Cost-aware rank join with random and sorted access

Davide Martinenghi and Marco Tagliasacchi

Abstract—In this paper we address the problem of joining ranked results produced by two or more services on the Web. We consider services endowed with two kinds of access that are often available: i) sorted access, which returns tuples sorted by score; ii) random access, which returns tuples matching a given join attribute value. Rank join operators combine objects of two or more relations and output the \(k \) combinations with the highest aggregate score. While the past literature has studied suitable bounding schemes for this setting, in this paper we focus on the definition of a pulling strategy, which determines the order of invocation of the joined services. We propose the CARS (Cost-Aware with Random and Sorted access) pulling strategy, which is derived at compile-time and is oblivious of the query-dependent score distributions. We cast CARS as the solution of an optimization problem based on a small set of parameters characterizing the joined services. We validate the proposed strategy with experiments on both real and synthetic data sets. We show that CARS outperforms prior proposals and that its overall access cost is always within a very short margin from that of an oracle-based optimal strategy. In addition, CARS is shown to be robust w.r.t. the uncertainty that may characterize the estimated parameters.

Index Terms—Top-k, rank join, sorted access, random access.

1 INTRODUCTION

Domain-specific search engines are becoming widespread on the Web. Their focus on a single domain gives them greater capabilities and credibility over general-purpose search engines, but also limits their query answering spectrum to narrow queries over specific domain knowledge. The new trend in search-oriented research [1] aims to overcome such a limitation, by allowing the co-operation and orchestration of search services in order to answer complex, multi-domain queries. Figure 1 shows an example multi-domain query written in an SQL-like language that retrieves the top 5 hotels and French restaurants in Paris located in the same street giving priority to number of stars and user rating. Addressing such queries, called rank join queries, requires to i) extract the answers of domain-specific search systems, ii) join them to form combinations, and iii) globally rank each combination by means of an aggregation function, so as to return the answers with the top aggregate scores first.

As customary in top-k query processing, we consider services that may return a large number of tuples, all equipped with a score. The tuples are typically presented in pages, and accessing such pages is costly. Moreover, accesses can occur according to various methods. These can be broadly classified as either i) sorted, producing a potentially large list of tuples ranked by score (such that the list’s tail is typically not retrieved by the join method), or ii) random, producing a narrower set of objects, normally not ranked, which satisfy a selection over the attributes.

In this context, we adopt a model that takes into account the different ways of accessing the services, each characterized by its access cost. Then, we introduce an algorithm that generates at compile-time a cost-aware strategy to access services in order to quickly produce the combinations with the highest aggregate scores.

The rank join problem has been dealt with in the literature (e.g., [2]) by extending rank aggregation algorithms [3] to the case of join in the setting of relational databases. Rank join operators are often ([4]) characterized by i) a bounding scheme defining an upper bound on the score of unseen combinations, which grants correct termination with the top-k combinations when the score of the current k-th best combination exceeds the upper bound; ii) a pulling strategy deciding at each step the next service (relation) to be accessed. The well-known HRJN and HRJN* rank join operators [2] adopt a simple, yet efficient, bounding scheme that requires keeping track of the scores of the first and last tuples retrieved from each service.

When only sorted access is available, the optimal pulling strategy (adopted by HRJN*) consists of accessing, at each step, the service with the highest potential
to lower the upper bound. Note that, in this scenario, access costs do not affect the pulling strategy, as the latter depends only on the scores of the retrieved objects.

We remark that random access is often available. This happens, e.g., when the same service is endowed with several input/output signatures representing different access patterns, as is the case with many services on the Web. Also, random access might be provided by a different service than the one providing sorted access; this gives more flexibility over the relational setting, where random access requires the construction of explicit indexes. In addition, random access is naturally available in several contexts, e.g., in similarity join [5]. Here, sorted access takes place by exploring input relations in order of distance from a query object; random access simply means to reuse the same access pattern as sorted access but, instead of a query object, using an arbitrary object in another relation, in order to retrieve the similar objects. Note that the availability of random access enables a much faster termination since i) a large number of combinations can be formed after each random access; ii) the bounding scheme computes an upper bound that is lower than with sorted access only.

The rank-join problem with both sorted and random access has been mentioned in [2], where a suitable bounding scheme is proposed. The introduction of random access also affects the pulling strategy. This has been recognized in [6], where a cost-aware pulling strategy is envisaged at query execution time. However, this approach only covers the problem of rank aggregation, i.e., a very restricted case of rank join, where all services have the same number of objects, and each of them appears only once. As such, it cannot be readily extended to the more general scenario addressed here. While several other rank aggregation algorithms take both kinds of access into account [3], [7], [6], [8], [9], [10], [11], [12], [13], the recent literature on rank join has mostly focused on cost-aware operators with sorted access only. Considering both kinds of access is relevant since, as pointed out, random access is often available and leads to considerable speed-up of rank-join operators.

To our knowledge, no author has addressed pulling strategies for rank join operators endowed with both sorted and random access. Several works exist that consider both sorted and random access in the context of rank aggregation, and adaptations of these to the rank join scenario are possible; yet, as will be discussed in Sections 3 and 6, some of the main benefits of these methods do not readily carry over to rank join. The design of an optimal pulling strategy that takes into account both access costs and score distributions needs to face practical issues. The main difficulties arise when modeling the score distribution of unseen tuples since: i) the score distribution might depend on the query; ii) the score of tuples retrieved by means of random access cannot be predicted based on the scores of the seen tuples.

Therefore, in this paper we present a pulling strategy for binary rank join operators that takes into account only the service access costs and rough characterizations of value distributions that are easy to estimate and yet allow us to obtain near-optimal and robust performance.

Contributions. We define the CARS (Cost-Aware with Random and Sorted access) compile-time pulling strategy for rank join operators with both sorted and random access. Our model explicitly captures the different access costs and is oblivious of the score distributions. We determine the pulling strategy by solving an optimization problem that is formulated in terms of just a few parameters synthesizing the main aspects of the services (e.g., access costs, join selectivity, number of distinct join attribute values). These parameters might be available at service registration, or estimated using state-of-the-art techniques [14].

We evaluate the performance of CARS using both real and synthetic data sets. We observe that CARS is very close, in terms of overall access cost, to the optimal strategy computed by an oracle-based algorithm. We compare our solution with the main strategies available at the state of the art: i) the round-robin strategy of HRJN, oblivious of costs and score distribution; ii) the strategy of HRJN*, oblivious of both costs, which determines at runtime the next move based on the scores of the retrieved tuples; iii) a cost-aware strategy that considers only sorted access costs. We show that CARS significantly outperforms the other strategies under all the tested experimental conditions. The gains are larger when services are characterized by heterogeneous access costs.

In the main body of the paper we focus on the join of exactly two services and do not consider that services can be accessed in parallel; we remove such restrictions in Appendix A, available as supplemental online material.

2 THE SEARCH COMPUTING MODEL

In this section, we introduce the setting of search computing [1], in which we formulate the rank join problem.

We consider the context of multi-domain queries posed on services over information sources available on the Web, in which the results extracted from different services need to be joined and ranked. We are therefore particularly interested in what we call search services, i.e., services that answer a request by returning a list of tuples in ranking order, according to some measure of relevance. We assume such a measure to be presented to the user along with the results as a score (usually in \mathbb{R} or in the $[0,1]$ interval).

We consider queries that join two search services, s_1 and s_2, and assign, to each pair (henceforth called combination) of tuples τ_1 from s_1 and τ_2 from s_2, an aggregate score according to a given aggregation function of the single scores of τ_1 and τ_2. W.l.o.g., we consider natural joins and assume each service s_i to have a signature of the form $s_i(A_i, B, S_i)$, where A_i is a set
of attributes specific for \(s_i \), \(B \) is a set of join attributes, and \(S_i \) is an attribute carrying the score.

Let \(R_i \) be the extension of service \(s_i \), i.e., the relational set of all tuples that can be returned by \(s_i \). Let \(\tau[A] \) indicate, as usual, the value of tuple \(\tau \) for attribute \(A \). Any tuple \(\tau \in R_1 \supseteq R_2 \) adorned with an extra attribute carrying the value \(f(\tau[S_1], \tau[S_2]) \), where \(f \) is an aggregation function, is called a combination from the join between \(s_1 \) and \(s_2 \). As customary, we deal with monotone aggregation functions, which are best suited for efficient rank join processing.

Example 2.1: The query described in Figure 1 can be formulated over services with the following signatures:
- \(\text{hotel} \) (\(\text{Name}, \text{Street}, \text{Stars} \)) as \(s_1 \), listing name, street, and stars for hotels in Paris ranked by stars.
- \(\text{restaurant} \) (\(\text{Name}, \text{Street}, \text{Rating} \)) as \(s_2 \), listing name, street, and rating for restaurants in Paris serving French cuisine, ranked by customers’ rating.

Both are easily obtained via suitable interfaces to existing services on the Web, e.g., www.venere.com (restricted to Paris) for hotels and www.eatinparis.com (selecting French cuisine) for restaurants. Services \(s_1 \) and \(s_2 \) can be joined, e.g., on the \text{Street} attribute in order to obtain hotel-restaurant combinations in the same street of Paris. Each combination will comprise all the attributes of \text{hotel} and \text{restaurant}, plus an extra attribute for the aggregate score that is evaluated via a monotone aggregation function combining stars and customers’ rating. A possible example of such a function is one that takes the product of the scores.

Unlike relational databases, Web sources typically expose a limited number of access interfaces, in which certain fields must be mandatorily filled in in order to obtain a result. These fields may be the input fields of a form on a data-intensive Web site or the input parameters of a Web Service invocation. We model this by associating each service with given access patterns (i.e., input/output signatures), corresponding to the different ways in which it can be invoked.

We assume that each service can be invoked according to the following access patterns, where an \(O \) superscript indicates an output field, while \(I \) indicates an input field:
- \textit{Sorted access}: \(s_i(A_i^I, B^O, S_i^O) \), where all the fields are given as output and no input is required. The first sorted access returns the first page of tuples sorted by score in descending order, the next access returns the following page, etc.
- \textit{Random access}: \(s_i(A_i^O, B^I, S_i^O) \), where a tuple of values for the join attributes \(B \) is given as input, and tuples of values for the other attributes are returned.

The main parameters characterizing services are discussed next and summarized in Figure 2. These are either given (e.g., at service registration time) or can be easily estimated by sampling [14].

Cardinality and value distribution. Each service \(s_i \) has an associated cardinality \(N_i = |R_i| \), expressing the total number of results that it can produce. Another important aspect is the distribution of values for the join attributes \(B \) with respect to the values for the service-specific attributes \(A_i \). Together with \(N_i \), we consider two parameters that give a first characterization of this aspect:

- The number \(J_i \) of distinct tuples of values for the attributes \(B \) covered by service \(s_i \). For instance, \(J_2 \) indicates the number of distinct streets covered by \text{restaurant} in our running example.
- The average number \(Q_i \), of times the same tuple of values for the join attributes \(B \) occurs in service \(s_i \). For instance, \(Q_2 \) indicates the average number of restaurants (serving French cuisine) per street among those covered by \text{restaurant}. Clearly, \(Q_i = N_i / J_i \).

Also, when considering a join between two services \(s_1 \) and \(s_2 \), it is relevant to consider to what extent the set of distinct tuples for the join attributes in \(s_1 \) are covered by \(s_2 \) and vice versa. To this end, we indicate with \(J_{1,2} \) the number of distinct tuples of values for the join attributes that are common to \(s_1 \) and \(s_2 \) (the number of distinct streets in common between \text{hotel} and \text{restaurant}, in our example). Within the Search Computing framework [1], all the mentioned parameters (or approximations thereof) are specified when the services are registered on the system. In different frameworks, estimates can be obtained via sampling techniques as described in [14].

Pagination. Search services generally return results in pages of a fixed size, as the number of results may be large. Thus, we characterize each service \(s_i \) with a page size \(P_i \).

Costs. We associate each request sent to a service with an expected cost of invoking it. Such cost may differ for different services, and also depends on the access pattern used for invoking the service. Since we distinguish two kinds of accesses, for each service \(s_i \), we shall in the following refer to its \textit{sorted access cost} \(sc_i \) and its \textit{random access cost} \(rc_i \). These costs may, e.g., correspond to the average service response time, which is a relevant cost indicator both in the case of data sources distributed over a network and in the case of services performing heavy computations. In Section 4, a cost function will be defined in terms of \(sc_1, sc_2, rc_1, rc_2 \). With that, we determine the expected overall cost of retrieving the tuples needed to compute the join between \(s_1 \) and \(s_2 \), according to a strategy that indicates the accesses to be made.

Based on the parameters summarized in Figure 2, we propose a suitable \textit{cost-aware} pulling strategy in Section 4.

3 **Rank join operators**

Consider two services \(s_1 \) and \(s_2 \), with signatures of the form \(s_i(A_i, B, S_i) \). Let \(R_1 \) and \(R_2 \) denote their relational extension. We indicate with \(\tau_i^{(p_i)} \) the \(p_i \)-th tuple extracted
Fig. 2. Summary of notation

An implementation of rank join in line with [2] is illustrated in Algorithm 1. The function updateBound of a given bounding scheme BS computes the upper bound u of the aggregate score of the unseen combinations. The unseen combinations are those that can be formed with at least an unseen tuple $t_i \in R_i - P_i$. The algorithm halts, returning the correct top-k combinations, if the aggregate score of the k-th combination in the output buffer exceeds or equals u. Note that line 5 corresponds to making a sorted access to s_i, while line 8 is a random access to s_ℓ (where $\ell = 1$ if $i = 2$, else $\ell = 2$). A random access to s_i (if available) is always made after a sorted access to s_i with the tuple $t_i[B]$ just extracted, provided that $t_i[B]$ is new. The updateBound function depends on the availability of random access. Indeed, when only sorted access is available, the u as

$$u = \max\{u_1, u_2\}, \quad \text{with}$$

$$u_1 = f(\tau_1^{(n_1)}[S_1], \tau_2^{(1)}[S_2]), \quad u_2 = f(\tau_1^{(1)}[S_1], \tau_2^{(n_2)}[S_2])$$

However, when random access is available, we have

$$u = f(\tau_1^{(n_1)}[S_1], \tau_2^{(n_2)}[S_2])$$

The function chooseInput of a given pulling strategy PS decides at each step the next relation to be accessed. The HRJN* rank join operator described in [2] defines a pulling strategy that is optimal when only sorted access is available. At each step, HRJN* performs a sorted access to R_1 (or R_2) if $u_1 > u_2$ ($u_1 < u_2$). In case of ties, HRJN* accesses the relation with the least depth. Note that, if only sorted access is available and there are no ties in the aggregate scores, the optimal pulling strategy does not depend on the service access costs.

Conversely, when random access is also available, the optimal pulling strategy necessarily depends on both access costs. In the past literature, a specific pulling strategy has not been defined for rank join operators endowed with both sorted and random access. Yet, the pulling strategies of HRJN and HRJN* can also be applied in this case, although sub-optimally.

We conclude this section by showing that state-of-the-art solutions originally conceived for rank aggregation lose some of their benefits when adapted to the case of rank join. Fagin’s “combined algorithm” [3] provides a solution that takes into account both sorted and random access. There, the bounding scheme is based on a threshold computed as in (3), whereas the alternation of sorted and random accesses is driven by the cost of random access relative to sorted access. Specifically, a random access phase is triggered after $[rc/sc]$ sorted accesses. Then, random accesses are performed only when they might contribute to finding top-k objects. To this end, a lower bound is maintained for each object seen in at

1. Indeed, let S^k denote the aggregate score of the k-th combination in the ordered output buffer, upon termination. The rank join operator needs to achieve depths n_1, n_2 such that both $u_1 \leq S^k$ and $u_2 \leq S^k$. Such depths do not depend on the costs.
least one service. In the case of two services, such a lower bound coincides with the aggregate score, if the object has been seen in both services. Otherwise, it is obtained by aggregating the seen score with the minimum score achievable in the other service. For each object seen in only one service, an upper bound is computed by aggregating the score seen in that service with the score of the last object retrieved by sorted access in the other service. If the upper bound is greater than the \(k \)-th largest lower bound, the corresponding random access is performed.

The described idea behind Fagin’s combined algorithm cannot be directly extended to the case of rank join, since all random accesses need to be made anyway. A lower bound can be defined only for combinations formed as join results, and necessarily coincides with their aggregate scores. Indeed, a tuple in one service might not contribute to any join result. Hence, its lower bound is undefined. When determining the random accesses to a service, the upper bounds of the tuples retrieved by sorted access from the other service need to be considered. The smallest among those upper bounds is that of the last retrieved object, which coincides with the threshold in (3). Since the bounding scheme has not determined the termination of the algorithm, such an upper bound (and, consequently, all other upper bounds) is greater than or equal to the aggregate score of the \(k \)-th seen combination, i.e., the \(k \)-th largest lower bound. Hence, all random accesses need to be made.

In the next section we propose a suitable pulling strategy for the problem at hand that is shown to perform very closely to an oracle-based optimal strategy.

4 A COST-AWARE STRATEGY

We introduce CARS (Cost-Aware with Random and Sorted access), a pulling strategy defined at compile-time that takes into account access costs. CARS can be devised based on just a few parameters, shown in Figure 2, that characterize the joined services. The pulling strategy is obtained by solving an optimization problem that seeks to minimize the cost incurred by Algorithm 1 to find a target number of top combinations. Formally, we solve the following problem

\[
\begin{align*}
\text{minimize} & \quad \bar{C}(n_1, n_2) \\
\text{subject to} & \quad \bar{K}(n_1, n_2) \geq K_T, \text{ with } n_i \in \mathbb{N} \cap [0, N_i] \\
\end{align*}
\]

where \(\bar{K}(n_1, n_2) \) denotes the expected number of combinations that can be formed by retrieving \(n_i \) tuples from service \(s_i \) by means of sorted accesses only, \(\bar{C}(n_1, n_2) \) is the associated expected cost of performing both sorted and random accesses, i.e., those needed to find the top \(k \) combinations according to Algorithm 1, and \(K_T \) is a target number of combinations. Both expectations are taken with respect to all the possible ways of composing the tuples returned by the services. Note that problem (4) does not constrain the number of top combinations directly, but rather the expected number \(\bar{K} \) of combinations formable using sorted access only. These may be considered good combinations since, being retrieved by sorted access, they have high scores both for the \(s_1 \) and the \(s_2 \) sub-tuples. The rationale behind this choice is that i) this optimization does not require any information about the score distribution, which might be difficult to obtain; ii) once \(K \) good combinations are found after sorted access by Algorithm 1, at least \(K \) top combinations (which include all the \(K \) good combinations) will be formed with random access. In practice, the target \(K_T \) in (4) acts as a conservative lower bound on the expected number \(\bar{k} \geq \bar{K} \geq K_T \) of top combinations.

In most of the past literature on top-\(k \) the target number of top combinations is a user-defined input parameter. Other works [15] prefer instead to enforce a constraint on the cost of computing the result, and incrementally relax such constraint as more resources (e.g., elapsed time) become available. Such an approach can be formalized as the following problem:

\[
\begin{align*}
\text{maximize} & \quad \bar{K}(n_1, n_2) \\
\text{subject to} & \quad \bar{C}(n_1, n_2) \leq C_T, \text{ with } n_i \in \mathbb{N} \cap [0, N_i] \\
\end{align*}
\]

where \(\bar{K} \) and \(\bar{C} \) are as before, and \(C_T \) is a target cost. The strategies obtained by solving either problem (4) or (5) are equivalent, as shown in Appendix B. In this work, we adopt the formulation in (5) as it comes with a slightly more compact mathematical solution, while preserving the same results. For tractability, we also make the following simplifications:

- The ranking order of the tuples in a service is independent of the other service. This is reasonable in our setting, since we are joining the results of heterogeneous services operating on different domains.
- We describe the distribution of the number of tuples per join value with a single parameter \(Q_i = N_i / J_i \), representing its expected value.

4.1 Objective function formulation

The example in Table 1 shows a deterministic sample of the results returned by two services characterized by the following parameters: \(Q_1 = 3, J_1 = 3, Q_2 = 2, J_2 = 4, J_{1.2} = 2 \). Suppose, e.g., that we retrieve \(n_1 = 6 \) tuples from \(s_1 \) and \(n_2 = 5 \) tuples from \(s_2 \) (tuples not retrieved are shown in grey). In order to determine the number of good combinations that can be formed, we can proceed as follows:

1. Determine the distinct join values in the retrieved tuples, i.e., \(\{b^{(1)}, b^{(2)}, b^{(3)}\} \) for \(s_1 \) and \(\{b^{(1)}, b^{(2)}, b^{(6)}\} \) for \(s_2 \). Let \(j_1(n_1) = 3 \) and \(j_2(n_2) = 3 \) denote the cardinality of the two sets.
2. Determine the join values in common between \(s_1 \) and \(s_2 \), i.e., \(\{b^{(1)}, b^{(2)}, b^{(3)}\} \cap \{b^{(1)}, b^{(2)}, b^{(6)}\} = \{b^{(1)}, b^{(2)}\} \). Let \(j_{1.2}(n_1, n_2) = 2 \) denote the cardinality of this set.
3. For each join value in common, form the combinations. The number of combinations equals the product of the multiplicities \(q_i^{(r)} \) of the join value \(b^{(r)} \) in the
TABLE 1
(a) Tuples in R_1 (black: retrieved, grey: not retrieved). (b) Tuples in R_2 (black: retrieved, grey: not retrieved). (c) Combinations formed with sorted access. (d) Additional combinations formed with random access.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>B_1</td>
<td>C_1</td>
<td>D_1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>q_1</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>q_2</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>q_1</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>q_2</td>
<td>e</td>
<td>f</td>
</tr>
</tbody>
</table>

first n_i tuples, i.e., $q_1(1) = 2 \cdot 2 = 4$ for $b(1)$, and $q_2(2) = 1 \cdot 1 = 1$ for $b(2)$.

Table 1(c) shows the $K = 5$ good combinations thus formed, with $S(\tau) = \min\{\tau[S_1], \tau[S_2]\}$ (individual scores not shown).

We adopt the following notation: let x denote a discrete-valued random variable and $p(x)$ its probability mass function (p.m.f.). We write $p(x; a)$ when the p.m.f. depends on the deterministic parameter a, while $p(x; y)$ denotes the conditional p.m.f. of x with respect to the random variable y. We use \bar{x} as a shorthand for the expectation of x, i.e., $\bar{x} = E[x]$.

1) For a given number of tuples n_i retrieved with sorted accesses, the number of distinct join attribute values $j_i(n_i)$ is a random variable whose p.m.f. $p(j_i; n_i)$ can be determined as shown in Appendix C.

2) The number of common join attributes $j_{12}(n_1, n_2)$ can also be characterized as a random variable. With reference to Figure 3, we want to determine the p.m.f. of $j_{12}(n_1, n_2)$ given the knowledge of the p.m.f.’s $p(j_1; n_1)$ and $p(j_2; n_2)$. The analytical derivation of the p.m.f. is illustrated in detail in Appendix C. For the sake of the following discussion, we note that the expected value of $j_{12}(n_1, n_2)$ is given by

$$j_{12}(n_1, n_2) = \frac{j_1(n_1)j_2(n_2)j_{12}}{J_1J_2} \quad (6)$$

3) The number of combinations that can be formed after the sorted accesses is equal to

$$K(n_1, n_2) = j_{12}(n_1, n_2) \cdot q_1(n_1) \cdot q_2(n_2) \quad (7)$$

where $q_i(n_i)$ denotes the number of tuples (among the first n_i tuples of service s_i) in which the same value of a given join attribute (among those found in the first n_i tuples of s_i) occurs. We notice that the random variables $q_i(n_i)$ and $j_i(n_i)$ are related by the expression

$$j_i(n_i) = \frac{n_i}{q_i(n_i)} \quad (8)$$

Replacing (8) in (7) and the random variables with their expected values we obtain

$$K(n_1, n_2) \approx j_1(n_1)j_2(n_2) \quad (9)$$

Note that the factor $\frac{j_1(n_1)j_2(n_2)}{J_1J_2}$ represents the selectivity of the join. Known techniques can be used to estimate such selectivity factor [16], even when the join is general and includes, e.g., selection predicates.

4.2 Cost constraint formulation

In order to find the top k combinations ($k \geq K$), we now make random accesses. In the example of Table 1, we need to retrieve the tuples in s_2 whose join value appeared at least once in the first n_1 tuples of s_1, and vice versa. Table 1(d) shows the additional combinations formed via random access: one using $b(1)$ on s_2 and four using $b(2)$ on s_1. The top combinations are necessarily included in the union of the combinations formed after the sorted accesses (i.e., the good combinations, shown in Table 1(c) and random accesses (Table 1(d)), since no other combination can score higher than those in Table 1(c). Here, $k = 6$ combinations (in bold) are guaranteed to be top, as their aggregate scores exceed the upper bound $u = f(\tau_1^{(6)}[S_1], \tau_2^{(6)}[S_2]) = \min\{\tau_1^{(6)}[S_1], \tau_2^{(6)}[S_2]\} = 31$.

In the following, we assume that the cost of retrieving the tuples dominates over the cost of computing the combinations and their scores. This is reasonable in this context, since services are typically accessed remotely on the Web. We adopt the following additive cost model:

$$C(n_1, n_2) = sc_1n_1 + sc_2n_2 + rc_2j_1(n_1) + rc_1j_2(n_2) \quad (10)$$

where sc_i is the unitary sorted access cost (per tuple), rc_i the unitary random access cost (per distinct join attribute tuple), and $j_i(n_i)$ the number of distinct join attribute tuples retrieved from s_i. Note that the random access cost of s_1 depends on rc_1 and on $j_2(n_2)$, and vice versa.

Given n_1 and n_2, $C(n_1, n_2)$ as of (10) is a random variable, since it is a function of $j_1(n_1)$ and $j_2(n_2)$. We are interested in imposing a constraint on the expected cost, i.e., $\bar{C}(n_1, n_2) = E[C(n_1, n_2)] \leq C_T$, where we can write

$$\bar{C}(n_1, n_2) = sc_1n_1 + sc_2n_2 + rc_2\bar{j}_1(n_1) + rc_1\bar{j}_2(n_2). \quad (11)$$

An analytical expression of $\bar{j}_i(n_i)$ cannot be easily derived. Therefore, we seek for an approximation based on the related random variable $q_i(n_i)$. Indeed, from (8) we get

$$\bar{j}_i(n_i) \approx \frac{n_i}{q_i(n_i)} \quad (12)$$

For a given value of n_i and an arbitrarily selected join attribute value, let $\hat{q}_i(n_i)$ denote the number of times such join attribute value appears in the first n_i tuples. The p.m.f. of the random variable $\hat{q}_i(n_i)$ is derived in Appendix C and it is defined over the range $[0, Q_i]$. Its expected value is equal to $E[\hat{q}_i(n_i)] = Q_i \frac{n_i}{N_i}$.

Substituting (15) in (12) we get

The expected value \(\tilde{q}_i(n_i) \) is given by

We observed, and also verified numerically, that approximating \(\tilde{q}_i(n_i) \) by means of a straight line is generally applicable, and gets more accurate for larger values of \(Q_1 \). Therefore, we shall use the following approximated expression

Substituting (15) in (12) we get

where \(a_i = \frac{Q_i - 1}{N_i - 1} \) and \(b_i = 1 - a_i \). The proposed approximation (16) tends to slightly underestimate the true value of \(\tilde{j}_i(n_i) \). We observed that the goodness of fitting improves for larger values of \(Q_1 \).

4.3 Problem solution

With the approximations derived in Section 4.1 and Section 4.2, the optimization problem (5) can be written as

In order to solve (17), we relax the problem by replacing the integer constraint \(n_i \in \mathbb{N} \cap [0, N_i] \) with \(n_i \in \mathbb{R} \). In addition, we formulate an equivalent optimization problem by substituting the objective function with \(\log(n_1 n_2) \). Thus, we seek the solution of problem (18):

The relaxed problem is convex, since the objective function is convex and the constraint is a convex function since it is a sum of linear fractionals, each of which is convex. We can impose the Karush-Kuhn-Tucker conditions, which must be satisfied by the optimal solution \((n_1^*, n_2^*) \) of problem (18), i.e.:

- Stationarity

- Primal feasibility

- Dual feasibility

- Complementary slackness

From (20) we get for \(i = 1 \)

The optimal solution \(n_1^* \) must be a root of (24). Therefore, it must be a root of a third-degree polynomial \(\alpha_3 x^3 + \alpha_2 x^2 + \alpha_1 x + \alpha_0 \) with coefficients:

Among the three roots of the polynomial, we pick the one which is real and positive. Let \(n_1^* = n_1(\lambda^*, a_1, b_1, sc_1, rc_2) \) denote such a root. An equivalent procedure can be followed for \(n_2 \). Therefore, we can write

In (29) we adopt a shorthand notation to express the fact that the optimal solution \((n_1^*, n_2^*) \) can be computed in terms of the problem parameters and the Lagrange multiplier \(\lambda^* \). This is achieved by finding one of the
The number of steps \(J \) proceeds for a large enough number of steps

1) Let \(\lambda_1 = 0 \) and \(\lambda_n = \Lambda \), where \(\Lambda \) is a positive constant
 (in our experiments, we set \(\Lambda = 10 \) when \(C_T \) is of the order of seconds).

2) for \(j = 1 : J \)
 a) Set \(\lambda_j = \frac{\lambda_{j-1} + \lambda_n}{2} \).
 b) Find \(n_{1,j} = n_1(\lambda_j, a_1, b_1, s_1, r_2) \) and \(n_{2,j} = n_2(\lambda_j, a_2, b_2, s_2, r_1) \), i.e., the values of \(n_1 \) and \(n_2 \) computed when we replace \(\lambda^* \) with an arbitrary non-negative value \(\lambda_j \). The search for \(\lambda^* \) (and, consequently, for \(\langle n_1^*, n_2^* \rangle \)) proceeds for a large enough number of steps \(J \), until the best candidate solution \(\langle n_{1,j}, n_{2,j} \rangle \) approximately satisfies the cost constraint with the equality, i.e.,
 \[
 \hat{C}(n_{1,j}, n_{2,j}) - C_T \approx 0
 \]
 1) Let \(\lambda_1 = 0 \) and \(\lambda_n = \Lambda \), where \(\Lambda \) is a positive constant
 (in our experiments, we set \(\Lambda = 10 \) when \(C_T \) is of the order of seconds).

2) for \(j = 1 : J \)
 a) Set \(\lambda_j = \frac{\lambda_{j-1} + \lambda_n}{2} \).
 b) Find \(n_{1,j} = n_1(\lambda_j, a_1, b_1, s_1, r_2) \) and \(n_{2,j} = n_2(\lambda_j, a_2, b_2, s_2, r_1) \).
 c) if \(\hat{C}(n_{1,j}, n_{2,j}) - C_T \geq 0 \), then \(\lambda_l = \lambda_j \). Else \(\lambda_n = \lambda_j \).
 3) \(\lambda^* = \lambda_J \)

The number of steps \(J \) of the binary search determines the accuracy of the solution. Typically, \(J = 10 \) steps are sufficient for the problem at hand. Finally, we reintroduce the integer constraint by rounding the optimal solution of the relaxed problem and checking that \(n^*_i \leq N_i \).

Figure 4 shows the curve obtained for the services in Table 1, when \(s_1 = 1, s_2 = 2, r_1 = 1 \) and \(r_2 = 10 \). Each point on the curve is the solution of problem (18) for some value of \(C_T \). The black circles indicate the result obtained after rounding.

The cost of finding the solution is in the order of few milliseconds, and thus totally negligible with respect to the typical access times required in practical cases involving remote services. Note also that the cost of solving the problem does not depend in any way on the size of the data sets underlying the services involved in the join.

4.4 Execution strategy

We are interested in defining a strategy that describes how the services shall be incrementally accessed, in order to maximize at each execution step the number of good combinations found, given the knowledge of the parameters that characterize the services. To this end, instead of solving problem (18) for a fixed value of \(C_T \), we let \(C_T \) vary over a positive interval so as to trace a locus of optimal solutions. The cost constraint \(C_T \) represents the overall time available to fetch tuples from the services. \(C_T \) is incremented until the desired number of combinations is achieved; fine increments are possible, so as to trace an almost continuous curve in the \(n_1/n_2 \) plane, since (18) is solved very quickly. The curve for the Example in Table 1 was shown in Figure 4.

To address pagination, we constrain the number of items retrieved from \(s_i \) to be a multiple of a given page size \(P_i \in \mathbb{N} \). The CARS pulling strategy determining, at each step, the next service to be invoked is defined as follows.

Query execution starts at step number \(t = 1 \), with \(\langle n_1^{(1)}, n_2^{(1)} \rangle = \langle P_1, P_2 \rangle \), i.e., at least one request is sent to each service, otherwise the result would be empty. Then, at any step \(t > 1 \), the execution proceeds by performing sorted accesses according to one of the following choices:

\[
\begin{align*}
\langle n_1^{(t)}, n_2^{(t)} \rangle &= \langle n_1^{(t-1)} + P_1, n_2^{(t-1)} \rangle \\
\langle n_1^{(t)}, n_2^{(t)} \rangle &= \langle n_1^{(t-1)}, n_2^{(t-1)} + P_2 \rangle
\end{align*}
\]

(30)

At each step \(t > 1 \), we use one choice in (30) to move from \(\langle n_1^{(t-1)}, n_2^{(t-1)} \rangle \) to the new pair \(\langle n_1^{(t)}, n_2^{(t)} \rangle \) that lies closest to the curve induced by the solution of (18), traced by varying the target cost \(C_T \). Intuitively, this corresponds to finding an approximate solution to (18), with the additional pagination constraint, for a given cost \(C_T^{(t)} \) that is larger than the cost \(C_T^{(t-1)} \) implicitly used at step \(t-1 \). Observe that pagination does not affect the complexity of the proposed method, as it is introduced after problem (18) is solved.

Example 4.1: We now illustrate the execution of CARS on the data of Table 1 to determine the top combination. CARS starts with one sorted access to \(s_1 \) and one to \(s_2 \), thus retrieving \(\langle a_1^{(4)}, b_1^{(6)}, 77 \rangle \) and \(\langle a_2^{(2)}, b_6^{(2)}, 90 \rangle \). Then, it performs one random access to \(s_2 \) with value \(b_2^{(2)} \) and one to \(s_1 \) with value \(b_6^{(6)} \), thus retrieving \(\langle a_1^{(4)}, b_2^{(2)}, 57 \rangle \) and \(\langle a_2^{(1)}, b_2^{(2)}, 41 \rangle \). Two combinations are formed (individual scores not shown): \(\tau^{(1)} = \langle a_1^{(4)}, a_2^{(4)}, b_2^{(2)}, 57 \rangle \) and \(\tau^{(2)} = \langle a_1^{(4)}, a_2^{(1)}, b_2^{(2)}, 41 \rangle \). The threshold computed according to (3) is \(u = 77 \). According to Figure 4, the next 3 sorted accesses made by CARS are on \(s_2 \).
The first sorted access returns \(\langle a^{(6)}, b^{(6)}, 70 \rangle \). No sorted access is made this time, since value \(b^{(6)} \) has already been used on \(s_1 \). The threshold becomes \(u = 70 \). The next sorted access returns \(\langle a^{(5)}, b^{(3)}, 58 \rangle \). Then, a random access is made to \(s_1 \) with value \(b^{(1)} \), thus retrieving \(\langle a^{(9)}, b^{(1)}, 53 \rangle \), \(\langle a^{(8)}, b^{(1)}, 32 \rangle \), and \(\langle a^{(5)}, b^{(1)}, 6 \rangle \). The new formed combinations are: \(\tau^{(3)} = \langle a^{(9)}, a^{(3)}, b^{(1)}, 53 \rangle \), \(\tau^{(4)} = \langle a^{(8)}, a^{(3)}, b^{(1)}, 32 \rangle \), and \(\tau^{(5)} = \langle a^{(5)}, a^{(3)}, b^{(1)}, 6 \rangle \). The threshold becomes \(u = 58 \). The next sorted access returns \(\langle a^{(4)}, b^{(2)}, 57 \rangle \), which determines the already formed combination \(\tau^{(1)} \). The threshold becomes \(u = 57 \), therefore \(\tau^{(1)} \) is guaranteed to be the top combination and CARS stops. According to (10), the total cost incurred by the execution with the parameters in use (\(sc_1 = 1, sc_2 = 2, rc_1 = 1, rc_2 = 10 \)) with the current depths \(n_1 = 1 \) and \(n_2 = 4 \) is \(C(1,4) = sc_1 \cdot 4 + sc_2 \cdot 1 + rc_2 \cdot 1 + rc_1 \cdot 3 = 19 \).

For comparison, HRJN always alternates sorted accesses to \(s_1 \) and \(s_2 \). The guarantee to have formed the top combination will be reached only after accessing \(n_1 = 4 \) tuples from \(s_1 \) and \(n_2 = 4 \) tuples from \(s_2 \), with a total cost \(C(4,4) = sc_1 \cdot 4 + sc_2 \cdot 4 + rc_2 \cdot 3 + rc_1 \cdot 3 = 45 \).

HRJN\(^{*} \) accesses \(s_1 \) if \(u_1 > u_2 \), else \(s_2 \), where \(u_1 \) and \(u_2 \) are computed according to (2) (in case of ties, the service with the least depth is accessed, and, on further tie, \(s_1 \) is chosen). As with CARS and HRJN, a random access is made after every new join attribute value discovered by sorted access. We then focus on sorted access only. After the initial sorted access to \(s_1 \) and \(s_2 \), we have \(u_1 = u_2 = 77 \). Then HRJN\(^{*} \) makes a sorted access to \(s_1 \), i.e., \(n_1 = 2, n_2 = 1, u_1 = 72, u_2 = 77 \). Then \(s_2 \) is chosen, which determines \(n_1 = 2, n_2 = 2, u_1 = 72, u_2 = 70 \). Then \(s_1 \), giving \(n_1 = 1, n_2 = 2, u_1 = 63, u_2 = 70 \). Then \(s_2 \) with \(n_1 = 3, n_2 = 3, u_1 = 63, u_2 = 58 \). Then \(s_1 \), with \(n_1 = 4, n_2 = 3, u_1 = 53, u_2 = 58 \). Finally \(s_2 \) with \(n_1 = 4, n_2 = 4, u_1 = 58, u_2 = 57 \). Here HRJN\(^{*} \) stops, as \(u = 57 \) coincides with the score of a formed combination. The execution strategy is in this case identical to that of HRJN, and so is the incurred cost.

5 Experiments

We investigate the overall cost, according to the additive cost model in (10), to return the correct top-\(k \) combinations when the proposed CARS pulling strategy is adopted. We compare this with the optimal cost attained by an oracle-based pulling strategy. We conduct our analysis on both real and synthetic data sets. For the former, CARS has been integrated and tested in the SeCo system [1] as one of the strategies available for execution. For the latter, we extensively evaluate the impact, on the overall cost, of the problem parameters, i.e., page size, number of distinct join attribute values, average number of tuples per join attribute value, sorted and random access costs, score distributions.

Data sets. First, in order to provide a qualitative insight, we demonstrate the proposed approach on a concrete instantiation of our running example. We consider two services available on the Web, which provide both sorted and random access, namely hotel for hotels as service \(s_1 \) and restaurant for Parisian restaurants as service \(s_2 \). The former service, among the available access patterns, allows requesting hotels as required in the example: by sorted accesses, ranked by stars, in descending order from luxury hotels down to hotels with no star, and by random accesses by searching for hotels in a given Parisian street. Results are paginated with a page size \(P_1 = 25 \) tuples/page. The total number of tuples of \(s_1 \) is \(N_1 = 858 \), the number of distinct join values, i.e., different streets, is \(J_1 = 592 \). The average number of hotels per street is \(Q_1 = 1.45 \).

The latter service can be invoked by sorted accesses, returning restaurants ranked by customer rating in the [0,10] range, and by random accesses as above. We restricted our search to restaurants serving French food for a total of \(N_2 = 1198 \) restaurants. Search results are paginated with a page size \(P_2 = 6 \). A total number of \(J_2 = 977 \) distinct streets can be selected, of which \(J_{1,2} = 188 \) are in common. The average number of restaurants per street is \(Q_2 = 1.23 \). We normalized the scores of both services to fall within the [0,1] interval.

If all the tuples of both services are retrieved, it is possible to form a total of 590 combinations. We estimated the average access costs involved in both sorted and random access, and we obtained \(sc_1 = 0.01 \), \(sc_2 = 0.01 \) (in seconds/tuple), \(rc_1 = 0.10 \), \(rc_2 = 0.01 \) (in seconds/access).

Second, in order to provide a controlled test bed and obtain quantitative results, we synthetically generated data for two services independently. For each service, we set the number of distinct join attribute values \(J_i \), of which \(J_{1,2} \) are in common. For each distinct join value, we generated a number of tuples according to a Poisson distribution whose mean is set equal to \(Q_i \). Therefore, each distinct join attribute value is contained in a potentially different number of tuples to mimic real world data. The individual scores of the tuples are sampled from an exponential distribution with mean \(\mu_i \). We also consider data sets whose scores are sampled from either a uniform or a Zipfian distribution. The relevant parameters are summarized in Table 2, with default values in bold.

Methods. We test five different pulling strategies applied to the rank join operator defined in Algorithm 1, endowed with both sorted and random access:

1) Round-robin (RR), i.e., alternating sorted accesses to \(s_1 \) and \(s_2 \). This is the default pulling strategy defined by HRJN [2] and Fagin’s “combined algorithm” as regards sorted access. Indeed, as was discussed in Section 3, the extension of Fagin’s “combined algorithm” to rank join forces to perform all random accesses. When the two services are characterized by different page sizes, the round-robin strategy is modified to select the service with the least depth, so as to ensure that both services are explored up to, approximately, the same depth;
ii) Score-aware (SA), i.e., a strategy deciding dynamically which service to access next based on the scores of the retrieved tuples by comparing the bounds in (2): a sorted access to \(s_1 \) (\(s_2 \)) is made if \(u_1 > u_2 \) (\(u_1 < u_2 \)). In case of ties, the service with the least depth is accessed. This is the strategy adopted by HRJN* [2], which is known to perform very well in practice in the scenario without random access [17]. Although SA usually performs better than RR, its cost-obliviousness and the presence of random access may sometimes cause an exploration that incurs higher costs than RR.

iii) Cost-aware (CA), i.e., assuming knowledge of sorted access costs only. The corresponding pulling strategy is obtained by solving problem (5) by setting \(r_{cl} = 0 \). The solution is such that \(n_{1}/n_{2} = s_{2}/s_{1} \). The cost of computing the strategy is negligible with respect to the access costs, regardless of the size of the data set.

iv) Cost-aware with Random and Sorted access (CARS), i.e., the proposed pulling strategy defined in Section 4. We remark that the cost of computing the strategy is negligible with respect to the access costs, regardless of the size of the data set.

v) Oracle-based, i.e., the non-deterministic, prescient pulling strategy characterized by the minimum cost, among those that allow computing the correct top-\(k \) combinations. This is obtained a posteriori by considering all feasible \((n_{1}, n_{2}) \) pairs. For each pair, we measure the number \(k' \) of combinations that exceed the upper bound defined in (3). If \(k' \geq k \) we compute the overall cost. Finally, we select the pair that achieves the minimum cost.

Evaluation metrics. We measure the overall additive cost expressed in (10). We normalize the costs with respect to the cost of the oracle-based pulling strategy. Thus, all relative costs are \(\geq 1 \). A pulling strategy characterized by a relative cost approaching 1 is near-optimal.

Results for real data sets. Figure 5 illustrates the access plan computed with CARS for the running example. The solid curve represents the locus of solutions for the relaxed problem (18), while the dark circles indicate the number of tuples retrieved from the two services during the sorted access phase at each execution step \(t = 1, \ldots, T \), with \(T = 16 \). Here, the two services are characterized by equal sorted access costs but different random access costs. Then, a cost-aware strategy would intuitively request more tuples from \(s_1 \) in the sorted access phase, since the random accesses to \(s_2 \) are cheaper.

Note that in this example both \(Q_1 \) and \(Q_2 \) are close to 1, thus the CARS strategy approximately follows a straight line. Indeed, when \(Q_1 = Q_2 = 1 \), the expected cost function becomes linear in \(n_1 \) and \(n_2 \). The locus of solutions obtained by varying \(C_T \) results in a straight line with slope \(\frac{s_1}{s_2} + \frac{1}{s_2} \).

Table 3 provides further details. At each step \(t \), we indicate the number of good combinations \(K^{(t)} \) formed after the sorted access phase (such that at least \(K^{(t)} \) top combinations are guaranteed to be retrieved after the random access phase), the number of top combinations \(k^{(t)} \) whose aggregate scores exceed the current upper bound, the numbers of tuples retrieved by sorted access \((n^{(1)}_1, n^{(1)}_2) \), the number of distinct streets \(j^{(t)}_1 \) retrieved from \(s_1 \), and the overall access cost \(C(n^{(1)}_1, n^{(1)}_2) \) (in seconds) due to both sorted and random accesses. The leap from \(k^{(8)} = 4 \) to \(k^{(9)} = 104 \) is due to the fact the 9th step accesses the first page in \(s_1 \) containing 3-star hotels, which significantly lowers the upper bound. Table 4 shows the top 5 combinations in our example.

Observe that CARS is able to find the top 100 combinations in 5.31 seconds. For comparison, the simpler round-robin pulling strategy needs 17.45 seconds to return the same result (and zero top combinations can be returned after 5.31 seconds), while the optimal, oracle-based, strategy requires 3.43 seconds. Note that CA coincides with RR here, as \(s_{cl} = s_{c2} \), while SA slightly deviates from this strategy, with a further cost increase, as the score differences caused a higher number of costly random accesses to \(s_1 \). Note that computing the CARS strategy by solving (18) takes only 20 ms and is thus totally negligible with respect to the overall access cost.

Results for synthetic data sets. The results obtained on the synthetic data sets are shown in Figure 6. The y-axis reports the overall access cost to return the correct top-100 combinations, relative to the cost of the oracle-

Table 2

<table>
<thead>
<tr>
<th>description</th>
<th>parameter</th>
<th>tested values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distinct join values</td>
<td>(J_{1,1})</td>
<td>10, 25, 50</td>
</tr>
<tr>
<td>Skewness</td>
<td>(J_{2,1})</td>
<td>1/2, 1, 2</td>
</tr>
<tr>
<td>Top combinations to be found</td>
<td>(k)</td>
<td>1, 10, 100</td>
</tr>
<tr>
<td>Sorted access cost</td>
<td>(s_{cl})</td>
<td>0.01, 0.1/10</td>
</tr>
<tr>
<td>Random access cost</td>
<td>(s_{cl})</td>
<td>0.01, 0.1/10</td>
</tr>
<tr>
<td>Page size</td>
<td>(p_{cl})</td>
<td>1, 5, 10</td>
</tr>
<tr>
<td>Score distribution</td>
<td>(\mu_{cl})</td>
<td>2, exp, Uniform, Zipfian</td>
</tr>
<tr>
<td>Score dist parameter</td>
<td>(\mu_{cl})</td>
<td>1/2, 1, 2</td>
</tr>
</tbody>
</table>

Table 3

Step-by-step access plan retrieving the top hotel-restaurant combinations in the same street.

<table>
<thead>
<tr>
<th>Hotel</th>
<th>Restaurant</th>
<th>Street</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pont Royal</td>
<td>L’Atelier de Robuchon</td>
<td>Rue Montalembert</td>
<td>0.56</td>
</tr>
<tr>
<td>Royal St. Honoré</td>
<td>Au Dauphin</td>
<td>Rue St. Honoré</td>
<td>0.552</td>
</tr>
<tr>
<td>Le Walt</td>
<td>Chez Valdo</td>
<td>Ave. de la Motte Picquet</td>
<td>0.552</td>
</tr>
<tr>
<td>De Verdième</td>
<td>Café de Verdième</td>
<td>Pl. Verdième</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 4

Top 5 hotel-restaurant combinations in the same street.

<table>
<thead>
<tr>
<th>t</th>
<th>(K^{(t)})</th>
<th>(k^{(t)})</th>
<th>(n^{(1)}_1)</th>
<th>(n^{(1)}_2)</th>
<th>(j^{(t)}_1)</th>
<th>(C(n^{(1)}_1, n^{(1)}_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>6</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>6</td>
<td>48</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>12</td>
<td>48</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>12</td>
<td>70</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>75</td>
<td>18</td>
<td>70</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>100</td>
<td>18</td>
<td>90</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>125</td>
<td>18</td>
<td>106</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>125</td>
<td>24</td>
<td>106</td>
<td>23</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>104</td>
<td>150</td>
<td>24</td>
<td>127</td>
<td>23</td>
</tr>
</tbody>
</table>
based strategy. For clarity, on top of each bar we also report the absolute (non-normalized) overall access cost, expressed in terms of wall-clock time. Each bar represents the average over ten data sets. Here, too, the cost of determining the CARS strategy is within 20 ms, and thus totally negligible with respect to the total access cost, since the strategy is computed only once, at compile time, before the execution of the algorithm.

As a general trend, we observe that i) CARS outperforms the other (non-oracle-based) strategies, especially when services are characterized by heterogeneous costs; ii) CARS always performs close to the oracle-based optimal strategy on all data sets.

In the default configuration, the two services are symmetric with respect to \mathcal{P}, \mathcal{J}, Q, and score distribution. The only asymmetry arises in the access costs, since $s_2/s_1 = 1/10$ and $r_2/r_1 = 10$. Thus, performing sorted access to s_2 is cost-effective, since it is less expensive and, at the same time, the corresponding random accesses to s_1 are cheaper. On these data sets, CARS achieves the same performance as the oracle-based strategy. Conversely, the relative cost overhead of the other strategies is: $RR +117\%$, $CA +32\%$, $SA + 76\%$. In the following we comment on the effect of the individual parameters.

Sorted access cost - sc_1: Figure 6(a) reports the relative cost obtained by varying the sorted access cost sc_1 (when $sc_2/sc_1 = 1/10$, as in the default configuration). For large values of sc_1, sorted access cost dominates random access cost. Thus, the CARS strategy is approximated by CA. In all cases, the overhead is up to +23%. Figure 6(d) shows that CARS is robust to largely skewed sorted access costs, consistently performing close to the oracle-based strategy.

Random access cost - rc_1: Similar observations can be made for Figures 6(b) and 6(e). For small values of rc_1, sorted access cost dominates, and CARS is approximated by CA. In all cases, the overhead of CARS wrt. the oracle-based strategy is up to +8%.

Score distribution: Figure 6(c) shows that CARS performs close to the oracle-based strategy independently of the shape of the distribution.

Score distribution skewness - μ_2/μ_1: CARS is oblivious of the score distribution. While this enables to compute the pulling strategy at compile-time, losses are to be expected when the score distribution are largely skewed. For large values of μ_2/μ_1, both scores and access costs call for accessing s_2 more frequently. Thus, CARS is close to optimal. Conversely, for smaller values of μ_2/μ_1, tuples with larger scores are to be expected to appear in s_1, and the overhead of CARS reaches +11%.

Page size - P: As expected, for large page sizes, the differences between the tested cost-aware strategies are less significant, as shown in Figure 6(g). Indeed, their differences are partially canceled out by the approximation induced by the page size.

Number of tuples per distinct join value - Q: For small values of Q, CARS achieves nearly optimal cost (Figure 6(h)). For large values of Q, CARS exhibits a consistent behavior, while CA diverges. Similarly, Q_2/Q_1 does not impact the performance of CARS (Figure 6(k)).

Number of distinct join values - J: Varying the number of distinct join values, as shown in Figures 6(i) and 6(l), affects the data set size, but not the pulling strategies.

Number of top combinations to be found - k: Figure 6(j) shows that the relative performance of CARS wrt. the other strategies increases as k grows.

In order to show the robustness to different access cost configurations, we let both sorted and random access cost vary in the set $L = 0.01, M = 0.10, H = 1.00$ and compute the relative cost that can be achieved for each of the 81 possible cases. Figure 7(a) reports the relative costs for the CARS strategy. We observe that CARS is always close to the oracle-based strategy (up to +22% cost overhead). CARS is also robust wrt. uncertainty in the knowledge of the operating parameters, whose values may indeed come from estimates obtained via sampling. We modeled uncertain parameters by adding Gaussian noise with standard deviation equal to 30% of their nominal value. Figure 7(b) shows that, even under these adverse conditions, performance stays close to the oracle-based strategy.

6 RELATED WORK

Top-k query answering is a topic that has been addressed by a large body of research during the last years [18].

The problem originates from rank aggregation, where all relations contain the same objects, sorted in different orders. The objective function in (5) is inspired to Fagin’s algorithm [19], which first performs sorted accesses to find at least k matching objects in the input relations, and then proceeds with random accesses to return the top-k objects. The threshold algorithm (TA) [3], [20] has a finer stopping condition based on an upper bound.
TA is instance optimal (for monotone functions), i.e., it always achieves a cost within a fixed constant factor of optimal. In many practical scenarios, access costs may be significantly skewed; suitable cost models and pulling strategies for rank aggregation have been proposed. In particular, in [3] a cost model is proposed to guide the pulling strategy, in such a way that the frequency of random accesses is set equal to the ratio between random and sorted access costs. A more sophisticated pulling strategy is described in [7], which explicitly takes into account both access costs (fixed, for all ranked lists) and score distributions (modeled as score histograms) to determine the optimal sequence of sorted and random access in terms of overall access cost. A similar approach has been pursued in [6]. Several variants of TA have been proposed in the literature based on the different data access methods available: no random access (NRA [3], Stream Combine [8]); controlled random probes (MPro [9], [10], Upper and Pick [11], [12]); random access also returning the position (BPA and BPA2 [13]). All these algorithms, however, focus on rank aggregation and top-k selection queries, and

Fig. 6. Bar charts comparing relative costs in different parameters configurations.
thus cannot be readily extended to the rank join setting. Indeed, as was pointed out in Section 3, the notion of lower bound does not extend to rank join in a useful way, since partially formed combinations may never become a combination, and thus their lower bound is undefined until the combination is fully formed. Instead, in the case of rank aggregation, every document always has an aggregate score. In addition, the probabilistic models used in rank aggregation algorithms would typically become more complex in rank join, while we have opted for a model that requires very limited knowledge about the data. Finer strategies than the baseline TA algorithm, such as the method of [7], typically exploit knowledge about score distribution (such as score histograms) and precompute pairwise term covariances from terms in frequent queries, which we do not assume to be available in our setting.

One of the first works on the problem, studied in this paper, of top-\(k\) query answering with joins is [21]. Their algorithm \(J^*\) is proved to be instance optimal among those that only use sorted access.

The HRJN (hash rank join) operator is introduced in [2] and shown there to outperform \(J^*\) by a large margin. The authors mainly focus on a scenario where only sorted access is available. In this setting, the bounding scheme summarized in Section 3 is proposed, together with an optimal pulling strategy (HRJN\(^t\)). For the case of both sorted and random access, a suitable bounding scheme (corresponding to (3)) is briefly described, which turns out to correspond to that used by TA in rank aggregation. In our experiments in Section 5, we have compared both adaptations of HRJN (RR) and HRJN\(^t\) (SA) to the presence of both sorted and random access with our algorithm. The work in [4] thoroughly analyzes the optimality properties of rank join operators with sorted access, including HRJN. A (costly) tight bounding scheme is proposed, such that the corresponding rank join operator is instance optimal, also when objects carry more than one score value and the join involves more than two relations. Trade-offs between efficiency and cost are further investigated in [17]. The problem of multiway rank join, i.e., involving more than two services, is typically addressed by pipelining binary rank join operators [2], [4].

Attempts to provide estimates of the costs of a join in a top-\(k\) setting were made in [22], [23]. A probabilistic model is proposed to estimate the number of tuples (depth) consumed from each input to produce the top-\(k\) results. It is assumed that scores are uniformly distributed, joins are independent, all relations have equal size, and the scoring function is a weighted sum. A more general framework for depth estimation is given in [24].

All the aforementioned algorithms halt when the exact top-\(k\) results are guaranteed to be found. In [25], a confidence measure is computed, so as to provide an indication of the likelihood of having found the top-\(k\) results, anytime during the execution of the rank join operator. In [15] an approximate result is output if the available resource budget does not allow returning all top-\(k\) results.

7 CONCLUSIONS

Stimulated by the goal of answering multi-domain queries, in this paper we propose an execution strategy for retrieving the top \(k\) combinations that can be formed by joining the results of heterogeneous search engines. We optimize such a strategy with respect to an additive cost model that considers both sorted access and random access. To this end, we introduce a statistical framework to characterize the number of combinations and the number of random accesses.

We are presently considering extensions of the framework to the case of non-additive cost models capturing the fact that service accesses may be performed in parallel, and to pipelining joins in the presence of random access.
ACKNOWLEDGMENT

The authors acknowledge support from the Search Computing (SeCo) project, funded by the ERC.

REFERENCES

APPENDIX A
EXTENSIONS
A.1 Handling more than 2 services

The analytical problem formulation and solution described above for joins involving two services can be extended to \(M \)-ary joins, with \(M > 2 \). We illustrate this for the case of \(M = 3 \) services in a join \(s_1 \Join s_2 \Join s_3 \), where \(s_1 \) and \(s_2 \) join on attributes \(B_{1,2} \), while \(s_2 \) and \(s_3 \) on attributes \(B_{2,3} \). Since \(s_2 \) participates in two joins, we shall use two different parameters \(j_1^L \) and \(j_1^R \) to indicate the number of distinct values in \(s_2 \) for \(B_{1,2} \) and, respectively, \(B_{2,3} \) (and similarly for the random variables \(j_2^L, j_2^R \) and their expectations \(j_2^L, j_2^R \)). Analogously, \(Q_2^L \) and \(Q_2^R \) indicate the average number of times the same tuple of values for the join attributes \(B_{1,2} \), respectively, \(B_{2,3} \) occurs in \(s_2 \).

Let us consider \(s_1 \Join s_2 \) as a single service \(s_{12} \), whose depth

\[
n_{12} = j_1(n_1, n_2) \cdot q_1(n_1) \cdot q_2(n_2)
\]

is the number of (partial) combinations formed between \(s_1 \) and \(s_2 \) with depths \(n_1 \) and \(n_2 \). In analogy with (7), the number of (full) combinations formed by sorted access is given by:

\[
\mathcal{K}(n_{12}, n_3) = j_{12,3}(n_{12}, n_3) \cdot q_{12}(n_{12}) \cdot q_3(n_3).
\]

By taking the expectation of \(\mathcal{K} \) as in (9), we obtain:

\[
\bar{\mathcal{K}}(n_{12}, n_3) \approx \frac{n_{12} n_3 j_{12,3}}{j_{12} j_3}.
\]

Note that \(j_3 \) is the number of distinct values in \(s_3 \) for the attributes \(B_{2,3} \) used in the join with \(s_{12} \), i.e., in the join with \(s_2 \). Symmetrically, \(j_{12} \) is the number of distinct values in \(s_{12} \) for the attributes \(B_{2,3} \) used in the join with \(s_3 \); however, this is generally only a subset of the number \(j_3^L \) of distinct values in \(s_3 \) for \(B_{2,3} \), and can be approximated as follows:

\[
j_{12} \approx \frac{j_{12} Q_2^L}{Q_2^R} \frac{j_1^R}{j_3}
\]

where \(\frac{j_{12} Q_2^L}{Q_2^R} \) is the fraction of tuples of \(s_2 \) participating in the join with \(s_1 \), so that multiplying by \(j_3^R \) gives an approximation of the number of distinct values that can be used in the join with \(s_3 \). Also, \(j_{12,3} \) is the number of distinct join attribute values in common between \(s_{12} \) and \(s_3 \). By a similar argument, we have:

\[
j_{12,3} \approx \frac{j_{12} j_3}{J_2} j_{2,3}
\]

By replacing \(n_{12} \) in (33) by \(\frac{n_{12} j_1 j_2}{j_3^2} \), according to (9), we obtain

\[
\bar{\mathcal{K}}(n_1, n_2, n_3) \approx \frac{n_1 n_2 n_3 j_{12} j_{12,3}}{j_1^2 j_2 j_3} = \frac{n_1 n_2 n_3 j_{1,2} j_{2,3}}{j_1^2 j_2^2 j_3^2 j_3}
\]

Equation (36) characterizes the objective function of the optimization problem to solve in this case and is straightforwardly generalized to \(M > 3 \) services. Note that the factor \(\frac{j_{1,2} j_{2,3} j_{1,2} j_{2,3}}{j_1 j_2 j_3} \) represents the selectivity of the join, which could also be estimated by using techniques known from the literature [16].

The execution and the stopping condition of the algorithm are unchanged, with the proviso that, when a new join attribute value is extracted, say, from \(s_1 \), the corresponding random access is performed on “service” \(s_{23} \). This requires activating a “chain” of random accesses: first a random access in made on \(s_2 \), which will possibly extract some tuples and thus join attribute values for \(s_3 \); then, for each such value (if any), a random access is made on \(s_3 \). With this in mind, we can now characterize the cost constraint. The random accesses due to the depth \(n_1 \) on \(s_1 \) incur the following expected cost:

\[
re_{2j_{1}}(n_1) + re_{3j_{3}}(j_{1}(n_1) Q_{2}^L)
\]

where \(j_{1}(n_1) Q_{2}^L \) is the expected number of tuples extracted from \(s_2 \) by random accesses corresponding to the first

\[\begin{align*}
\bar{n}_1 &= \frac{n}{n_1} \\
\bar{T} &= \frac{T}{n_1} \\
\bar{C} &= \frac{C}{n_1} \\
\bar{K} &= \frac{K}{n_1} \\
\bar{J} &= \frac{J}{n_1} \\
\bar{Q} &= \frac{Q}{n_1} \\
\bar{R} &= \frac{R}{n_1} \\
\end{align*} \]

where \(\bar{a} \) represents the selectivity of \(a \), \(\bar{n} \) is the number of tuples extracted by \(\bar{n} \), \(\bar{T} \) is the number of time \(\bar{T} \), \(\bar{C} \) is the number of cost metrics and the services can be accesses in

A.2 Handling parallel access

The cost model in (10) can be revised when time is used as cost metrics and the services can be accesses in
parallel. In a parallel implementation, sorted access is executed at the same time in both services. Then, whenever a new join attribute value is found, the corresponding random access is immediately made to the other service, and all random accesses can be made in parallel. In this case, the execution strategy is straightforward, as it corresponds to a straight line with slope \(\frac{s_2}{s_1} \) in the \(n_1/n_2 \) plane.

Therefore, we consider a more interesting scenario in which services can be accessed in parallel, but sorted and random access to the same service cannot be parallelized. In this case, the overall cost can be expressed as

\[
C(n_1, n_2) = \max \{ s_1n_1 + rc_1j_1(n_2), s_2n_2 + rc_2j_2(n_1) \}
\]

Thus, by replacing the expected value of (41) in (5), and relaxing the integer constraint, we seek the solution of the following problem (42):

\[
\begin{align*}
\text{maximize} & \quad \log(n_1n_2) \\
\text{subject to} & \quad t \leq C_T \\
& \quad s_1n_1 + rc_1j_1(n_2) \leq t \\
& \quad s_2n_2 + rc_2j_2(n_1) \leq t
\end{align*}
\]

where the dummy variable \(t \) is introduced in such a way that all constraints are expressed as linear fractional functions (hence convex). Problem (42) can be efficiently solved, similarly to problem (18), by imposing the Karush-Kuhn-Tucker conditions.

For a given value of \(C_T \), sorted accesses are executed in parallel, until the desired number of tuples are retrieved. Note that this might cause the two services to stop sorted accesses asynchronously. Then, the corresponding random accesses are made, one after the other. By varying \(C_T \) a curve is traced in the \(n_1/n_2 \) plane, describing the execution strategy to be followed until the top-\(k \) combinations can be reported.

APPENDIX B
MORE ON PROBLEM FORMULATION AND SOLUTION

B.1 Equivalence of problems (4) and (5)

When solving (4), we minimize the cost needed to obtain at least \(K_T \) good combinations. As for the solution of (5), we relax the constraint, and seek the solution of the problem

\[
\begin{align*}
\text{minimize} & \quad s_1n_1 + s_2n_2 + rc_1j_1(n_2) + rc_2j_2(n_1) \\
\text{subject to} & \quad \log(n_1n_2) \geq \log(K_Tj_1j_2/j_1j_2)
\end{align*}
\]

The corresponding Lagrangian function is

\[
L(n_1, n_2, \lambda) = s_1n_1 + s_2n_2 + rc_1j_1(n_2) + rc_2j_2(n_1) - \lambda(\log(n_1n_2) - \log(K_Tj_1j_2/j_1j_2))
\]

We observe that, by setting \(\lambda = 1/\bar{\lambda} \), the Karush-Kuhn-Tucker conditions of (43) lead to the same solution as for (18). Indeed, there is a one-to-one mapping between the target cost \(C_T \) and the number \(K_T \) of good combinations sought.

B.2 Probability of finding top \(k \) combinations

In some applications, it might be interesting to evaluate the probability, which we denote \(P_a(n_1, n_2; K) \), of finding at least \(K \) good combinations after \(\langle n_1, n_2 \rangle \) sorted accesses.

In (7) we wrote the number of good combinations \(K(n_1, n_2) \) in terms of the random variables \(j_1(n_1), n_1 \) and \(q_2(n_2), n_2 \). In Appendices C.1 and C.2 we give exact expressions for the p.m.f. of, respectively, \(j_1(n_1) \) and \(j_2(n_2, n_2) \), and \(q_i(n_1) \) determined as \(n_i/j_i(n_i) \). Since \(j_2(n_1, n_2) \) is determined over the interval \([0, J_1J_2] \), and \(q_i(n_1) \) over the interval \(|0, Q_i| \), the resulting p.m.f. \(p(K; n_1, n_2) \) has support \(\{0, J_1J_2Q_1Q_2\} \) and can be evaluated numerically. The probability \(P_a(n_1, n_2; K) \) of finding at least \(K \) good combinations is given by 1 minus the sum of \(p(K; n_1, n_2) \) over \(\{0, K - 1\} \).

For the example shown in Table 1, the probability of finding at least \(K_T = 5 \) good combinations after \(\langle n_1, n_2 \rangle = (6, 5) \) sorted accesses is equal to 0.55.

Although the analytical expression of \(P_a(n_1, n_2; K) \) is too complex to be dealt with in optimization, we can still obtain a point-wise value of \(P_a(n_1, n_2; K) \) for a given pair \(\langle n_1, n_2 \rangle \). Therefore, upon solving problem (5), we can numerically evaluate \(P_a(n_1, n_2, K_T) \) for a target value \(K_T \).

APPENDIX C
DERIVATIONS OF P.M.F.’S

C.1 Derivation of the p.m.f. of \(j_i(n_i) \)

The p.m.f. of the random variable \(j_i(n_i) \) can be obtained by means of the following recursive equations:

\[
\begin{align*}
p(j_i; n_i = 0) &= 1 \\
p(j_i; n_i = 0) &= 0 \text{ for } 1 \leq j_i \leq J_i \\
p(j_i; n_i) &= p(j_i; n_i - 1) - \frac{Q_i \cdot j_i - (n_i - 1)}{N_i - (n_i - 1)} \\
&\quad + p(j_i - 1; n_i - 1) \cdot \frac{N_i - Q_i \cdot (j_i - 1)}{N_i - (n_i - 1)}
\end{align*}
\]

where (47) indicates that in order to have \(j_i \) distinct join attribute values in \(n_i \) tuples obtained by sorted access we can have two cases: 1) we already have \(j_i \) distinct join attributes values after \(n_i - 1 \) accesses and the next tuple does not contain an unseen value of the join attribute; 2) we have \(j_i - 1 \) distinct join attributes value after \(n_i - 1 \) accesses and the next tuple contains an unseen value of the join attribute.

C.2 Derivation of the p.m.f. of \(j_{12}(n_1, n_2) \)

Let \(x \) denote a discrete random variable whose p.m.f. is described by the hyper-geometric distribution, which is defined as follows:

\[
h(x, M, m_1, m_2) = \binom{m_1}{x} \binom{M - m_1}{m_2 - x} \binom{M}{m_2}
\]
The hyper-geometric distribution captures the probability that, given a set of M elements and two subsets of, respectively n_1 and n_2 elements, these subsets share exactly x elements in common.

Let l_i denote the number of distinct join attribute values in common with the other service (see Figure 3). If the l_i’s are deterministically known, then the p.m.f. of j_{12} is characterized by the hyper-geometric distribution:

$$p(j_{12}; l_1, l_2) = h(j_{12}, l_1, l_2)$$

(49)

Since the l_i’s are random variables with p.m.f. $p(l_i|j_i; n_i) = h(l_i, j_i, J_i, l_i)$, the conditional p.m.f. of j_{12} can be expressed by

$$p(j_{12}|j_1, j_2; n_1, n_2) =$$

$$= \sum_{l_1=0}^{j_1} \sum_{l_2=0}^{j_2} p(l_1|j_1; n_1)p(l_2|j_2; n_2)h(j_{12}, l_1, l_2)$$

(50)

Finally, since j_1 and j_2 are random variables, we find

$$p(j_{12}; n_1, n_2) =$$

$$= \sum_{j_1=0}^{n_1} \sum_{j_2=0}^{n_2} p(j_1; n_1)p(j_2; n_2)p(j_{12}|j_1, j_2; n_1, n_2)$$

(51)

In order to obtain an expression that can be handled in optimization, we can obtain the expected value of j_{12}, i.e., $\bar{j}_{12} = E[j_{12}]$, in terms of the expected values of j_1 and j_2, i.e., \bar{j}_1 and \bar{j}_2, respectively. Indeed, since the expectation of the hyper-geometric distribution in (48) is given by $E[x] = \frac{m}{M}$, we obtain

$$\bar{j}_i(n_i) = E[p(l_i|j_i; n_i)] = \bar{j}_i(n_i) \frac{J_i}{j_i}$$

(52)

Similarly, from (51) we find that \bar{j}_{12} is equal to

$$\bar{j}_{12} = \frac{\bar{j}_1(n_1)\bar{j}_2(n_2)J_{12}}{J_1J_2}$$

(53)

C.3 Derivation of the p.m.f. of $\tilde{q}_i(n_i)$

The p.m.f. of the random variable $\tilde{q}_i(n_i)$, which is defined for $n_i > 0$, can be written recursively, using an approach similar to the one used to derive $p(j_i; n_i)$:

$$p(\tilde{q}_i = 0; n_i) = \frac{n_i}{n_i} \left(1 - \frac{Q_i}{N_i - t + 1} \right)$$

(54)

$$p(\tilde{q}_i = 1; n_i = 1) = \frac{Q_i}{N_i}$$

(55)

$$p(\tilde{q}_i; n_i = 1) = 0 \text{ for } 2 \leq \tilde{q}_i \leq Q_i$$

(56)

$$p(\tilde{q}_i; n_i) = p(\tilde{q}_i - 1; n_i - 1) \cdot \frac{Q_i - (\tilde{q}_i - 1)}{N_i - (n_i - 1)} + p(\tilde{q}_i, n_i - 1) \cdot \frac{N_i - (n_i - 1) - (Q_i - \tilde{q}_i)}{N_i - (n_i - 1)}$$

(57)

The expected value of $p(\tilde{q}_i; n_i)$ is given by $Q_i \frac{n_i}{N_i}$; intuitively, each join attribute value contributes Q_i tuples, but only a fraction $\frac{n_i}{N_i}$ of them are extracted in the top n_i tuples.

APPENDIX D

CONVEXITY OF COST FUNCTION WITH MULTIPLE SERVICES

We show that the expression characterizing the cost (38) is convex. Indeed, the first three terms are linear. The remaining terms can be rewritten by using the approximation given in (16). All the resulting terms are linear fractional (i.e., a ratio of two linear functions in n_i), and thus convex as long as the denominator is positive, which is always the case here. Trivially, each factor of the form $\tilde{j}_i(n_i)$, $\tilde{j}_L(n_i)$, or $\tilde{j}_R(n_i)$ is rewritten as a linear fractional expression in n_i by (16). As for the two terms with a nesting of applications of \tilde{j}, consider, e.g.,

$$r_{c_3}\tilde{j}_R^R(\tilde{j}_1(n_1)Q_2^L)$$

(58)

By using (16) on \tilde{j}_R^R, this rewrites into

$$r_{c_3}\tilde{j}_1(n_1)Q_2^L + \frac{b_2}{a_2^R}$$

(59)

where $a_2^R = \frac{Q_i - 1}{N_i - 1}$ and $b_2 = 1 - a_2^R$. Then, by using (16) on \tilde{j}_R, this rewrites into

$$r_{c_3}\tilde{j}_1(n_1)Q_2^L + \frac{b_2}{a_2^R} = \frac{r_{c_3}Q_2^L}{a_2^R + b_2}$$

(60)

which is linear fractional in n_i, with a positive denominator, since all its components are positive, and thus convex. The argument is analogous for $r_{c_1}\tilde{j}_L^L(\tilde{j}_3(n_3)Q_2^{R})$. Finally, the sum of convex functions is a convex function.

The same argument straightforwardly generalizes to cost functions with more than two levels of nesting of applications of \tilde{j}, which occur when joining more than three services. Therefore, the cost function remains convex even with more than three services.