at defining
a common interface to derive an autonomic manager, the
problem how to design a manager that provides self-*
properties is still an open question. The goal of mARGOt
is to enhance an existing application with an adaptation
layer that provides the ability of self-optimization. Previous
surveys [15], [16] provide a more general overview of the
research area.

The definition of a system in the context of autonomic
computing involves both hardware and software. Therefore,
in literature, there are several works that aim at optimizing
the system performance or efficiency. We might divide them
into three main categories: resource managers, static auto-
tuners, and dynamic autotuners.

Resource managers address system adaptability through
resource management and allocation: in the data center
context [17], [18], in the grid computing context [19], in
the multi/manycore node context [20], [21], [22] and for
embedded platforms [23], [24]. These works are indeed in-
teresting, however, mARGOt aims at leveraging the assigned
resources to reach the end-user requirements, therefore it
takes orthogonal decisions.

Application autotuning frameworks aim at selecting the
most suitable configuration of the software-knobs to lever-
age the assigned resources. Among these frameworks, there

are static autotuners to select the most suitable configuration
before the production phase, and dynamic autotuners to se-
lect the most suitable configuration during the production
phase.

2.1 Static Autotuning Frameworks
The Design Space (DS) of an application grows exponen-
tially with respect to the number of software-knobs, thus
increasing the complexity of the Design Space Exploration
(DSE). Typically, static autotuning frameworks focus on
finding the configuration that maximizes/minimizes a util-
ity function in a large design space given a reasonable
amount of time.

Active Harmony [25], ATune-IL [26] and AutoTune [27]
are frameworks targeting application-agnostic software-
knobs, such as tiling size, loop unrolling factor, compiler op-
tions and/or algorithm selection. The main goal is to tailor
the application configuration for the underlying hardware.
OpenTuner [28] and ATF framework [29] are also target-
ing application-specific software-knobs. However, they are
usually applied in a predictable execution environment and
they target software-knobs that have a loose relationship
with the actual input set. QuickStep [30], Paraprox [31] and
PowerGAUGE [32] target parallel regions of an application
and perform code transformation (or binary transformation)
without preserving the semantics. The idea is to automati-
cally expose and leverage the accuracy-throughput tradeoff.
These works are typically applied in a predictable execu-
tion environment and they usually target a different class
of software-knobs with respect to dynamic autotuners. By
choosing a configuration at design-time, it is impossible to
react to changes related to either the application require-
ments or to the observed performance, for example due to a
change on the core frequency for thermal issues. Moreover,
the decision algorithm does not leverage the input features.

In the context of High-Performance Computing, there
are several autotuning frameworks, however, they are tai-
lored to specific tasks. Some examples of them are ATLAS
[33] for matrix multiplication routines, FTTW [34] for FFTs
operations, OSKI [35] for sparse matrix kernels, SPIRAL [36]
for digital signal processing, CLTune [37] for OpenCL appli-
cations, Patus [38] and Sepya [39] for stencil computations.

2.2 Dynamic Autotuning Frameworks
The fundamental characteristic of the dynamic autotuning
frameworks is to continuously tune the software-knobs
configuration at runtime. The main idea is to leverage
information about the actual execution context, rather than
the average behaviour, when they decide which is the most
suitable software-knob configuration to apply. Usually, they
rely on the application-knowledge to predict the behaviour
of a configuration and to drive the decision process.

Configuring an application at runtime has been an ap-
pealing idea investigated in literature for a long time. The
ADAPT framework [40], the work in [41] leveraging on
Bayesian networks, and the autotuner derived in the work
that proposes the ABLE framework [14] are some pioneering
works in this area.

More recent works on approximate computing evaluate
the possibility of relaxing the constraints on functional cor-
rectness to improve the efficiency as long as they tolerate a

3

lower accuracy of the results. A large class of applications,
such as multimedia, implicitly defines application-specific
software-knobs that affect the output quality. When it is
complex to identify the software-knobs, works in the lit-
erature describe techniques to expose them. For example, it
is possible to fail task on purpose [5] or to skip iterations
of a loop [4]. A later work [42] investigates the effect of
loop perforation by using a large set of applications from the
PARSEC benchmark suite [43], showing how a small loss in
accuracy might lead to a significant performance increment.

The Sage framework [44], the Green framework [45] and
PowerDial [46] are examples of autotuners falling in this
category. The idea is to maximize the throughput given
a lower bound on the computational error. Later work in
[47] proposes a blueprint of a controller to extend the one
in PowerDial to handle a tradeoff among several metrics
by introducing limitations on the software-knobs. Although
very interesting, these works on approximate computing
provide a limited flexibility to end-users to define appli-
cation requirements. Moreover, they do not leverage input
features to further improve computational efficiency.

An interesting work leveraging input features is Capri
[48], which inspired us for this work. At design time, Capri
uses a set of representative inputs to model a cost metric
(e.g. execution time or energy) and an error metric, as a
function of software-knobs configuration and input features.
The controller selecting the most suitable configuration is
based on the Valiant’s probably approximately correct (PAC)
theory [49]. Given that Capri addresses applications with a
single input instead of a stream of inputs, it does not use any
reaction mechanism to adapt the application-knowledge.
Moreover, due to the chosen formulation and the target
applications, the feasible region given by the error function
does not depend on the actual input. This might miss some
optimization opportunities when input features are related
to the error, as in the Probabilistic time-dependent routing
application (Section 5.4).

A rather different approach is Anytime Automaton [50],
which does not rely on the application-knowledge. It sug-
gests radical source code transformations to re-write the
application in a pipeline style. The idea is that the longer
the given input executes in the pipeline, the more accurate
the output becomes.

Another approach that does not rely on the application-
knowledge is the IRA framework [51]. IRA investigates
several features of each input (such as the mean value or
its autocorrelation) to generate a smaller input for searching
for the fastest configuration given a bound on the minimum
accuracy. However, in a certain class of applications, such as
in the GeoDock application (Section 5.3), it is not simple to
sub-sample the inputs due to its heterogeneous information,
limiting the framework applicability.

Besides autotuning frameworks, Petabricks [52] is a lan-
guage to expose algorithmic choices to the compiler. The
Petabrick framework (including compiler and autotuner)
analyzes the code and generates a strategy, embedded in
the executable, to select the fastest algorithm and configura-
tion according to the input size. In later work, Petabricks
has been enhanced to leverage the accuracy-throughput
tradeoffs [53] and to take in consideration input features
[54]. Petabricks is indeed interesting, however, it generates

TABLE 1: Comparison of dynamic autotuning frameworks
In the assigned score, a higher number of stars is better.

Framework Tradeoffs Reactivity Proactivity Integration
effort

Runtime
overhead

ADAPT
[40]

? ? ? ? ? ? ? Look-up
table

H.Guo [41] ? ? ? ? ? ? Decision
tree

Sage [44] ? ? ? ? ? ? ? Decision
tree

Green [45] ? ? ? ? ? ? Decision
tree

PowerDial
[46]

? ? ? ? ? ? ? ? Look-up
table

Capri [48] ? ? ? ? ? ? ? ? Model
query

Anytime
Automaton

[50]

? ? ? ? ? ? ? ? ? Kill
interrupt

IRA [51] ? ? ? ? ? ? ? ? ? DSE on
small input

Petabricks
[54]

? ? ? ? ? ? ? Decision
tree

Sibling
Rivalry [55]

? ? ? ? ? ? ? ? Genetic
algorithm

mARGOt ? ? ? ? ? ? ? ? ? ? ? Look-up
table

the adaption strategy at design-time, without building any
application-knowledge, therefore it is not flexible to change
application requirements and it relies on a predictable ex-
ecution environment. Also Siblingrivarly [55] is based on
the Petabriks language, but it targets a very unpredictable
execution environment.

To summarize the results of our analysis of the state-of-
the-art, Table 1 compares dynamic autotuning frameworks
by scoring their main characteristics in terms of: trade-
off analysis, reactivity, proactivity, integration effort and
runtime overhead.

In the second column, we score the flexibility of the
framework to leverage tradeoffs among different extra-
functional properties of interest for the end-user. More in
detail, we classified with a single star the frameworks using
a single metric in the optimization process, while two stars
are assigned to frameworks based on a fixed optimization
problem (such as to maximize accuracy given a constraint
on throughput). The highest score (three stars) is given to
frameworks providing to the end-user the possibility to
define an arbitrary optimization problem.

The third column classifies the capability of a framework
to runtime adapts in a reactive mode. One star is assigned
to a framework that either does not provide any reaction
mechanism or it is based on a trial-and-error approach. Two
stars are given to a framework that leverages a structured
approach to react, for example by using control theory. The
three-star rating is assigned to a framework that also offers
to the end-user the possibility to change the application
requirements according to external stimuli.

The fourth column targets the capability to adapt in
a proactive mode according to the features of the current
input. The lowest score represents a framework that relies
on the average behaviour of the application. Two stars are
assigned to frameworks that leverage only the size of the
current input. If a framework leverages on more information

4

Fig. 1: Global architecture of the proposed framework.
Purple elements represent application code, while orange
elements represent mARGOt high-level components. The
black box represents the executable boundary.

from the current input, we rated it with three stars.
The fifth column targets the effort required by the ap-

plication developer to integrate the framework in the target
application. The lower rating represents frameworks that
explicitly require a porting of the application in a new
language or to rewrite the source code. The higher rating
represents frameworks that explicitly provide mechanisms
that automatically integrate the framework. The two-star
symbol represents a framework requiring a limited integra-
tion effort.

Finally, the last column reports the method used to solve
the optimization problem, whose complexity is used to
compare the overheads of each evaluated framework. In all
cases, the overhead is largely amortized by the advantages
introduced by the dynamic autotuning.

Given the limitations emerged in the analysis of the
literature, our goal is to overcome them by introducing the
following contributions:
� Flexibility to express application requirements represents

one of the key points of the methodology. In mARGOt,
application requirements are expressed as a constrained
multi-objective optimization problem, given an arbitrary
number of constraints and addressing an arbitrary num-
ber of EFPs as well.

� Capability to leverage on actual information rather than
the expected average behaviour. mARGOt provides mech-
anisms to react to changes in the application performance
and requirements. mARGOt also provides a mechanism to
adapt in a proactive way according to input features.

� Limited integration effort: mARGOt minimizes as much as
possible the number of lines of code to be changed and we
designed the interface as a wrapper around the managed
region of code, therefore limiting the intrusiveness.

3 PROPOSED METHODOLOGY

Figure 1 shows an overview of the mARGOt framework and
how it interacts with an application. We assume that the ap-
plication is composed of a single kernel g that elaborates an
input i to generate the desired output o, however mARGOt

can manage different blocks of code of a single application
in an independent way. We assume that the kernel algorithm
exposes software-knobs that alter its EFPs, such as the
number of Monte Carlo simulations or the parallelism level.
Let x = [x1; : : : ; xn] the vector of software-knobs, then we
might define a kernel as o = g(x; i). In this description and
in the rest of the paper, we assume for simplicity that the
application is defined by a single kernel, or block of code.

Given this abstraction of the target application, the
end-user requirements are defined as follows. We denote
the metrics of interest (i.e. EFPs) as the vector m =
[m1;m2; : : : ;mn]. Let us suppose that the application de-
velopers are capable to extract features of the current inputs,
for example the ones analyzed in IRA [51]. We denote such
properties as the vector f = [f1; f2; : : : ; fn]. The end-user is
capable to define the application requirements as in Eq. 1:

max(min) r(x;m j f)
s.t. C1 : ω1(x;m j f) / k1 with α1 confidence

C2 : ω2(x;m j f) / k2
. . .

Cn : ωn(x;m j f) / kn

(1)

where r denotes the objective function (named rank in
mARGOt context) and it is defined as a composition of any
variable defined either in x or in m by using their mean
values. Let C be the set of constraints, where each Ci is
a constraint expressed as the function !i, defined over the
software-knobs or the EFPs, that must satisfy the relation-
ship /2 f<;�; >;�g with a threshold value ki and with
a confidence �i (if !i targets a statistical variable). Being
agnostic to the distribution of the target parameter, the
confidence is expressed as the number of times to consider
its standard deviation. If the application is input-dependent,
the value of the rank function r and the constraint functions
!i also depend on the features of the input f .

In this formulation, the main goal of mARGOt is to solve
the following optimization problem: finding the configu-
ration x̂ that satisfies all the constraints C and maximizes
(minimizes) the objective function r, given the current input
i. The application must have a configuration, even if it is
not feasible to satisfy all the constraints. For this reason,
mARGOt might relax some of the constraints, until a feasible
solution is found, starting by relaxing the constraint with the
lowest priority. Therefore, the end-user must sort the set of
constraints by their priority. As shown in Figure 1, the mAR-
GOt framework is composed of the application manager, the
monitors module, and the application-knowledge. The next
sections explain each component in more detail.

3.1 Application-knowledge
For a generic application, the relation between the software-
knobs, the EFPs of interest and the input features is com-
plex and unknown a priori. Therefore, we need a model
of the application extra-functional behaviour to solve the
optimization problem stated in Eq. 1. mARGOt uses a list
of Operating Points (OPs) as application-knowledge, where
each Operating Point � expresses the target software-knob
configuration and the achieved EFPs with the given input
features; i.e. � = fx1; : : : ; xn; f1; : : : ; fn;m1; : : : ;mng. We
choose this solution mainly for three reasons: to solve effi-
ciently the optimization problem by inspection, to guarantee

5

1 <?xml version="1.0" encoding="UTF-8"?>
2 <points version="1.3" block="example">
3 <point>
4 <parameters>
5 <parameter name="knob1" value="3.4"/>
6 <parameter name="knob2" value="100"/>
7 </parameters>
8 <system_metrics>
9 <system_metric name="metric1" value="212.862" standard_dev="6.49"/>

10 <system_metric name="metric2" value="27.6" standard_dev="0.9"/>
11 </system_metrics>
12 <features>
13 <feature name="feature1" value="100"/>
14 <feature name="feature2" value="10" />
15 </features>
16 </point>
17 </points>

Fig. 2: XML configuration file to define the application-
knowledge for an application.

that mARGOt will not choose an illegal configuration for
the application and to provide a great flexibility in terms of
management.

Figure 2 shows an example of application-knowledge
configuration file in XML, with a single Operating Point
(lines 3-16). Let us suppose that the target application ex-
poses two software-knobs (knob1 and knob2), there are two
metrics (metric1 and metric2) and it is possible to extract
two features from the current input (feature1 and feature2).
In this example, the OP is composed of three sections: the
target software-knobs configuration (lines 4-7), the reached
performance distribution (lines 8-11) and the related feature
cluster (lines 12-15).

The OP list is considered a required input and mARGOt
is agnostic to the methodology used to obtain it. Typically
this methodology is a design-time task, known as Design
Space Exploration (DSE) in literature. This task is a well-
known problem and there are several previous approaches
to find the Pareto Set in an efficient way [56], [57], [58].
Moreover, we implemented the possibility to change the
application-knowledge at runtime. Section 3.4 describes the
proposed approach for the online DSE.

3.2 Monitors

This module enables mARGOt to observe the actual be-
haviour of either the application or the execution environ-
ment. This feature is critical for an autonomic manager,
because it provides feedback information, thus enabling
self-awareness ability [59]. The application-knowledge de-
fines the expected behaviour of the application, however,
it might change according to the evolution of the system.
For example, a power capper might reduce the frequency
of the processor due to thermal reasons. In this case, we
would expect that the application notices a performance
degradation thus reacting by using a different configuration
to compensate. This adaptation is possible only if we have
some feedback information.

From the implementation point of view, mARGOt pro-
vides to application developers a suite of monitors to ob-
serve the most common EFPs such as throughput, system-
wide CPU usage or Perf events through the PAPI interface
[60]. However, implementing a monitor to observe a custom
EFP, such as the output quality, is straightforward.

Given that measuring quality metrics might be expen-
sive, mARGOt does not require a continuous observation of

Data-Aware Application-Specific RunTime Manager

Application-Specific RunTime Manager 1 ASRTM 2

Application
Knowledge

Runtime
Information

Provider
State 1 S2 SN

ASRTM M

Fig. 3: Overview of the Application Manager implemented
in mARGOt, based on a hierarchical approach.

a metric. The application developers can choose if monitor-
ing an EFP at each iteration, periodically or sporadically.
Obviously, decreasing the observation frequency delays the
reactions of mARGOt. If it is not possible to monitor an
EFP at runtime, mARGOt can rely only on the expected
behaviour, thus operating in an open-loop.

3.3 Application Manager

This component is the core of the mARGOt dynamic auto-
tuner, which provides the self-optimization capability. From
the methodology point of view, this component is in charge
of solving the optimization problem stated in Eq. 1: to
find the software-knobs configuration x̂, while reacting to
changes in the execution environment and adapting in a
proactive way according to the input features.

From the implementation point of view, the application
manager has a hierarchical structure, as shown in Figure 3,
where each sub-component solves a specific problem. The
Data-Aware Application-Specific Run-Time Manager (DA AS-
RTM) provides a unified interface to application develop-
ers to set or change the application requirements, to set
or change the application-knowledge and to retrieve the
most suitable configuration x̂. Internally, the DA AS RTM
clusters the application-knowledge according to the input
features f by creating an Application-Specific Run-Time Man-
ager (AS-RTM) for each cluster of Operating Points with
the same input features. Therefore, the clusters of OPs
are implicitly defined in the application-knowledge. Given
the input features of the current input, the DA AS-RTM
selects the cluster with the features closer to the ones of
the current input. It is possible to use either a Euclidean
distance between the two vectors or a normalized one, in
case an element of the vector f is numerically different with
respect to the others. Moreover, it is possible to express some
constraints on the selection of the cluster. For example, it is
possible to enforce that the feature f cluster

i of the selected
cluster must be lower (higher) or equal than the feature
f inpt

i of the current input, i.e. f cluster
i / f inpt

i . Once the
cluster for the current input is selected, the corresponding
(AS-RTM) solves the optimization problem by relying on the
following components.

The State element is in charge of solving the optimiza-
tion problem by using a differential approach. The initial
optimization problem does not have any constraint (i.e.
C = ;) and the objective function minimizes the value of the
first software-knob. From this initial state, the application

6

(a) Global structure of the distributed DSE framework (b) Structure of an application instance

Fig. 4: Proposed approach for distributed online Design Space Exploration, using a dedicated server outside of the
computation node. We used MQTT protocol for extra-node communication.

ALGORITHM 1: How the State component builds the internal
representation of the optimization problem.
Data: Application-knowledge OPlist, optimization function r, list of constraints

C
Result: list of valid OPs L valid, lists of invalid OPs Lci
Lvalid = OPlist ;
for ci 2 C (ascending priority order) do

Lci
= ;;

for OPj 2 Lvalid do
if OPj does not satisfy ci then

Lci
= Lci [OPj ;

end
end
Lvalid = Lvalid n Lci

;
Lci

= sort(Lci
; dist(OPj ; ci));

end
Lvalid = sort(Lvalid; r);

ALGORITHM 2: How the State element solves the optimiza-
tion problem.
Data: list of valid OPs L valid, lists of invalid OPs Lci

, list of constraints C

Result: most suitable Operating Point OP
if Lvalid! = ; then

return Lvalid[0];
else

for ci 2 C (descending priority order) do
if Lci

! = ; then
return Lci

[0];
end

end
end

might dynamically add constraints, define a different ob-
jective function or change the application-knowledge. The
solver can find efficiently the new optimal configuration
evaluating only the involved OPs, by building an internal
representation of the optimization problem. Algorithm 1
shows the pseudo code for its initialization. At first, it
assumes that the application-knowledge satisfies all the
constraints, therefore Lvalid contains all the OPs. Then, for
each constraint ci, mARGOt iterates over the set of OPs in
Lvalid and it performs three operations: (1) It creates the list
Lci of all Operating Points invalidated by the constraint ci.
(2) Then it removes from the set of valid OPs (Lvalid) those
not satisfying ci (Lci). (3) Eventually, it sorts all the OPs in
Lci according to their distance from satisfying the constraint
ci. After iterating over the constraints, mARGOt sort the
list of valid OPs Lvalid according to the objective function
r. Using this representation, each time that mARGOt is
invoked to solve the optimization problem, it updates the

internal structure and then it follows the Algorithm 2. In
particular, if the list Lvalid is not empty, mARGOt returns
the one that maximizes the rank function, i.e. Lvalid[0].
Otherwise, mARGOt iterates over the constraints according
to their priority, in reverse order, until it finds a constraint
ci with a non-empty Lci . Then the best OP is the closest
to satisfy the constraint ci, i.e. Lci [0]. This algorithm must
always return a single OP. Therefore, if there is more than
one OP at the same distance from ci, mARGOt uses the
constraints with a lower priority than ci and the objective
function r to select the best OP.

Given that the end-user might have different require-
ments according to different phases of the application, it is
possible to define different states and switch among them at
runtime. As an example, in a video surveillance application,
the end-user would run a more accurate computation or a
more energy-efficient one, according to the presence of an
interesting scenario to analyze.

The Runtime Information Provider relates an EFP of the
application-knowledge with an application monitor. In par-
ticular, it compares the observed behaviour with the ex-
pected one and it computes an error coefficient defined as
emi

= expectedi

observedi
, where emi

is the error coefficient for the
i-th EFP. To avoid the zero trap, we add 1 to the numerator
and denominator when observedi is equal to zero. Since it
is impossible to observe the error coefficient also for other
configurations (the application uses only one configuration
each time), we assume that their error coefficients are equal
to the observed one. This implies that if we observe a degra-
dation of the performance of 10% with respect to the current
configuration, we assume that also the other configurations
will have a performance degradation of 10%. Therefore we
scale the constraint value accordingly to react. For example,
assuming that the end-user would like a throughput of at
least 25fps and that we are using a configuration that has an
expected throughput of 30fps, but we observe a throughput
of 15fps. Then, the Runtime Information Provider will double
the constraint value to compensate.

3.4 Online Design Space Exploration

The mARGOt implementation lets the application developer
to define the application-knowledge at runtime, thus en-
abling the possibility to perform online learning. In particu-
lar, we propose an approach to distribute the Design Space

7

Exploration among all the instances of an unknown applica-
tion, integrated with mARGOt, at runtime. Figure 4a shows
the overall picture of the approach, highlighting the two
main actors: the Remote Application Handler and the running
application instances. Each instance of the application has
an Application Local Handler (client) (as shown in Figure 4b)
which interacts with the Remote Application Handler (server)
through either MQTT or MQTTs protocols. The Application
Local Handler is an asynchronous utility thread that manipu-
lates the client application-knowledge and sends to the Re-
mote Application Handler telemetry information. The Remote
Application Handler is a worker thread-pool that interacts
with the clients to obtain the application-knowledge. The
server stores information in a Cassandra database and it
uses a plugin system to model and interpolate the relations
between the EFPs, the software-knob configurations and the
input features clusters, including also a wrapper interface
for R and Spark. Although the implementation of a plugin
to derive a metric is straightforward, mARGOt provides
two default plugins. The first one is rather simple and it
computes the mean value and standard deviation for each
observed software-knobs configuration. This can be used
for a full-factorial Design Space Exploration, observing the
whole Design Space including the possible input features.
The second plugin leverages a well-known approach [61]
to interpolate application performance implemented by the
state-of-the-art R package [62].

The typical workflow used for the online Design Space
Exploration on an unknown application can be described as
follows:

1) Each client notifies itself to the server.
2) The server sends a request for information, such as the

domain of each software-knob, the name of the plugin
that models each EFP of interest and the desired Design
of Experiment technique.

3) The server generates a DoE for the application and
it starts to dispatch configurations to each client in a
round robin fashion.

4) Each client manipulates the mARGOt application-
knowledge to force the selection of the software-knob
configuration sent by the server.

5) After each kernel execution, the client sends the ob-
served performance and input features to the server.

6) Once the clients have observed all the configurations
in the DoE phase, the server builds the application-
knowledge and it broadcasts the Operating Point list
to the clients.

The system is designed to be resilient to server and client
crashes without interfering with MPI traffic. As soon as
a client becomes available, it can join other clients at any
time, thus contributing to the DSE or receiving directly
the application-knowledge. As future work, we plan to
implement additional well-known techniques to model the
application performance, such as those described in [63].

The benefits of the proposed online DSE architecture are
twofold. On one hand, it leverages the parallelism of the
platform to reduce the DSE time. On the other hand, it uses
standard tools to visualize extra-functional values stored
in the database (e.g. execution traces of the application in-
stances running on the platform or to query the application-

knowledge).

3.5 Summary of mARGOt Main Features

The mARGOt framework provides a runtime self-
optimization layer to adapt applications in a reactive and
in a proactive way. Differently from static autotuner frame-
works, mARGOt focuses on application-specific software
knobs, whose optimal value depends on the system work-
load, on changes in the application requirements or on
features of the actual input. In particular, mARGOt might
change the software-knobs configuration if: 1) the appli-
cation requirements change, 2) the application-knowledge
changes, 3) the expected performance differs from the ob-
served one, and 4) according to the features of the current
input. Moreover mARGOt has been designed to be light-
weight and flexible to enable its deployment in a wide range
of scenarios.

A key feature of mARGOt is how to derive the
application-knowledge. We offer to application developers
two possibilities. First, they might leverage on well-known
techniques to run a DSE at design-time. Second, we pro-
vide a software architecture to run the DSE directly at
runtime by leveraging the mARGOt capability to change the
application-knowledge.

4 INTEGRATION IN THE TARGET APPLICATION

In this section, we describe the effort required by end-users
and application developers to integrate mARGOt in their
application. In this context, end-users are the final users of
the application, therefore they are in charge of defining the
application requirements and identifying the input features
(if any). Application developers are the experts writing the
application source code, therefore they are in charge of
identifying the software-knobs and extracting the features
from the input (if any). From the implementation point of
view, we designed the framework: (i) to apply the sepa-
ration of concern approach between functional and extra-
functional properties; (ii) to limit the code intrusiveness in
terms of the number of lines of code to be changed and
(iii) to propose an easy-to-use instrumentation of the code.
To ease the integration process in the target application,
mARGOt provides a utility tool that starting from an XML
description of the extra-functional concerns, it generates a
high-level interface tailored for the target application. The
main configuration file describes the adaptation layer by
defining:

1) The monitors of interest for the application;
2) The geometry of the problem, i.e. the EFPs of interest,

the application software-knobs, and the data features of
the input;

3) The application requirements, i.e. the optimization
problem stated in Eq. 1.

If the application developers derive the application-
knowledge at design-time, the second configuration file
states the list of Operating Points as shown in Figure 2.

Starting from this high-level description of the layer, the
utility tool generates a library with the required glue code
to hide, as much as possible, the mARGOt implementation

8

1 <margot application="toy_app" version="v1">
2 <block name="foo">
3
4 <!-- MONITOR SECTION -->
5 <monitor name="exec_time_monitor" type="Time">
6 <expose var_name="avg_exec_time" what="average"/>
7 </monitor>
8 <monitor name="error_monitor" type="Custom">
9 <spec>

10 <header reference="margot/monitor.hpp"/>
11 <class name="margot::Monitor<float>"/>
12 <type name="float"/>
13 <stop_method name="push"/>
14 </spec>
15 <stop>
16 <param>
17 <local_var name="error" type="float"/>
18 </param>
19 </stop>
20 <expose var_name="avg_error" what="average"/>
21 </monitor>
22
23 <!-- APPLICATION GEOMETRY -->
24 <knob name="k1" var_name="knob1" var_type="int"/>
25 <knob name="k1" var_name="knob1" var_type="int"/>
26 <metric name="exec_time" type="float" distribution="yes"/>
27 <metric name="error" type="float" distribution="yes"/>
28 <features distance="euclidean">
29 <feature name="feature1" type="double" comparison="-"/>
30 <feature name="feature2" type="double" comparison="LE"/>
31 </features>
32
33 <!-- ADAPTATION SECTION -->
34 <goal name="exec_time_goal" metric_name="exec_time" cFun="LE" value="2"/>
35 <adapt metric_name="exec_time" using="exec_time_monitor" inertia="3"/>
36 <state name="normal" starting="yes">
37 <minimize combination="simple">
38 <metric name="error" coef="1.0"/>
39 </minimize>
40 <subject to="exec_time_goal" confidence="1" priority="10"/>
41 </state>
42
43 </block>
44 </margot>

Fig. 5: The main XML configuration file for the toy applica-
tion, stating extra-functional concerns

details. In particular, the high-level interface exposes five
functions to the developers:
� init. A global function that initializes the data struc-

tures.
� update. A block-level function that updates the appli-

cation software-knobs with the most suitable configu-
ration found.

� start monitor. A block-level function that starts all the
monitors of interest

� stop monitor A block-level function that stops all the
monitors of interest

� log A block-level function that logs the application
behaviour

These functions hide the initialization of the framework and
its basic usage. For example, the update function takes as
output parameters the software-knobs of the application
and as input parameters the features of the current input.
It uses the features to select the most suitable cluster and
then it sets software-knobs parameters according to the
most suitable configuration found by mARGOt. However,
if application developers need a more advanced adaptation
strategy, such as changing the application requirement at
runtime, they need to use the mARGOt interface on top of
the high-level one.

To show the integration effort, we focus on a toy ap-
plication with two software-knobs (knob1 and knob2) and
two input features (feature1 and feature2). The application
algorithm is rather simple: it is composed of a loop that
continuously elaborates new inputs. In this toy application,
we assume that the end-user is concerned about execution
time and computational error. In particular, he/she would
like to minimize the computational error given an upper

1 #include <margot.hpp>
2
3 int main()
4 {
5 margot::init();
6
7 int knob1 = 4;
8 int knob2 = 2;
9 float error = 0.0f;

10
11 while (work_to_do())
12 {
13 new_input = get_input();
14 const double feature1 = extract_feature1(new_input);
15 const double feature2 = extract_feature2(new_input);
16
17 MARGOT_MANAGED_BLOCK_FOO
18 {
19 do_job(new_input, knob1, knob2);
20 error = compute_error(new_input);
21 }
22 }
23 }

Fig. 6: Stripped C++ code of the target toy application, after
the mARGOt integration.

bound on the execution time.
In the context of this toy application, Figure 5 shows

the main XML configuration file that expresses the extra-
functional concerns. This file is composed of three sections:
the monitor section (lines 4� 21), the application geometry
section (lines 23� 31) and the adaptation section (lines 33�
41).

The monitor section lists all the monitors of interest for
the user. In this example, we have an execution time monitor
(lines 5 � 7) and a custom monitor for observing the error
(lines 8 � 21). All the monitors might expose to application
developers a statistical property over the observations, such
as the average value in this example (line 6 and 20). If the
end-user is not interested in observing the behaviour of the
application, he/she might omit this section.

The application geometry section lists the application
software-knobs (lines 24; 25), the metrics of interest (lines
26; 27) and the features of the input (lines 28 � 31). In
particular, it is possible to specify how to compute the
distance between feature vectors (line 28) and to specify
constraints on their selection, as described in Section 3.3.
For example, if we consider feature2 (line 30), we state that
a cluster is eligible to be selected only if its feature2 value is
lower or equal than the feature2 value of the current input.
If we consider feature1 (line 29) instead, we state that we do
not impose any requirement on a cluster to be eligible. This
mechanism provides to mARGOt a way to adapt proactively
by sizing optimization opportunities according to the actual
input.

While the application geometry describes the boundaries
of the problem, the adaptation section states the application
requirements of the end-user. In particular, it states the
application goals (line 34), the feedback information from
the monitor (line 35) and the constrained multi-optimization
problem (lines 36�41). In the definition of a constraint (line
40), it is possible to specify a confidence and a priority. The
confidence specifies how many times mARGOt has to take
into account the standard deviation to improve the resilience
against the noise with respect to the average behaviour. The
priority is used to sort the constraints by their importance
for the end-user. Application goals and feedback informa-
tion provide to mARGOt the capacity to adapt in a reactive
way. A violation of a goal in the optimization problem or a

9

discrepancy between the observed and expected behaviour
of the application, triggers an adaptation from mARGOt,
thus reacting to the event.

Starting from this configuration file, mARGOt automati-
cally generates the glue code accordingly, exposing to ap-
plication developers a high-level interface tailored to the
specific problem. For a complete description of the XML
syntax and semantics, please refer to the user manual in the
mARGOt repository [10].

Figure 6 shows the source code of the toy application af-
ter the integration with mARGOt. To highlight the required
effort, we hide the application algorithm in three functions:
work to do (line 11) tests whether input data are available,
get input (line 13) retrieves the last input to elaborate and
do job (line 19) performs the elaboration. The integration
effort requires to the application developers to include the
mARGOt header (line 1), to initialize the framework (line 5)
and to wrap the block of code managed by mARGOt (lines
17; 18; 21). Due to the structure of the code, it is possible
to use a pre-processor macro to hide the five functions
described above.

Even if we minimized the integration effort, we still
require from application developers to identify and to write
code to extract meaningful features from an input (lines
14; 15) and a function to compute the elaboration error
(line 20). Although these metrics are heavily application-
dependent, a large percentage of works in literature ana-
lyze generic error metrics [46] and generic input features
[51]. Application developers might consider these previous
works as starting points to identify more customized metrics
for their applications.

5 EXPERIMENTAL RESULTS

This section aims at validating and assessing the benefits of
the proposed dynamic autotuning framework.

First, we evaluate the overheads introduced by mARGOt
in different scenarios. Then, we show how it is possible to
leverage the dynamic adaptation to improve the compu-
tation efficiency in three different use cases. To emphasize
the applicability of mARGOt, we selected real-world appli-
cations taken from three completely different application
domains: image processing, computation chemistry and a
Monte Carlo approach. These domains are very important
in the context of embedded systems and High-Performance
Computing. Moreover, the three use cases have also been
selected to validate the different features of the framework.
In particular, in Section 5.2 we assess the reactive behaviour,
in Section 5.3 the online learning module, finally in Section
5.4 the proactive behaviour by using the input features.

Given the flexibility of mARGOt, we deployed it on
different platforms ranging from embedded to HPC. As a
representative embedded platform, we used a Raspberry
Pi (R) 3 model B. The board has a quad-core ARMv7 (R)
(@ 1.2 Ghz) CPU with 1 GB of memory. To represent a
typical HPC node, we used a platform composed of two
Intel(R) Xeon(R) CPU E5-2630 v3 (@ 2.40GHz) with 128 GB
of memory with dual channel configuration (@1866 MHz).
All the experiments described in this Section use the Intel
platform, except the ones related to Stereomatching (Section
5.2) based on the ARM platform.

5.1 Overhead Evaluation

The proposed framework enables application developers to
introduce the adaptation layer by instrumenting the source
code using a C++ library, that executes synchronously with
the application. Therefore, the time spent by the mARGOt
library to select a new configuration, to change the knowl-
edge base, or to update the internal structures that represent
application requirements can be considered as an overhead
introduced to the target application.

This experiment is focused on evaluating the overheads
introduced by mARGOt in the most significant operations
exposed to application developers. Instead of providing a
single value, in this experiment, we increase the problem
complexity to show the trend of the overheads. Before
discussing the results, it is important to remember that the
mARGOt implementation follows a differential approach to
solve the optimization problem efficiently. Even if the worst-
case complexity of the algorithm is the same, it reduces the
complexity of the average- and best-case scenarios.

Figure 7 shows the introduced overheads by varying the
size of the application-knowledge or the input feature clus-
ters across the evaluated operations. In particular, Figure 7a
shows the overhead for introducing Operating Points in the
application-knowledge by varying their number. Given that
each constraint uses a dedicated “view” over the OPs, the
introduced overhead also depends on their number. Figure
7b shows the overhead for introducing a new constraint in
the optimization problem. The overhead depends on how
many OPs are admissible for the new constraint. Even when
no OPs are admissible, the introduced overhead is due to
the building of a dedicated “view”, which involves all the
OPs in the knowledge base. Figure 7c shows the overhead
of defining a new objective function for the problem. In this
case, the overhead depends on the number of OPs that sat-
isfy all the constraints of the optimization problem. Figure
7d and 7e show the overhead of solving the optimization
problem by inspection. While the previous operation might
be considered as an initialization cost, this overhead is paid
each time the application enters in the managed region of
code. As shown in Figure 7d, the introduced overheads
depend only on the number of OPs involved in the change
with respect to the previous time that the optimization prob-
lem was solved. Figure 7e shows the introduced overhead in
the worst-case scenario, which is not only due to the fact that
all the Operating Points are involved in the change, but it
takes into consideration also the solver algorithm, by using
a knowledge base to stress the implementation. This means
that all the OPs have the same value for the metrics related
to the constraints and to the objective function. Figure 7f
shows the overhead of selecting the closest feature cluster
of the current input, where the feature vector is composed
of three values. Even this overhead is paid each time the
application enters in the managed region of code and it
shall be added to the overhead of solving the optimization
problem.

It is important to notice how the overheads measured
in these experiments must be related to the execution time
of each iteration of the target application. If needed, the
mARGOt activation period can be tuned to maintain the
overhead below a given threshold. For the applications

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Number of added Operating Points

No Constraints
1 Constraint

2 Constraints
3 Constraints

(a) Add Operating Points

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Size knowledge base [# Operating Points]

Worst case Best case

(b) Add a constraint

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Size knowledge base [# Operating Points]

Worst case Best case

(c) Define objective function

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Size knowledge base [# Operating Points]

No changes
5 Operating Points

50 Operating Points
100 Operating Points

(d) Find best configuration (flat)

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Size knowledge base [# Operating Points]

1 constraint
2 constraints

3 constraints
4 constraints

(e) Find best configuration (scaling)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

O
v
e
rh

e
a
d

 [
u
s]

Number of feature cluster

Euclidean Normalized

(f) Select features cluster

Fig. 7: Evaluation of the overheads introduced by mARGOt at runtime

discussed in the following sections, the introduced overhead
is less than 1%.

5.2 Stereomatching Application

The first use case targets the Stereomatching application,
that computes a disparity map of a scene captured by a
stereo camera. The output of this application is required for
estimating the depth of the objects in the scene. In this use
case, a smart camera is deployed either on a drone or on a
battery-powered surveillance system.

The algorithm derived by [64] builds adaptive-shape
support regions for each pixel of an image, based on colour
similarity, and then it tries to match them on the other
image, computing its disparity value. The algorithm im-
plementation [3] exposes five application-specific knobs to
modify the effort spent on building the support regions
and on matching them in the second image to trade off
the accuracy of the disparity image (the output of the
Stereomatching) and the execution time (and thus the reach-
able application throughput). The accuracy metric is the
disparity error, defined as the average intensity difference
per pixel, in percentage, between the computed output and
the reference output. The application has been parallelized
by using OpenMP, making available as sixth software-knob
the number of threads used for the computation.

This use case has been chosen to assess the benefits of
using reaction mechanisms provided by mARGOt in terms
of changes of application requirements and knowledge.

The end-user does not require the application to sustain
the throughput of the input video stream, but he/she re-
quires that the application must reach a minimum through-
put for detecting the position and depth of the objects in the
scene. In this use case, we set this high priority constraint
to 3fps. On top of this constraint, we envisioned two
different application requirements according to the scene
observed from the stereo camera. First, if in the previous

scene there is no object close to the camera, the objective
function minimizes the disparity error with an additional
low-priority constraint for executing the application by us-
ing a single software thread. Second, if there are objects
close to the camera, the objective function minimizes the
geometric mean between the disparity error and the number
of software threads, without any other constraint except the
one on the throughput. The philosophy behind these two
states is that in the first one we try to execute in a “low-
power” mode, because there is nothing interesting in the
scene, while in the second state we focus on the output
quality, without forgetting that the smart camera is placed
on a battery-powered device.

To demonstrate the adaptivity added to the Stereomatch-
ing application, we focused on two different scenarios as
shown in Figure 8a and 8b. The first scenario (Figure 8a)
shows how the feedback information from the monitors
triggers the adaptation reacting to a change of the applica-
tion performance. The second scenario (Figure 8b) shows
the benefits of reacting to changes in the application re-
quirements (such as switching from one state to the other)
according to the system evolution. Figure 8 shows the
results of these experiments, while Figure 9 reports the
application-knowledge (i.e. the Pareto-optimal Operating
Points). For clarity reasons, in Figure 8, we omitted to report
the software-knobs that are not relevant for the experiment.

In the first scenario (Figure 8a), we execute Stereomatch-
ing for 60s. After 20s, we reduce the frequency of the plat-
form cores by using the CPUfreq framework, for example
to simulate the effect of a power capping due to thermal
reasons, and then we restore the original frequency of the
cores after 20s. The whole experiment is executed under the
assumption that there is an object close to the camera. Figure
8a shows the execution trace of this experiment in terms of
CPU frequency, number of threads, computation error and
throughput.

11

(a) Reaction to a throughput degradation (b) Reaction to a change in the requirements

Fig. 8: Execution trace of Stereomatchingin an embedded platform. The x-axis shows the timestamp of the experiment,
while the y-axes show extra-functional properties of the system and the number of software-threads.

Fig. 9: Application-knowledge of the Stereomatchingapplica-
tion. Each circle represents an Operating Point. The x-axis
represents the expected average throughput, the y-axis the
expected average error, and the color range the parallelism
level.

At the beginning of the experiment, mARGOt selects
among the con�gurations that satisfy the constraint on the
throughput, the one that minimizes the error and resource
usage. When we reduce the frequency of the cores, the
throughput monitor observes a degradation on the per-
formance with respect to the expected one, triggering the
adaptation. In particular, mARGOt chooses among the valid
con�gurations, the one that minimizes the objective func-
tion, while providing the requested throughput adjusted by
the measured degradation. When we restore the original
frequency, the throughput monitor observes a performance
improvement and triggers the second adaptation. Given that
we restored the original condition, the selected con�gura-
tion is the same as the initial one.

In the second scenario (Figure 8b), we processed a video

stream captured from the stereo camera, while it slowly
moves from one close object (from 0s to around 20s) to
another one (around 40s to 60s). During the transition
between the two objects, there is a period (around 20s to
40s) where there is no object close to the camera. Figure 8b
shows the execution trace of this experiment in terms of
measured object distance, number of threads, computation
error and throughput.

At the beginning and at the end of the experiment, when
there is an object close to the camera, the con�guration
selected by mARGOt is the same used to start the previous
experiment (the conditions are the same). However, when
at time 22s there are no more objects close to the camera,
mARGOt switches to a more power safe state, which in-
troduces the constraint on a single thread execution. From
the knowledge base (see Figure 9), we notice that on this
platform there is no con�guration reaching a throughput
of 3fps by using a single thread. For this reason, mARGOt
automatically relaxes the lower priority constraint, selecting
the con�guration which is closest to satisfy it, i.e. using two
threads. Among the software-knob con�gurations that use
two threads, mARGOt selects the one that minimizes the
objective function.

In this use case, the overhead introduced by mARGOt is
always less than 0:1% of the application execution time.

5.3 GeoDock Application

The second use case is given by a docking application run-
ning on HPC resources. In the context of a drug discovery

12

 0

 1

 2

 3

 4

 5

 6

 7
E

xe
cu

tio
n

tim
e

[s
]

Slave 1
Slave 2

Slave 3
Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500

Q
ua

lit
y

[x
10

00
]

Timestamp [s]

(a) Small pocket (1b9v)

 0

 2

 4

 6

 8

 10

 12

 14

E
xe

cu
tio

n
tim

e
[s

]

Slave 1
Slave 2

Slave 3
Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 300 600 900 1200 1500

Q
ua

lit
y

[x
10

00
]

Timestamp [s]

(b) Large pocket (1cvu)

Fig. 10: Execution trace of GeoDock learning phase with
the same ligand library, but using different target pockets.
Each trace shows the execution time and the quality of the
elaboration.

process, the molecular docking task aims at estimating the
3-dimensional pose of a molecule, named ligand, after the
interaction with the target binding site of a second molecule,
named pocket. Molecular docking is employed in the early
stages of the drug discovery process for the virtual screening
of a huge library of ligands, to find the ligands with the
strongest interaction with the target pocket.

GeoDock is part of the LiGenDock application [65] and
it performs a fast estimation of the ligand pose by using
only geometrical information, to prune the ones that are
unable to fit in the target pocket. A subsequent module of
LiGenDock performs the actual simulation of chemical and
physical interactions to obtain an accurate pose estimation,
forwarding to the next stages of the process only the most
promising ligands. The complexity of the problem is not
only due to the number of ligands to evaluate but also to a
large number of degrees of freedom involved in the docking
of a ligand in the target pocket. To deal with this complexity,
GeoDock implements an iterative greedy algorithm. This
application exposes two software-knobs that approximate
the elaboration by increasing the granularity of the pose
optimization process.

Concerning the extra-functional properties, we have to
consider that the typical end-user is a pharmaceutical com-
pany that runs experiments on an HPC platform. Therefore,
the metrics of interest are the time-to-solution (which is
directly related to the cost of the computation resources) and
the quality of the elaboration. Given that the GeoDock pur-
pose is only to prune the ligands that are incompatible with
the target pocket, the considered quality metric associated to
a configuration is measured by considering the number of
evaluated poses for each ligand. This application represents
a typical batch job, where the end-user company rents a
pre-allocated set of resources from an HPC centre and it
would like to maximize the elaboration quality given the
time budget reserved for the job. Given that the later stages
of the drug discovery process require a monetary effort to
perform tests in-vivo, the reproducibility of the experiment

-10

-5

 0

 5

 10

 15

1b9v 1c1b 1cvu 1cx2 1d3h 1fm9 Global

P
re

di
ct

io
n

er
ro

r
[%

]

Pocket codenames

Fig. 11: The distribution of the prediction error on the time
to solution by considering different pockets.

really matters. Therefore, once mARGOt has selected the
most suitable configuration to perform the experiment, we
are not allowed to adapt anymore.

In this scenario, the goal of mARGOt is not only to tune
the application according to its requirements (maximizing
the quality, while satisfying a fixed time-to-solution) but also
to show the benefits of learning at runtime the application-
knowledge. The introduced overhead is negligible because
mARGOt tunes the application only once, at the beginning
of the screening process.

Figure 10 shows the initial 1500s of the execution trace
of GeoDock with a “small” (Figure 10a) and a “large” pocket
(Figure 10b) by considering the same constraint on the time-
to-solution. We use a library of 113k ligands, different in
terms of the number of atoms (between 28 and 153) and
internal degree of freedoms (between 4 and 106). While on
the x-axis we report the time passed from the beginning of
the experiment, on the y-axis we show the execution time to
evaluate a single ligand-pocket pair and the reached quality
of the elaboration. In both cases, in a first phase (up to
around 400s and 700s respectively considering the small and
large pocket) the application exploits the mARGOt remote
DSE framework to learn for each configuration the average
ligand-pocket docking time by randomly sampling the tar-
get ligand library and exploiting the parallelism of the HPC
resources. In a second phase, the application restarts to eval-
uate the library with a configuration selected by mARGOt
according to the application requirements (the remaining
time) and the online gathered application-knowledge. From
the results, we notice how the constraint on the execution
time is similar for both pockets, while the quality is higher
for the small pocket and lower for the large pocket.

To validate the quality of the model learned by mARGOt,
we used six pockets (1b9v, 1c1b, 1cvu, 1cx2, 1dh3 and 1fm9)
derived from the RCSB Protein Databank (PDB) [66], in
PASS version [67] and the same ligand library used in the
previous experiment. Figure 11 shows the distribution of the
prediction error by considering different pockets. For each
pocket, we execute 10 experiments by using a library of 4000
ligands randomly selected from the full library. To compute
the application-knowledge, each configuration of the DoE
is evaluated by using 200 ligands. We predict the time to
solution as the average execution time to elaborate a single
ligand multiplied by the dimension of the ligand library
and divided by the number of slaves. Despite the large
variability in terms of ligands size and the small learning

13

 100

 300

 1000

 3000

Monday Sunday

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(a) Path A, premium user

 100

 300

 1000

 3000

Monday Sunday

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(b) Path A, free user

 100

 300

 1000

 3000

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(c) Path B, premium user

 100

 300

 1000

 3000

N
u
m

b
e
r

o
f

S
a
m

p
le

s

Timeslot of requests

Dynamic approach Static approach

(d) Path B, free user

Fig. 12: Number of samples used by the adaptive PTDR application by changing the starting time of the request.

 0
 1
 2
 3
 4

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

△ x
x

x
△ xx
△ x xx

△

xx ox△
x

△△
△

xxx
xx

ox△ o△ xx△ x△ xxx
△x

△
x△ x

x
△ x△ x△ x

△

x
x

△
x

x
△△△ xxx△ x△

△

△
△ x△△

xx
△

xxx△ xxx x
△

x△
o

x
△ x

x

x△△ △ x
x△

x
x

x
△

△ x o
x x xx

△
△ xxx△ x

△ △
x△ △ x△△ x

△
△

x xxx x△ x o△ x
△

x
△
△

△
x△△△

△
x△△ x x△ x△

△

xxx x

△

△
x△
x

x△△
x△

△ x
△

x
△ xx

x

△△
x△

△△△
x

△ △x x x△ x x△△ x△

△

△
△ x

xx
xx

x
△

x△ x
△ x△

△ xxx x
o

x△ △
△ x x△ o
△△ x x△△ x xxxx△

△ x△

x

x△
△

ox△ x△
x△ xxxxx△

x
x

x△ x
x
xx xx△

△ △△ x
x

△
△

x△△
△

x
△

△△
△

△

x△△
x△

△
△

x x

△
xx△△△△ △ x△△

x
x

△ x
△

x△
x

△
△

x△ xx△ x△ ox

x
△ x

o

x
△ x△△△

x△
△

x
x△

xx△ xxx x
x

△ xx xx
△

x△ x x△△
x

xx△ x
x

xx

△

△ x△ x△
x

△△ △
o

△ x
x

△ xx△△ x xx x
△ △
△ x

△
x x△ x

x
x x

△

xx△
x△ x x xxx

△ xx x
△

△ x x
△

△△△△ x x
x

x
△ △

△ △△△ △ xx
△ xx

△

△
△
△ x

△
△△

o△ x△
x

xxxx
△

x△
x

△ x
△ x△ xxx x x

x△
x△ x

△
△ x x

x△ x△△ x△ x
△

△
xx

△
x△ x

△
x

x

△ x
△

△ x△ △△
x

△ xx△ x x

x
△ x

x
△ △ x

△△△ x
x

x△
x xx

△△
△

△
x

△

△

△△
△△ xx
△
△△ x

x
x△ x△△ o△△ x

x x

xx△
o

△△
x

△ xx
△

x△△ xx
x

△
x x

x xxx△△ x x ox△
xx△

x△
△

xx
x

x
x o

x
x△ xx x△ x

x
x

x
△△ x

x
x

x△x△ x
△x
x

x△
△
△

xx
△x△ x△ x
△

△△ xx x o
△

xx ox
△

x o
△ △△
△△△
△△ x
△
△
△

△ x△△△
x

x x oox
△

△
ox△△

△
x△ x

△
△ xx

x
x

△
xxx△△x△ △△ x△

x ox△△ x
x
xx

x
xxx

oxx
x

o
△

△
o

△
ox

xx
△△△△

x△△
△

x
△
△△

△△△ x
x

△
△

△ x
△

x
△△

△ x
△

x
xx△

△ xx
x

△△ x△ xx△
x

△ x x△
xx x△

x
x x△

△

xx xx△ x
△ xx△ x△
△

xxx
△ x
△

x△ x

x
△

x
△

△ △ xx
x

△ x x△ x
△

x
△

x△
△

x
△

△ x
x

x
x△

△ x
△ x

△△ x
x

x
△

oxx o
o

△
x

x△

△
△

△

△
x△ ox ox x△△ △ x

△

△ △ xx x x
x

xxx
xx

△ x
△

△ x△ x x x
△

△ x△△
x

△
△△ x△△ △

x△ x△ xx△
△

△
x

x△ xxx△
x x

x

△△
△△△

xx△ △
xx xx x

△
△△

△
xx

x
△

△ x
△ x x

x
△

xx

x

x x△ x x
xxx o

△
x△△

x
△ xx o△ △ x△△ x△
△△

△
△△

xx
△

x xxx xx

△
△
△ x

x△ x△△ x xxx ox
o

x△
x

x
xx△ x△△△△ △
x△ x

△
xx
x

x

△

x△
x

x xxx

△

x
△

xx
△

x
x

△ ox

△△ x△
△ x
△

x ox△△

△

△
x

xx
△

xx x o△
△△

x
△

x△ xx
x

△ xx
xx x

x o
x

x
△

x x
△

△
xx x

△ xx
x

x△
x△

x
△

x
△

△
x△

△ △△△△
△

xx x△ x
x o△

△
xx x
xx△ xx xx△ x△ x△

x x
x

△△ xx△ oxx
△

x

x

o
△△

△ x
x

x△△ x
x x△

△
x x

x
△

x△ △△ x△△ △ x o
△

o△ xx x
△ x△△ x x

△
x

△
△

x
x

△ x x△
△

o

△
△

xx△
x

△
xx x

x
x△△

x
△

x
xxx△

x xx
△△

△△
△ xxx
△

x△△
△△ x

x
x xx

△ △△
△△△ x x△△

x

x△△

△

△△ x
x

x△
x

x△ ox
△
△ x△ x

△△ x△ x
x

x△
x

△
xx△ x

△△
△

xx x△ x
x△△△△ x△

x
△ xx△△ x

x△△ xx x△△ x x x△
x

x
△

x
△

△
△△ x

xx xx△△ x
x x△ △ x

△

△
△ xx

x

△△△
△△△
△ x

△ △
△△ o

x o
△

x
△

x

△
△

△△

x

x

x△△ x
△

x△ oxx
△

xxx
x△△△ x△

x

△
x

△
△ x
△

x△

x

△
△

△ △△ △
△ xx△△ x

x
xx xx△△ △

△△△
x

x△△ △
x

x
△ △ xxx

x

x△△

△
△

△
△

x
△

x△△ x
x△

△

x△△ △
x x x△
x
xx△ x

△

(a) Premium user

 0
 2
 4
 6
 8

 0.05 0.1 0.15 0.2 0.25

•: 100 trials △: 300 trials x: 1000 trials o: 3000 trials

E
rr

o
r

[%
]

Unpredictability

•

△△ △
• △••

•
△ △•• △ x△• △•••
△

•△

•

△ △
•• x

• △

•

• •• △
△••••

•
• • △• △• △•

•• △
△• △••

•
• △

•

•

• △•
•

•

•
△•

• △

•
• △△△•• △△

△•
△

• x△• △△△
•

••
△

•
•

•

• •

•
•

△ △• △
△••

•

•
△

•

• △
• •

△

•
• △•

• △••
•

△△

•
△•

•
x•

•• △
••• △•••
•

•
•

•

•

△•
• •

•
△

•• △•
••

• ••△

•
△•• △•
△• △•

•
•
•••

•
••

△
•

•• △△• • △•• △•
•

• •

△
•

• △△
•• •

•
•• ••• △

•
•

△
△

△
• •• • △

• x•• △ △•• △ △ △△•••
••

• △• •
△△••• △•

•
△ △

•

△
• △

• △• △• △•
•

△
•

• •• • △
• • △

△•

•

△• △• •
• △

• •
•

•• •
•

•
•

x△
•

•••

•
△• •
△△•

△
• △•

•••
△

• ••• •• x
•

△• • △△• △•••
△• •

•
•
• △

•

• △•• △△• △• △
△•

△
• • △••

• △
••

△ △△
•

•• •• •
• •••

• △•
• △•

△
△

•
• •

△

•
△• •• •

•
△
△

• △△

• △

• •••
•

•
• △ △

△△• △•
△•• ••• •

••• △△

△△• •
• • •• • △•• △△

•
•• • △••
•

x• △
• △

x
△••• △

•
△

• △• △
•

△• • △△△
•

△• △•
•

•
•
•

• △•• △•

△
•• △△• △•

△
•

△
△•

••• •• •• △• △△• △
•
•• • △• • △••• ••
△• △•
•

••• • •• ••
•

•

•

△

△
•

•
•

△
△•• △

••
x•• △

•
△△△• x

•
•

•• △ △• △
•

••
△ △

•

△

△
•

△•
•
•

•
△△ △•• △ △

•
△

•
•

△
△△△△ x△△• • △

△
•

△△
△
△•• △△△•

•

•
•

•
•

•

• △△•• △•••
• △

•
△••• △

• △ △• △
△ x

•

• △ x
• •

•
••

• •• △•
• •• •

••
• △

• △
x△••• △

•

••
•
••

•• •
△△

•
•

•

•

△
△△•••

•• △• x△••• △

△
•△△•△• △
△

△ △ x• • △• x△ △△•
•• • △

••
• ••

••• ••
••

•

•
•

△
•

△• •• △• △
••• •

△

•

△•

•

△
• △•

•
△

•• △• △• △••
•

△• • ••
△

•

• △•
•

△•
△•• △

•
••

△•
••

△△• △•• •
△

△△• • △• ••
••

••• △
•• △△

• △• •
△

• •
•

• △△•• △△• △
△•• △• •

••
△•• x
△ x• △•

• • △•

•
•

• △ △
△

• △
•
• △△

•
△••
△

• △ △ △•• •
•

• △•

•
•

•

•• • △• △
• •△••

• △•

• △

△•

•

•

△
△

••
••
• △△•

•

△
•

△• △
•

•
•• △

• △
•

• •••
△

△• •
•

△• △• △
△△•

• △• △•
• △

•
•
•

x
• •

△

•
• •

• ••
• • •• △• • △•• △

• •••
△

△• •
••

•
△△• △△ x△• △

△ △
△

• △
•

••
•
•

△••• • △△ △• △
•

△△△△△

•

△
•

△△•
• △•

x
△• •

△•
•

••

•
x••• ••

△
• △•

•• △
x

•
•• •• △

•
△• •

• △ △
△ △△△

△
△ △• △△•

••
• △

•

△• △••
△

• •
•

•

•
• •••

•••
•

• △
△△

•
• △

△

•

•
••
•
△
△• △•• △• △• △• △

•

△
•

• △△
•

x
△

△• △

•
x••• ••••• △•△•• △

△
△

•
•

• •
• △
•• • △ △• △• △• △•

△
•• △△

•
△

•
△△•

•
△ △

• △ x•• △△• △
•

△•
△
△

△•
• △• △ △•

△• •

•

△
•

••• •
••

••
•

•• •
• •• △

△
•

• ••
•••

•
△

•

• △•• •
•

•• △•△• △•• △

•
•
• △• △•

• △

• △△
••
△

•

•△•

•

••
•

•△ △• • △
••

•
• •• •• △•
•

•
△△

•
•

•
•

△•• △△ △• •
△•

•
•

•••

△
• △△

•

•• △
•

△•
•

△
••

•
△△
△•

•• •

•

••
•

• •
•• △△ x
• △• △•

• •
•

△ △△• •
△• •• x

••• •
△
△ △•

•• △• •• ••
• •• •• △• ••
•••

• △△•• △
△

△• •
•△•

•

••
• • △••

•

• ••
•

••
△△

••• •• ••
••

△••
△ △

• •
△••

•

△
△ △•
△

••

• ••

(b) Free user

Fig. 13: Validation campaign of the dynamic approach,
where each dot is a PTDR request evaluation. The x-axis
represents the observed unpredictability, while the y-axis
the observed error. Color and shape of each dot represents
the number of samples.

set, the prediction error reported in Figure 11 is kept limited
(<10%) providing to mARGOt the possibility to increase the
computation efficiency.

5.4 Probabilistic Time-dependent Routing Application
The third use case represents the tuning of a Monte Carlo
simulation used to estimate the travel time distribution in
a processing pipeline for a car navigation system. In smart
cities, traffic prediction and cooperative routing are exam-
ples of activities to ease the life of citizens. In particular,
the Probabilistic Time-Dependent Routing (PTDR) algorithm
[68] is a crucial component of a cooperative routing task to
compute the estimated travel time distribution. Then, later
stages of the navigation system leverage this information to
select the best solution among different routes.

To generate this output, PTDR must first estimate the
travel time distribution and then extract statistical proper-
ties to be forwarded to the later stages of the navigation sys-
tem. Each trial of the Monte Carlo simulates an independent
route traversal over an annotated graph in terms of speed
profiles. Given a sufficient number of trials, the sampled
distribution of travel times will asymptotically converge
towards the real distribution. Using this distribution, the
application derives the statistical property of interest (such
as the average or the 3rd quartile), which represents the
actual output of the application.

The application is designed and already optimized to
leverage the resources of the target HPC platform [69] and
exposes as software-knobs, the number of Monte Carlo
samples to be used to compute the output. The error metric
is defined as the difference between the value extracted
with a limited number of samples and the one extracted
with a very large (theoretically infinite) number of sam-
ples (we used 1M samples). Moreover, as defined in [69],
we can differentiate among paths with a large or narrow
distribution of speed profiles, resulting respectively less or
more predictable in terms of travel time estimation. We call
this feature, that can be easily extracted before running the
PTDR, unpredictability and we use it as data-feature to be
provided to mARGOt for selecting the right software-knob
configuration for each simulation.

In terms of application requirements, the end-user
would like to minimize the number of samples used to
compute the output, with a limit on the error upper bound.
This use case has been selected to demonstrate the benefits
of using mARGOt in a proactive fashion, to tune the number
of trials according to the current input. Without dynamic
adaptation, the end-user should find the minimum number
of samples that leads to a satisfying computation error for
the worst case scenario. Moreover, end-user would like to
differentiate the threshold on the computation error con-
straint, according to whether the request is generated from

14

a premium user (error < 3%) or a free user (error < 6%).
Before running the application, we performed an ex-

perimental campaign by using random requests from 300
paths in the Czech Republic [68], in different moments of
the week, to build the application-knowledge. Moreover, we
limited the software-knob values to [100; 300; 1000; 3000]
according to the previous analysis of the application [68].
Furthermore, to increase the robustness of the approach we
consider three times the standard deviation of a software-
knob configuration for the constraint on the computation
error.

Figure 12 shows the selected number of samples in an ex-
periment that generates four types of requests every 15min
on two days of the week, Monday and Sunday. In particular,
for each type of user, we consider two different paths. Figure
12c and 12a shows the results for the premium user, while
Figure 12d and 12b shows the results for the free user. On
one hand, this experiment shows how changing the appli-
cation requirements (premium and free users) decreases the
number of samples used to satisfy the request, considering
both static and dynamic approaches. On the other hand,
this experiment shows how using input features (dynamic
approach) decreases the number of samples with respect to
using a single conservative configuration (static approach).
This is due to different path characteristics, defined by their
unpredictability. For example, countryside requests are more
predictable than those coming from an urban area. In this
experiment, the proposed approach easily implemented by
using mARGOt uses approximately the 30% of the number
of samples of a static approach, with an overhead compara-
ble of computing 2 samples.

The second experiment focuses on validating the dy-
namic approach. Figure 13 shows the computation error
on 1500 requests from routes of the Czech Republic with
different starting time and considering different types of
users (premium user in Figure 13a and free user in Figure
13b). The x-axis represents the extracted input feature, while
the y-axis represents the observed error. Each dot in the plot
represents a request and their shape and colour highlight
the chosen number of samples by the dynamic approach.
The plot makes easy the identification of the switching
points among the knob configurations according to the
input feature (e.g. 0.07 and 0.125 for Figure 13a and 0.07
and 1.15 for Figure 13b). The results show how by using
mARGOt all the requests have been satisfied with the target
error level by using fewer samples than a static approach
leveraging on the input features.

In this use case, the overhead introduced by mARGOt is
around 1% of the smallest number of samples for the Monte
Carlo simulation.

6 CONCLUSIONS

In this article, we propose mARGOt, a dynamic autotuning
framework to enhance an application with an adaptation
layer. In particular, the application end-user specifies high-
level goals and mARGOt provides to the application the
most suitable configuration of the software-knobs lever-
aging on the application-knowledge. Moreover, mARGOt
provides mechanisms to adapt in a reactive and proactive
way by identifying and seizing optimization opportunities

at the runtime. It is also possible to avoid the Design Space
Exploration by learning the application-knowledge online.
Due to its flexibility, mARGOt can be successfully applied
to a wide range of applications domains from embedded
to HPC. In this work, we have shown the benefits of
dynamic adaptation in three different application domains.
Experimental results have shown how mARGOt reacts to
changes in the execution environment and in the application
requirements, while leveraging on input features for seizing
optimization opportunities for the actual inputs. Moreover,
mARGOt might learn the application-knowledge at run-
time, for capturing complex relations between the software-
knobs, the actual input set and the metrics of interest.
Finally, the mARGOt framework is released as open-source
[10] along with user manuals and doxygen documentation.

ACKNOWLEDGMENTS

The authors would like to thank Kateřina Slaninová, Jan
Martinovič and Martin Golasowski from IT4Innovations
for their support for the PTDR application. The authors
would like to thank Andrea Beccari and Candida Manelfi
from Research and Innovation, Dompé Farmaceutici and
Nico Sanna and Carlo Cavazzoni from SuperComputing
Applications and Innovation, CINECA for their support for
the GeoDock application.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Com-
puter Architecture (ISCA), 2011 38th Annual International Symposium
on. IEEE, 2011, pp. 365–376.

[2] M. Duranton, K. De Bosschere, C. Gamrat, J. Maebe, H. Munk, and
O. Zendra, “The HiPEAC Vision 2017,” 2017.

[3] E. Paone, G. Palermo, V. Zaccaria, C. Silvano, D. Melpignano,
G. Haugou, and T. Lepley, “An exploration methodology for a
customizable opencl stereo-matching application targeted to an
industrial multi-cluster architecture,” in Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. ACM, 2012, pp. 503–512.

[4] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard, “Using code perforation to improve performance, reduce
energy consumption, and respond to failures,” 2009.

[5] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant com-
putations that discard tasks,” in Proceedings of the 20th annual
international conference on Supercomputing. ACM, 2006, pp. 324–
334.

[6] J. O. Kephart and D. M. Chess, “The vision of autonomic comput-
ing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[7] D. Gadioli, S. Libutti, G. Massari, E. Paone, M. Scandale, P. Bellasi,
G. Palermo, V. Zaccaria, G. Agosta, W. Fornaciari et al., “Opencl
application auto-tuning and run-time resource management for
multi-core platforms,” in Parallel and Distributed Processing with
Applications (ISPA), 2014 IEEE International Symposium on. IEEE,
2014, pp. 127–133.

[8] E. Paone, D. Gadioli, G. Palermo, V. Zaccaria, and C. Silvano,
“Evaluating orthogonality between application auto-tuning and
run-time resource management for adaptive opencl applications,”
in Application-specific Systems, Architectures and Processors (ASAP),
2014 IEEE 25th International Conference on. IEEE, 2014, pp. 161–
168.

[9] D. Gadioli, G. Palermo, and C. Silvano, “Application autotun-
ing to support runtime adaptivity in multicore architectures,” in
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), 2015 International Conference on. IEEE, 2015, pp. 173–
180.

[10] “mARGOt framework git repository,” https://gitlab.com/
margot project/core, 20018.

15

[11] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation with
reusable infrastructure,” Computer, vol. 37, no. 10, pp. 46–54, 2004.

[12] E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “Towards
architecture-based self-healing systems,” in Proceedings of the first
workshop on Self-healing systems. ACM, 2002, pp. 21–26.

[13] R. Ananthanarayanan, M. Mohania, and A. Gupta, “Management
of conflicting obligations in self-protecting policy-based systems,”
in Autonomic Computing, 2005. ICAC 2005. Proceedings. Second
International Conference on. IEEE, 2005, pp. 274–285.

[14] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills III, and
Y. Diao, “ABLE: A toolkit for building multiagent autonomic
systems,” IBM Systems Journal, vol. 41, no. 3, pp. 350–371, 2002.

[15] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computingdegrees, models, and applications,” ACM Computing
Surveys (CSUR), vol. 40, no. 3, p. 7, 2008.

[16] S. Mahdavi-Hezavehi, V. H. Durelli, D. Weyns, and P. Avgeriou,
“A systematic literature review on methods that handle multiple
quality attributes in architecture-based self-adaptive systems,”
Information and Software Technology, vol. 90, pp. 1–26, 2017.

[17] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility
functions in autonomic systems,” in Autonomic Computing, 2004.
Proceedings. International Conference on. IEEE, 2004, pp. 70–77.

[18] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A hybrid rein-
forcement learning approach to autonomic resource allocation,” in
Autonomic Computing, 2006. ICAC’06. IEEE International Conference
on. IEEE, 2006, pp. 65–73.

[19] D. Abramson, R. Buyya, and J. Giddy, “A computational economy
for grid computing and its implementation in the Nimrod-G
resource broker,” Future Generation Computer Systems, vol. 18, no. 8,
pp. 1061–1074, 2002.

[20] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and
A. Agarwal, “SEEC: a general and extensible framework for self-
aware computing,” 2011.

[21] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretó,
D. Chou, B. Gluzman, E. Roman, D. B. Bartolini, N. Mor et al.,
“Tessellation: refactoring the os around explicit resource contain-
ers with continuous adaptation,” in Proceedings of the 50th Annual
Design Automation Conference. ACM, 2013, p. 76.

[22] F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau,
“Resource-aware programming and simulation of MPSoC archi-
tectures through extension of X10,” in Proceedings of the 14th Inter-
national Workshop on Software and Compilers for Embedded Systems.
ACM, 2011, pp. 48–55.

[23] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQu-
oSAadaptive quality of service architecture,” Software: Practice and
Experience, vol. 39, no. 1, pp. 1–31, 2009.

[24] S. Fang, Z. Du, Y. Fang, Y. Huang, Y. Chen, L. Eeckhout, O. Temam,
H. Li, Y. Chen, and C. Wu, “Performance portability across hetero-
geneous socs using a generalized library-based approach,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 11,
no. 2, p. 21, 2014.

[25] C. Ţăpuş, I.-H. Chung, J. K. Hollingsworth et al., “Active harmony:
Towards automated performance tuning,” in Proceedings of the
2002 ACM/IEEE conference on Supercomputing. IEEE Computer
Society Press, 2002, pp. 1–11.

[26] C. A. Schaefer, V. Pankratius, and W. F. Tichy, “Atune-IL: An
instrumentation language for auto-tuning parallel applications,”
in European Conference on Parallel Processing. Springer, 2009, pp.
9–20.

[27] R. Miceli, G. Civario, A. Sikora, E. César, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin et al., “Autotune:
A plugin-driven approach to the automatic tuning of parallel ap-
plications,” in International Workshop on Applied Parallel Computing.
Springer, 2012, pp. 328–342.

[28] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Parallel Architecture and
Compilation Techniques (PACT), 2014 23rd International Conference
on. IEEE, 2014, pp. 303–315.

[29] A. Rasch, M. Haidl, and S. Gorlatch, “ATF: A Generic Auto-Tuning
Framework,” in High Performance Computing and Communications;
IEEE 15th International Conference on Smart City; IEEE 3rd Inter-
national Conference on Data Science and Systems (HPCC/SmartCi-
ty/DSS), 2017 IEEE 19th International Conference on. IEEE, 2017,
pp. 64–71.

[30] S. Misailovic, D. Kim, and M. Rinard, “Parallelizing sequential
programs with statistical accuracy tests,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 12, no. 2s, p. 88, 2013.

[31] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox:
Pattern-based approximation for data parallel applications,” ACM
SIGPLAN Notices, vol. 49, no. 4, pp. 35–50, 2014.

[32] J. Dorn, J. Lacomis, W. Weimer, and S. Forrest, “Automatically
exploring tradeoffs between software output fidelity and energy
costs,” IEEE Transactions on Software Engineering, 2017.

[33] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear
algebra software,” in Proceedings of the 1998 ACM/IEEE conference
on Supercomputing. IEEE Computer Society, 1998, pp. 1–27.

[34] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[35] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A library of
automatically tuned sparse matrix kernels,” in Journal of Physics:
Conference Series, vol. 16, no. 1. IOP Publishing, 2005, p. 521.

[36] M. Püschel, J. M. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “Spiral: A generator for platform-
adapted libraries of signal processing alogorithms,” The Interna-
tional Journal of High Performance Computing Applications, vol. 18,
no. 1, pp. 21–45, 2004.

[37] C. Nugteren and V. Codreanu, “CLTune: A generic auto-tuner
for OpenCL kernels,” in Embedded Multicore/Many-core Systems-on-
Chip (MCSoC), 2015 IEEE 9th International Symposium on. IEEE,
2015, pp. 195–202.

[38] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code genera-
tion and autotuning framework for parallel iterative stencil com-
putations on modern microarchitectures,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 2011,
pp. 676–687.

[39] S. A. Kamil, Productive high performance parallel programming with
auto-tuned domain-specific embedded languages. University of Cali-
fornia, Berkeley, 2012.

[40] M. J. Voss and R. Eigenmann, “ADAPT: Automated de-coupled
adaptive program transformation,” in Parallel Processing, 2000.
Proceedings. 2000 International Conference on. IEEE, 2000, pp. 163–
170.

[41] H. Guo, “A bayesian approach for automatic algorithm selection,”
in Proceedings of the International Joint Conference on Artificial Intelli-
gence (IJCAI03), Workshop on AI and Autonomic Computing, Acapulco,
Mexico, 2003, pp. 1–5.

[42] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard, “Quality
of service profiling,” in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1. ACM, 2010, pp.
25–34.

[43] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proceedings of the 17th international conference on Parallel architectures
and compilation techniques. ACM, 2008, pp. 72–81.

[44] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke,
“Sage: Self-tuning approximation for graphics engines,” in Mi-
croarchitecture (MICRO), 2013 46th Annual IEEE/ACM International
Symposium on. IEEE, 2013, pp. 13–24.

[45] W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,”
in ACM Sigplan Notices, vol. 45, no. 6. ACM, 2010, pp. 198–209.

[46] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard, “Dynamic knobs for responsive power-aware
computing,” in ACM SIGPLAN Notices, vol. 46, no. 3. ACM,
2011, pp. 199–212.

[47] A. Filieri, H. Hoffmann, and M. Maggio, “Automated multi-
objective control for self-adaptive software design,” in Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 13–24.

[48] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, “Proactive con-
trol of approximate programs,” ACM SIGOPS Operating Systems
Review, vol. 50, no. 2, pp. 607–621, 2016.

[49] L. G. Valiant, “A theory of the learnable,” Communications of the
ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[50] J. S. Miguel and N. E. Jerger, “The anytime automaton,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 545–557.

[51] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and
L. Tang, “Input responsiveness: using canary inputs to dynami-
cally steer approximation,” ACM SIGPLAN Notices, vol. 51, no. 6,
pp. 161–176, 2016.

