14.1 The Describing Function Method

The absolute value of Y_f is the ratio of the amplitudes of the fundamental component after and before the nonlinearity. We can view Y_f as an amplitude dependent gain. Writing G in polar form

$$G(\omega) = |G(\omega)| e^{j\theta(\omega)}$$

we can restate the equations (14.2a) and (14.2b) in the form

$$Y_f(C)G(\omega) = -1$$

(14.7)

We see that the calculation of an oscillation consists of two steps.

1. Calculate $Y_f(C)$ from (14.6).
2. Solve (14.7).

Example 14.1: Ideal Relay

Consider the nonlinearity

$$f(e) = \begin{cases} 1 & \text{if } e > 0 \\ -1 & \text{if } e < 0 \end{cases}$$

(14.8)

i.e., an ideal relay. Using (14.5) gives

$$b(C) = \frac{1}{\pi} \int_0^\pi \sin \omega da + \frac{1}{\pi} \int_\pi^{2\pi} (-1) \sin \omega da = \frac{4}{\pi}$$

while (14.4) gives

$$a(C) = \frac{1}{\pi} \int_0^\pi \cos \omega da + \frac{1}{\pi} \int_\pi^{2\pi} (-1) \cos \omega da = 0$$

The describing function is thus real and given by

$$Y_f(C) = \frac{4}{\pi C}$$

(14.9)

The describing function calculated in this example is real. From (14.4) it follows that this is always the case for single-valued nonlinearities. Nonlinearities with complex valued describing functions are, e.g., backlash and hysteresis, see Examples 14.7 and 14.8 in Appendix 14A.

Software

In MATLAB the command nyquist, which draws a Nyquist diagram, is also useful in describing function calculations.

Appendix 14A: Some Describing Functions

Example 14.3: Cubic Gain

The cubic nonlinearity

$$f(u) = u^3$$

has the describing function

$$Y_f(C) = \frac{3C^2}{4}$$

Example 14.4: Relay with Dead Zone

A relay with dead zone is described by the relation

$$f(u) = \begin{cases} 1 & u > D \\ 0 & |u| \leq D \\ -1 & u < -D \end{cases}$$

and has the graph

$$Y_f(C) = \frac{4}{\pi C} \sqrt{1 - D^2/C^2}, \quad C > D$$
Appendix 14A: Some Describing Functions

Example 14.5: Saturation

A saturation is described by the relation

\[f(u) = \begin{cases} 1 & u > 1 \\ u & [u] \leq 1 \\ -1 & u < -1 \end{cases} \]

and has the graph

\[f(u) \]

\[u \]

The describing function is

\[Y_f(C) = \begin{cases} \frac{1}{2} \arcsin \frac{1}{C} + \frac{1}{2} \sqrt{1-C^{-2}} & C > 1 \\ 1 & C \leq 1 \end{cases} \]

Example 14.6: Dead Zone

A dead zone is described by the graph

\[f(u) \]

\[u \]

Its describing function is

\[Y_f(C) = \begin{cases} \frac{H}{2} - \frac{H}{2B} \left(\arcsin(D/C) + \frac{B}{2} \sqrt{1 - \left(\frac{B}{C}\right)^2} \right) & C \geq D \\ 0 & C < D \end{cases} \]

Example 14.7: Relay with Hysteresis

A relay with hysteresis is described by the graph

\[f(u) \]

\[u \]

For \(u \)-values between \(-D\) and \(D \) the value of \(f(u) \) is not uniquely defined but is given by the following rule. If \(u \) has been greater than \(D \) then the value of \(f(u) \) remains at \(f(u) = H \) until \(u \) becomes less than \(-D\), when it is changed to \(-H\). If \(u \) has been less than \(-D\) the value \(-H\) remains until \(u \) becomes larger than \(D \). The describing function is well defined if \(C \geq D \), and is then given by

\[\text{Re} Y_f(C) = \frac{4H}{\pi C} \sqrt{1 - D/C^2} \]

\[\text{Im} Y_f(C) = -\frac{4D}{\pi C} \]

Example 14.8: Backlash

A backlash is described by the graph

\[f(u) \]

\[u \]

If \(u \) is increasing as a function of time, then \(f(u) \) is given by the sloping line on the right hand side, if \(u \) is decreasing by left hand one. If \(u \) changes from being increasing to being decreasing or vice versa, then \(f(u) \) is constant.
during the transition. This nonlinearity is an idealized description of what happens in, e.g., a pair of gears. If $C > D$ then the describing function is well defined and given by

\[
\text{Re}Y(f) = \frac{H}{\pi D} \left(\frac{\pi}{2} + \arcsin(1 - \frac{2D}{C}) + 2\left(1 - \frac{2D}{C}\right) \sqrt{\frac{D}{C}(1 - \frac{D}{C})} \right)
\]

\[
\text{Im}Y(f) = -\frac{4H}{\pi C} \left(1 - \frac{D}{C}\right)
\]