Automatic Control (MSc in Engineering Physics)
Lecturer: Andrea Zanchettin
Date: 2016.07.19

Given and family namesSOLUTIONS

Student ID number Signature

- Duration: 120 minutes
- Number of exercises/questions: 5
- Maximum score: 32 pts.
- All solutions must be written (either in English or Italian) within the available blank space (and not on additional paper sheets)
- It is forbidden to use any electronic device, apart from a non programmable and non graphic calculator
- Books and lecture material are not allowed
- It is not allowed to leave the class room within the first 30 minutes
This page has been intentionally left blank (to be used only if necessary).
Question 1

Consider a linear time invariant closed-loop system with negative feedback and loop transfer function $L(s)$ (which satisfies the applicability of the Bode criterion). Provide a definition of phase margin ψ_m and elaborate on how a small, yet positive, phase margin, e.g. $\psi_m < 30\,\text{deg}$ is responsible for an oscillating closed-loop response. Provide (without necessarily proving it) an estimate of the corresponding damping factor ξ.

Solution: Let ω_c the sole frequency such that $|L(j\omega_c)| = 1$, define $\psi_c = \angle L(j\omega_c)$, then $\psi_m = \pi - |\psi_c|$.

We need to compute $F|\omega_c| = \frac{1}{|1 + L(j\omega_c)|} = \frac{1}{2\sin\left(\frac{\psi_m}{2}\right)} = \frac{1}{2\xi}$.
Exercise 2

Draw the root locus and discuss the stability of transfer function \(F(s) = \frac{L(s)}{1 + L(s)} \), where

\[
L(s) = \frac{s - 1}{(s + 1)^2}
\]

depending on the parameter \(\rho \).

Solution: For \(\rho = 0 \), the (open-loop) system is asymptotically stable.

For \(\rho > 0 \), we can use the direct root locus. The angle is: \(\theta_a = 180 \text{ deg} \).

Evaluating the root locus \(s = 0 \), i.e. \(\rho = \frac{\Pi_i |p_i|}{\Pi_j |z_j|} = 1 \) we can conclude that for \(\rho > 0 \), asymptotic stability is for \(\rho < 1 \).

For \(\rho < 0 \), we can use the inverse root locus. The angle is: \(\theta_a = 0 \text{ deg} \).

Since it is not possible to apply the centre of mass rule, stability of the closed-loop system is checked with the Routh criterion. The closed-loop characteristic polynomial is \(\Pi(s) = s^2 + (2 + \rho) s + 1 - \rho \), asymptotic stability then occurs for \(-2 < \rho < 1 \).
Exercise 3

Consider the following closed-loop system, where \(G(s) = \frac{1 - 0.1s}{(1 + 0.1s)(1 + 3s)} e^{-s\tau} \).

For \(\tau = 0 \), design the transfer function \(R(s) \) in order to achieve the following requirements:

1. a steady state error for a ramp disturbance \(d \) and a unit step reference \(w \) less than 0.1, i.e. \(|e_{\infty}| \leq 0.1 \) when \(d(t) = \text{ramp}(t) \) and \(w(t) = \text{step}(t) \);
2. a minimum phase margin of 60 degrees, i.e. \(\psi_m \geq 60 \text{ deg} \);
3. a crossover frequency of at least 0.1 rad/s, i.e. \(\omega_c \geq 0.1 \text{ rad/s} \).

Determine the maximum delay \(\tau > 0 \) the closed-loop system can tolerate before becoming unstable and finally compute the expected minimum attenuation of disturbance \(d \) on the output \(y \) in the bandwidth \((0, 0.01] \text{ rad/s} \).

Solution: Apart from the sign, the transfer functions from the disturbance \(d \) to the error \(e \) and from the reference \(w \) to the error are equal to the sensitivity function. Therefore, assuming stability

\[
e_{\infty} = \lim_{s \to 0} s \left(\frac{1}{1 + \frac{\mu_R s^2 + 1}{s \mu_R}} \right) = \lim_{s \to 0} s \frac{s^{g_R}}{s^{g_R} + \mu_R} \left(\frac{1}{s + \frac{1}{s^2}} \right) = \lim_{s \to 0} \frac{s^{g_R-1}}{s^{g_R} + \mu_R}
\]

Then for \(g_R \geq 2 \), the steady state error would be zero, alternatively for \(g_R = 1 \), the steady state error would be \(1/\mu_R \). In order to meet the requirement we can select \(R_1(s) = 10/s \).
In order to meet all the other requirement we need to decrease the crossover frequency, by introducing the following lag controller:

\[R_2(s) = \frac{1 + 100s}{1 + 10^4s} \]

The final loop transfer function is as follows:

\[
\begin{array}{c|c}
Exercise 4

Given the following linear time invariant continuous time system

\[
A = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad C = [0 \ 1]
\]

Verify whether it is possible to design a LQR controller which minimises the following cost functional

\[
J = \int_0^\infty (u^2 + y_{LP}^2) \, dt
\]

where \(y_{LP} \) represents the low-pass component of \(y = Cx \) up to frequency 1 rad/s.

Finally, design a block diagram of the corresponding controller.

Solution: We need to augment the state of the system in order to consider the low pass filter from \(y \) to \(y_{LP} \). Therefore, we add the following equation:

\[
\dot{z} = -z + y = -z + Cx, \quad y_{LP} = z, \quad \text{i.e. } Y_{LP}(s) = \frac{1}{s+1} Y(s)
\]

The extended system, in terms of state vector \(x_E = [x^T \ z]^T \) is as follows:

\[
A_E = \begin{bmatrix} A & 0 \\ C & -1 \end{bmatrix}, \quad B_E = \begin{bmatrix} B \\ 0 \end{bmatrix}
\]

We need first to check the reachability of the pair \((A_E, B_E)\), i.e. evaluating the rank of

\[
K_R = [B_E \ A_E B_E \ A_E^2 B_E], \quad \text{rank} (K_R) = 3
\]

Then, according to the new state vector \(x_E \) the cost functional can be rewritten as follows:

\[
J = \int_0^\infty (u^2 + x_E^T Q x_E) \, dt
\]

where \(Q = C_E^T C_E \) and \(C_E = [0 \ 0 \ 1] \). Finally, we need first to check the observability of the pair \((A_E, C_E)\), i.e. evaluating the rank of

\[
K_O = \begin{bmatrix} C_E^T & A_E^T C_E & A_E^2 C_E^T \end{bmatrix}, \quad \text{rank} (K_O) = 3
\]

The corresponding control law is \(u = K_E x_E = K_E x + K_{LP} y_{LP} \). Block diagram directly follows from it.
Exercise 5

Consider the following closed loop system, where \(G(s) = R(s) \frac{1}{(s + 1)^2} \) and \(N \) represents a static relay\(^1\).

For \(R(s) = 1 \), draw the polar diagram of \(G(j\omega) \) and discuss whether the closed-loop system is expected to oscillate. Then, design the controller \(R(s) \) in order to establish a persistent oscillation with amplitude \(A = 1 \) and compute the corresponding frequency.

Solution: Since the polar diagram of \(G(j\omega) \) when \(R(s) = 1 \) intersects the negative real axis only in the origin, no persistent oscillation is expected.

We can introduce the following controller \(R(s) = K/(s + 1) \), the corresponding transfer function would be \(G(s) = K/(s + 1)^2 \) which is clearly a low-pass one.

In order to find the intersection with the locus \(\Lambda(A) = -1/\phi(A) \) we can solve the following equation

\[
\angle G(j\omega_\pi) = -\pi, \omega_\pi = \tan(60) = \sqrt{3}
\]

Then, by solving \(\pi A/4 = |G(j\omega_\pi)| = K/8 \), we finally obtain \(K = 2\pi \).

\(^1\)Its describing function being \(\phi(A) = 4/(\pi A) \).