Frequency behavior, stability and compensation

Alessandro Spinelli
Phone: (02 2399) 4001
alessandro.spinelli@polimi.it
home.deib.polimi.it/spinelli
Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes.
Outline

• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix
Frequency behavior

\[G_{loop}(s) = - \frac{G_{OL}(s)}{G_{id}(s)} \Rightarrow \]

\[|G_{loop}(s)|_{dB} = |G_{OL}(s)|_{dB} - |G_{id}(s)|_{dB} \]

\[G = \frac{G_{OL}(s)}{1 - G_{loop}(s)} = \frac{G_{id}(s)}{1 - 1/G_{loop}(s)} \]

\[G_{loop} \gg 1 \Rightarrow G \approx G_{id} \]

\[G_{loop} \ll 1 \Rightarrow G \approx G_{OL} \]
Frequency behavior

\[|\cdot|_{dB} \]

\[G_{loop}(s) \]

\[G_{OL}(s) \]

\[G_{id}(s) \]

\[G(s) \]

\[\log f \]
Single-pole amplifier

\[G_{OL}(s) = A(s) \]

\[G_{loop}(s) \]

\[G_{id}(s) \]

\[G(s) \]

\[f_T = \frac{GBWP}{G_{id}} \]

\[\frac{A_0}{2\pi\tau} = GBWP \]
Analytical solution

\[G = \frac{G_{id}}{1 - \frac{1}{G_{loop}(s)}} = \frac{G_{id}}{1 + \frac{R_1 + R_2}{A(s) R_1}} \]

The pole position is

\[s = -\frac{1}{\tau} \left(1 + \frac{A_0 R_1}{R_1 + R_2} \right) = -\frac{1}{\tau} \left(1 - G_{loop}(0) \right) \]
Gain-bandwidth product

• For a non-inverting amplifier we have

\[f_p \approx -\frac{1}{2\pi \tau} \frac{A_0}{G_{id}} \Rightarrow |f_p|G_{id} = \frac{A_0}{2\pi \tau} = GBWP \]

• In an inverting configuration we should write

\[|f_p|(1 - G_{id}) = GBWP, \]

which becomes the same for high gains

• The feedback loop reduces the (open-loop) gain by \(1 - G_{loop}(0)\) and widens the bandwidth by the same factor
Stability of feedback systems

• Stability only depends on G_{loop}
• The critical condition is $G_{loop} = 1$, i.e., $-G_{loop} = -1$
Outline

• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix
Bode stability criterion (1945)

- If
 - $G_{\text{loop}}(s)$ only has poles in LHP (or in $s = 0$)
 - There is only one critical frequency f_{180} where the phase of $-G_{\text{loop}}$ is 180° (\pm multiples of 360°)
 - $|G_{\text{loop}}(f_{180})| < 1$

- Then, the system is stable
Gain and phase margins

\[G_m = \frac{1}{|G_{\text{loop}}(f_{180})|} \quad G_m|_{dB} = -|G_{\text{loop}}(f_{180})|_{dB} \]

\[\varphi_m = 180 + \angle \left(-G_{\text{loop}}(f_{0dB}) \right) \]

- \(G_m \) and \(\varphi_m \) represent how much increase in gain or phase lag the system can withstand before becoming unstable
- Important in real systems, where transfer functions are subjected to tolerances
Simplified Bode criterion

If poles and zeros are in LHP, stability can be inferred from Bode plot

\[\varphi_m \approx 90^\circ \]

\[\varphi_m \approx 0^\circ \]

\[\varphi_m \approx 45^\circ \]
How much phase margin?

![Graph showing step response and overshoot with phase margin as parameter.](image)
Outline

• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix
Frequency compensation of OAs

• Is the tailoring of $G_{loop}(s)$ in order to improve the circuit stability

• Most OAs are «internally compensated» for easing their use with resistive feedback, and have a single pole above 0dB

• For frequency-dependent feedback, stability must be checked and compensation applied (if needed)
Uncompensated OAs

\[G_{OL}(s) \]
\[G_{id}(s) \]
\[G_{\text{loop}}(s) \]
\[G(s) \]

\[|\cdot|_{dB} \]
\[\log f \]
Dominant pole compensation

\[|G_{\text{loop}}(s)|_{\text{dB}} \]

\[\log f \]
Pole-zero compensation

\[|G_{\text{loop}}(s)|_{\text{dB}} \]
Input capacitance

\[G_{\text{loop}} = -A(s) \frac{Z_1}{Z_1 + R_2} \]

\[= -A(s) \frac{R_1}{R_1 + R_2} \frac{1}{1 + sC_i(R_1 \parallel R_2)} \]
Compensation of input capacitance

\[G_{\text{loop}} = -A(s) \frac{R_1}{R_1 + R_2} \frac{1 + sC_2R_2}{1 + s(C_i+C_2)(R_1 \parallel R_2)} \]
Resulting loop gain

\[f_p = \frac{1}{2\pi(C_i + C_2)(R_1 \parallel R_2)} \]

\[f_z = \frac{1}{2\pi C_2 R_2} \]

\[f_p < f_z \]
Notes...

- C_2 modifies the closed-loop gain \Rightarrow **stability is traded off against bandwidth** (now given by f_z)
- Another possibility is $C_2 R_2 = C_i R_1$ (pole-zero cancellation), but keep in mind that C_i is never constant in reality...
- In differential amplifiers, use symmetric compensation
Lag network \((f_p < f_z)\)

\[
G_{loop} = -A(s) \frac{R_1}{R_1 + R_2} \frac{1 + sC_cR_c}{1 + sC_c(R_c + R_1 \parallel R_2)}
\]

Does not affect \(G_{id}\), but can degrade \(Z_{in}\) in NI amplifiers.
Differentiator

\[G_{\text{loop}} = -A(s) \frac{1}{1 + sR(C + C_i)} \]

A simple resistor \(R_c \) between the OA inputs can be effectively used for compensation.
Yet another compensation

LF:

HF:
Poles and zeros

\[f_z = \frac{1}{2\pi C R_c} \]

\[f_{p1} \approx \frac{1}{2\pi C (R_c + R)}; \quad f_{p2} \approx \frac{1}{2\pi C_i (R_c \| R)} \]

- \(f_{p2} \) is usually at high frequency and can be neglected
- Lag network \((f_{p1} < f_z)\) can be used for compensation
- Closed-loop gain bandwidth limited to \(\frac{1}{2\pi R_c C} \)
Capacitive load

Additional pole in G_{loop} must be above $GBWP$ (say, $10GBWP$) \Rightarrow maximum load capacitance is

$$C_L \approx \frac{1}{2\pi R_o (10 \text{ GBWP})}$$
Compensation – 1

\[f_z = \frac{1}{2\pi C_L R_c} \]

\[f_p \approx \frac{1}{2\pi C_L (R_c + R_o)} \]

If \(R_1 + R_2 \gg R_c, R_o \)
Outline

• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation

• Appendix
Compensation – 2
Poles and zeros

- If $R_c, R_o \ll R_1 + R_2$

 $$f_{p1} \approx \frac{1}{2\pi C_L (R_c + R_o)}; \quad f_{z1} \approx \frac{1}{2\pi C_L R_c}$$
 $$f_{p2} \approx \frac{1}{2\pi C_c (R_1 \parallel R_2)}; \quad f_{z2} \approx \frac{1}{2\pi C_c R_2}$$

- Pole-zero cancellation leads to

 $$R_c = R_o \frac{R_1}{R_2}; \quad C_c = C_L R_o \frac{R_1 + R_2}{R_2^2}$$