1 Scheme

2 Haskell

3 Prolog
The concept of library is pervasive in computer languages

basic idea: libs contain procedures, programs, utilities (but also macros) that can be distributed *independently*

in many languages they often rely on **namespaces** (e.g. in C++, Java, Common Lisp, ML variants, but not in C, Objective-C, older Schemes, . . .)

main idea: new **namespace** for the library, **import** of symbols/definitions from other needed libs, **export** of defined symbols (e.g. data, procedures, macros)

some languages offer very sophisticated and flexible libraries, e.g. the ML family with **functors** (not in F#)

Standard R6RS is the first to introduce this concept in Scheme (but there is a strong tradition of implementation-specific variants, e.g. that of Scheme 48, inspired by ML)
Like in many Lisps, Racket uses `require` for importing, and `provide` for exporting symbols and their definitions:

```racket
#lang racket
(provide
  <exported-names>)
(require
  ; if missing, (require racket) is implicit
  <imported-names>)
<implementation>
```

The implicit name of the module is its file name (without the type extension)

To load and "enter" into a module’s namespace, we can also perform (enter! "<filename>") at the REPL
lsets: a simple example of a module

1. this is a very simple implementation of a set library with lists

2. main idea: we represent sets as lists, and provide typical set operations, \cup, \cap, set difference

```racket
#lang racket
(provide
  simple-set-difference
  simple-intersection
  simple-union
  lset-union
  lset-intersection)
(require
  racket/base); we import only the base lib
```

3. (Racket offers a much faster and more complete `racket/set` library)
here is a concise (and not very efficient) implementation:

```scheme
(define (simple-set-difference x y) ; y \ x
  (filter (lambda (t) (not (member t x))) y))

(define (simple-intersection x y)
  (filter (lambda (t) (member t x)) y))

(define (simple-union x y)
  (append x (simple-set-difference x y)))
```

Note: **member** is not a predicate, because if it finds \(t \), it returns the rest of the list starting from it.
here are the last operations:

```
(define (lset-union . sets)
    (foldl simple-union (car sets)
        (cdr sets)))

(define (lset-intersection . sets)
    (foldl simple-intersection (car sets)
        (cdr sets)))
```

to use it: (require "lset.ss")
Another module example: redefining standard procedures

1. The require/provide mechanism is flexible: it is possible to rename, append or prepend strings to imported symbols, ...

2. Using **require** with renaming, it is possible also to re-define standard procedures

3. e.g. we first rename `+` to **old-+**, when we import it:

   ```
   (import
     (rename-in racket/base (+ old-+))
     ...)
   ```

4. now we can re-define it for concatenating lists and vectors (like in Python, Ruby):
rdefinition of +

(define +
 (lambda args
 (if (not (null? args))
 (apply
 (cond
 ((string? (car args)) string-append)
 ((list? (car args)) append)
 ((vector? (car args)) vector-append)
 (else old-+))
 args)
 0))) ; + without arguments
redefinition of \(+\): examples

\[
\begin{align*}
\text{(+ 2 3)} & \quad ; \quad => \quad 5 \\
\text{(+ " =2" " + " "3")}) & \quad ; \quad => \quad "=2+3" \\
\text{(+ ' (1 2 3) '(4 5 6))} & \quad ; \quad => \quad '(1 2 3 4 5 6) \\
\text{(+ '#(1 2 3) '#(4 5 6))} & \quad ; \quad => \quad #(1 2 3 4 5 6)
\end{align*}
\]

1. this capability is present in many languages (e.g. C++, Ruby)
2. some explicitly forbid it (e.g. Java, ML)
In Lisps, the parser is always available through the standard procedure called read.

read gets a string from the input (or from a file), parsing (but not evaluating) it.

e.g.

```
(define my-input (read))
(display (list? my-input))(space)
(display (eval my-input))
```

1. if we write "ciao" (with _ quotes!), we obtain #f ciao
2. if we write (+ 1 2), we obtain #t 3
a very easy way of working with files: **with-input-from-file**, **with-output-to-file** - parameters are filename and a thunk with the operations to be performed

reads are used to parse the file and get its contents, while the usual **displays** can be used to put data in the file:

```
(with-output-to-file "temp.txt"
 (lambda ()
   (display "(+ 1 2)"))(newline)))

(with-input-from-file "temp.txt"
 (lambda ()
   (let ((v (read)))
     (display (eval v))))))
```
For a procedure call, the time between the invocation and its return is called its **dynamic extent**

We saw that **call/cc** allows reentering a dynamic extent of a procedure after its return

There is a procedure, called **dynamic-wind**, that is used to perform operations when entering and/or exiting the dynamic extent

its three arguments are the procedures **before**, **thunk**, and **after**, all without arguments

before is called whenever the dynamic extent of the call to **thunk** is entered; **after** when it is exited

useful e.g. for managing files (open/close) used by **thunk**
(let ((path '()))
 (c #f))
(let ((add (lambda (s)
 (set! path (cons s path))))))
(dynamic-wind
 (lambda () (add 'connect)) ; before
 (lambda () ; thunk
 (add (call/cc
 (lambda (c0)
 (set! c c0)
 'talk1))))
 (lambda () (add 'disconnect))) ; after
(if (< (length path) 4)
 (c 'talk2)
 (reverse path))))
;=>(connect talk1 disconnect connect talk2 disconnect)
(let ((n 0))
 (call/cc
 (lambda (k)
 (dynamic-wind
 (lambda () ; BEFORE
 (set! n (+ n 1))
 (k))
 (lambda () ; THUNK
 (set! n (+ n 2)))
 (lambda () ; AFTER
 (set! n (+ n 4)))))
 n) ;; => 1

1 in this case thunk is not executed, because k is used to escape
Cooperative multitasking (green threads) with call/cc

1. Green threads are lightweight threads supported usually by the language. This means that they are not OS threads, and are lighter.
2. Very useful e.g. for server-side processing; used e.g. in Erlang, Stackless Python.
3. We see here how to implement them using `call/cc` (example taken from Wikipedia).
A naive queue for thread scheduling, it holds a list of continuations "waiting to run".

```scheme
(define *queue* '())

(define (empty-queue?)
  (null? *queue*))

(define (enqueue x)
  (set! *queue* (append *queue* (list x))))

(define (dequeue)
  (let ((x (car *queue*)))
    (set! *queue* (cdr *queue*)
      x)))
```
Cooperative multitasking (cont.)

1. This starts a new thread running \((\text{proc})\).

\[
\text{(define (fork proc)}
\begin{array}{l}
\quad \text{(call/cc)} \\
\quad \text{(lambda (k)} \\
\quad \quad \text{(enqueue k)} \\
\quad \quad \text{(proc))})
\end{array}
\]

2. This yields the processor to another thread, if there is one.

\[
\text{(define (yield)}
\begin{array}{l}
\quad \text{(call/cc)} \\
\quad \text{(lambda (k)} \\
\quad \quad \text{(enqueue k)} \\
\quad \quad \text{((enqueue))})
\end{array}
\]
This terminates the current thread, or the entire program if there are no other threads left.

```
(define (thread-exit)
  (if (empty-queue?)
    (exit)
    ((dequeue))))
```
We can try it with this example procedure:

```scheme
(define (do-stuff-n-print str max)
  (lambda ()
    (let loop ((n 0))
      (display str)(display " ")
      (display n)(newline)
      (yield)
      (if (< n max)
        (loop (+ 1 n))
        (thread-exit)))))
```
Cooperative multitasking (cont.)

Create two threads, and start them running.

(fork (do-stuff-n-print "This is A" 4))
(fork (do-stuff-n-print "This is B" 5))
(thread-exit)
output:

```
This is A 0
This is B 0
This is A 1
This is B 1
This is A 2
This is B 2
This is A 3
This is B 3
This is B 4
This is B 5
```
Handling **nondeterminism**: McCarthy’s Ambiguous Operator

1. **choose**: it is used to choose among a list of *choices*.
2. if, at some point of the computation, the choice is not the right one, one can just **fail**.
3. it is very convenient e.g. to represent **nondeterminism**.
4. think about automata: when we have a nondeterministic choice among say a, b, or c, we can just `(choose '(a b c))`.
5. main idea: we use **continuations** to store the alternative paths when we choose.
6. if we fail, we **backtrack**.
A Scheme implementation (1)

Scheme supports first class continuations, so it is very easy to implement `choose`:

```
(define *paths* '())

(define (choose choices)
  (if (null? choices)
      (fail)
      (call/cc
       (lambda (cc)
         (set! *paths*
           (cons (lambda ()
                  (cc (choose (cdr choices))))
                 *paths*))
          (car choices))))
```

Matteo Pradella
Principles of Programming Languages, Appendix
February 2015
A Scheme implementation (2)

and this is **fail**, to manage rollbacks:

```scheme
(define fail #f)
(call/cc
 (lambda (cc)
   (set! fail
     (lambda ()
       (if (null? *paths*)
         (cc '!!failure!!)
         (let ((p1 (car *paths*)))
           (set! *paths* (cdr *paths*)
             (p1)))))))))
```
a simple example:

(define (is-the-sum-of sum)
 (unless (and (>= sum 0)(<= sum 10))
 (error "out of range" sum))
 (let ((x (choose '(0 1 2 3 4 5)))
 (y (choose '(0 1 2 3 4 5))))
 (if (= (+ x y) sum)
 (list x y)
 (fail))))
How is Prolog’s **cut** implemented?

1. it should be easy to understand it by considering our Scheme implementation of **choose**

2. an implementation of a very basic **cut** is the following:

   ```scheme
   (define (cut)
     (set! *paths* '()))
   ```

3. so, when we call it, we "forget" all the paths that we saved before

4. in a sense, it is a "point of no return" - either this path succeeds, or we fail
Currying (alio modo)

1. a utility function for currying

```
(define (curry func . curry-args)
  (lambda args
    (apply func (append curry-args args))))
```

2. examples

```
((curry + 1) 2) ; => 3
((curry + 1 2) 3) ; => 6
((curry + 1 2) 3 4) ; => 10
```
If the language does not natively support continuations, we can build them explicitly: the idea is to use a closure to create the continuation object. We can see it with an example, first let us consider a (non tail-)recursive function:

```
(define (rev lst)
  (if (null? lst)
      '()
      (append (rev (cdr lst))
              (list (car lst)))))
```

We can make it *tail recursive*, by putting the the operations that are to be performed after the recursive call (i.e. its *continuation*) in a closure, and then passing it (like in our *fold-right-tail*).

What does this function, and what is the continuation in this case?
here is the tail-recursive one, with a new parameter holding the continuation \(k \)

\[
\begin{align*}
\text{(define (rev-cont lst)} & \text{)} \\
\text{(define (rev-cont-aux lst k)} & \text{)} \\
\text{(if (null? lst)} & \text{)} \\
\text{ (k ’()))} & \text{)} \\
\text{(let ((continuation} & \text{)} \\
\text{;; here is the continuation} & \text{)} \\
\text{ (lambda (x)} & \text{)} \\
\text{ (k (append x} & \text{)} \\
\text{ (list (car lst)))))))} & \text{)} \\
\text{(rev-cont-aux (cdr lst)} & \text{)} \\
\text{ continuation)))))} & \text{)} \\
\text{(rev-cont-aux lst (lambda (x) x))} & \text{)} \\
\text{;; i.e. the first continuation is the identity}\end{align*}
\]
Haskell: An exercise on infinite lists

1. knowing that

2. any :: (a -> Bool) -> [a] -> Bool

3. takeWhile :: (a -> Bool) -> [a] -> [a]

4. what is the meaning of this code?

 isprime n = not . any (\x -> mod n x == 0) .
 takeWhile (\x -> x^2 <= n) $
 primelist
primelist = 2 : [x | x <- [3,5..], isprime x]

5. note: any (>0) [3,-3..(-30)] is true; takeWhile (> 0) [3,-3..(-30)] is [3]
The State monad

1. We saw that monads are useful to automatically manage state.
2. Let us define now the monad to do it.
3. First of all, we define a type to represent our state:
   ```haskell
   newtype State st a = State (st -> (st, a))
   ```
4. The idea is having a type that represents a computation having part of the input (and of the output) that represents a state.
here is the actual definition:

```haskell
instance Monad (State state) where
  return x = State (\st -> (st, x))
State f >>= g = State (\oldstate ->
  let (newstate, val) = f oldstate
      State f' = g val
  in f' newstate)
```
A first toy example

1. it is the old one, but in another monad

 esm :: State Int Int
 esm = do x <- return 5
 return (x+1)

2. what is the result of the following code?

 let State f = esm
 in (f 333)
to use the state monad, it is a good idea to define a few utility functions, for accessing state:

```haskell
getState :: State state state
getState = State (\state -> (state, state))

putState :: state -> State state ()
putState new = State (\_ -> (new, ()))
```
variant 1

esm' :: State Int Int
esm' = do x <- getState
 return (x+1)

what is the result of the following code?

let State f = esm'
in (f 333)
variant II

esm'' :: State Int Int
esm'' = do x <- getState
 putStrLn (x+1)
 x <- getState
 return x

what is the result of the following code?

let State f = esm''
in (f 333)
going back to our "stateful" example on binary trees (i.e. `mapTreeState`), we can revisit it and give another, more elegant and general definition by using our State monad

this is the monadic version of `mapTree`:

```haskell
mapTreeM f (Leaf a) = do
    b <- f a
    return (Leaf b)
mapTreeM f (Branch lhs rhs) = do
    lhs' <- mapTreeM f lhs
    rhs' <- mapTreeM f rhs
    return (Branch lhs' rhs')
```
as far as its type is concerned, we could declare it to be:

```haskell
mapTreeM :: (a -> State state b) -> Tree a ->
          State state (Tree b)
```

don the other hand, if we omit the declaration, it is inferred as follows:

```haskell
mapTreeM :: Monad m => (a -> m b) -> Tree a -> m (Tree b)
```
	his is clearly more general, and means that `mapTreeM` could work with every monad
Running the state monad

1. to use `mapTreeM`, it is better to define a utility function, to actually *run* the action, by providing an initial state

   ```haskell
   runStateM :: State state a -> state -> a
   runStateM (State f) st = snd (f st)
   ```

2. at last, here is the code for numbering nodes:

   ```haskell
   numberTree :: Tree a -> State Int (Tree (a, Int))
   numberTree tree = mapTreeM number tree
       where number v = do
             cur <- getState
             putState (cur+1)
             return (v,cur)
   ```
Run:

testTree = Branch (Branch
 (Leaf 'a')
 (Branch
 (Leaf 'b')
 (Leaf 'c')))
 (Branch
 (Leaf 'd')
 (Leaf 'e'))

runStateM (numberTree testTree) 1

we obtain:

Branch (Branch (Leaf ('a',1))
 (Branch (Leaf ('b',2))
 (Leaf ('c',3)))
 (Branch (Leaf ('d',4)) (Leaf ('e',5)))
With another monad:

we can also use IO:

*Main> mapTreeM print testTree
'a'
'b'
'c'
'd'
'e'
Another example: imperative GCD

1. we start with a functional GCD:

 \[
 \text{gcdf } x \ y \mid x == y = x \\
 \text{gcdf } x \ y \mid x < y = \text{gcdf } x (y-x) \\
 \text{gcdf } x \ y = \text{gcdf } (x-y) y
 \]

2. we want to implement in an "imperative way", where variables are memory cells
this example is similar to the example with binary tree, as we can already use the \texttt{State} monad defined before.

first, the \texttt{state} is given by two variables à la von Neumann:

\begin{verbatim}
type ImpState = (Int, Int)

getX, getY :: State ImpState Int
getX = State (\(x,y\) \rightarrow ((x,y), x))
getY = State (\(x,y\) \rightarrow ((x,y), y))

putX, putY :: Int \rightarrow State ImpState ()
putX \text{ } x' = State (\(x,y\) \rightarrow ((x',y), ()))
putY \text{ } y' = State (\(x,y\) \rightarrow ((x,y'), ()))
\end{verbatim}
now the code:

gcdST = do { x <- getX; y <- getY;
 (if x == y then return x else
 if x < y
 then do { putY (y-x); gcdST } -- loop!
 else do { putX (x-y); gcdST })
}

run_gcd x y = runStateM gcdST (x,y)
We will consider computations that “consume” resources. First of all, we define the **resource**: type `Resource = Integer`

and the **monadic data type**:
`data R a = R (Resource -> (Resource, Either a (R a)))`

Each computation is a function from available resources to remaining resources, coupled with either a result $\in a$ or a **suspended computation** $\in R a$, capturing the work done up to the point of exhaustion.

* (Either represents **choice**: the data can either be `Left a` or `Right (R a)`, in this case. It can be seen as a generalization of `Maybe`)*
R is a monad:

```
instance Monad R where
    return v = R (\r -> (r, Left v))
```

1. i.e. we just put the value \(v \) in the monad as \(\text{Left} \ v \)

 \[
 R \ c1 >>= fc2 = R (\r -> \text{case} \ c1 \ r \ \text{of} \ (r', \text{Left} \ v) \rightarrow \ \text{let} \ R \ c2 = fc2 \ v \ \text{in} \ c2 \ r'
 \]

2. we call \(c1 \) with resource \(r \). If \(r \) is **enough**, we obtain the result \(\text{Left} \ v \). Then we give \(v \) to \(fc2 \) and obtain the second \(R \) action, i.e. \(c2 \).

3. the result is given by \(c2 \ r' \), i.e. we give the **remaining resources** to the second action
R is a monad (cont.)

1. if the resources in \(r \) are **not enough**:

 \[
 R \ c1 >>= fc2 = R (\r \to \text{case } c1 \ r \ \text{of} \ \\
 \ldots \ \\
 (r', \text{Right } pc1) \to (r', \text{Right } (pc1 >>= fc2)))
 \]

2. we just chain \(fc2 \) together with the **suspended computation** \(pc1 \)
run is used to evaluate $R \ p$ feeding resource s into it

```haskell
run :: Resource -> R a -> Maybe a
run s (R p) = case (p s) of
  (_, Left v) -> Just v
  _           -> Nothing
```
Basic helper functions (cont.)

1. **step** builds an \(R \ a \) which “burns” a resource, if available:

   ```haskell
   step :: a -> R a
   step v = c where
     c = R (\r -> if r /= 0
             then (r-1, Left v)
             else (r, Right c))
   ``

2. If \( r = 0 \) we have to **suspend** the computation as it is \( (r, Right c) \).
Lifts

1. **lift** functions are used to “lift” a generic function in the world of the monad. There are standard lift functions in `Control.Monad`, but we need to build variants which burn resources at each function application.

   ```haskell
 lift1 :: (a -> b) -> (R a -> R b)
 lift1 f = \ra1 -> do a1 <- ra1 ; step (f a1)
   ```

2. We extract the value `a1` from `ra1`, apply `f` to it, and then perform a `step`.

3. **lift2** is the variant where `f` has two arguments:

   ```haskell
 lift2 :: (a -> b -> c) -> (R a -> R b -> R c)
 lift2 f = \ra1 ra2 -> do a1 <- ra1
 a2 <- ra2
 step (f a1 a2)
   ```
the simplest *show*: we run the computation with just a unit of resources:

```haskell
showR f = case run 1 f of
 Just v -> "<R: " ++ show v ++ "]>
 Nothing -> "<suspended>"
```

```haskell
instance Show a => Show (R a) where
 show = showR
```
Comparisons

\[
(==*) :: \text{Ord } a \Rightarrow R\ a \to R\ a \to R\ \text{Bool}
\]

\[
(==*) = \text{lift2 } (==)
\]

\[
(>* ) = \text{lift2 } (>)
\]

For example:

*Main> (return 4) >* (return 3)
<R: True>

*Main> (return 2) >* (return 3)
<R: False>
Then numbers and their operations:

\[
\text{instance } \text{Num } a \Rightarrow \text{Num } (\text{R } a) \text{ where }
\]
\[
(+) \quad = \text{lift2 } (+)
\]
\[
(-) \quad = \text{lift2 } (-)
\]
\[
\text{negate} \quad = \text{lift1 } \text{negate}
\]
\[
(*) \quad = \text{lift2 } (*)
\]
\[
\text{abs} \quad = \text{lift1 } \text{abs}
\]
\[
\text{signum} \quad = \text{lift1 } \text{signum}
\]
\[
\text{fromInteger} \quad = \text{return } . \text{fromInteger}
\]

1. in this way, we can operate on numbers \textbf{inside the monad}, but for each operation we perform, we \textbf{pay a price} (i.e. step)
Now we see $R$ from the point of view of a typical user of the monad, with a simple example.

first we define if-then-else, then the usual recursive factorial:

```
ifR :: R Bool -> R a -> R a -> R a
ifR tst thn els = do t <- tst
 if t then thn else els
```

```
fact :: R Integer -> R Integer
fact x = ifR (x ==* 0) 1 (x * fact (x - 1))
```
*Main> fact 4
<suspended>
*Main> fact 0 -- it does not need resources
<R: 1>
*Main> run 100 (fact 10) -- not enough resources
Nothing
*Main> run 1000 (fact 10)
Just 3628800
*Main> run 1000 (fact (-1)) -- all computations end
Nothing

in practice, thanks to laziness and monads, we built a **domain specific language** for resource-bound computations
every book on Prolog has a variant of this example:

```
grandfather(X,Z) :- parent(X,Y), father(Y,Z).
grandmother(X,Z) :- parent(X,Y), mother(Y,Z).
pARENT(X,Y) :- mother(X,Y).
pARENT(X,Y) :- father(X,Y).

father(gino, adamo).
mother(gino, elena).
father(ella, gino).
mother(ella, vita).
father(ugo, gino).
mother(ugo, vita).
```
we can try it with some queries:

?- grandfather(X, adamo).
X = ella.

?- grandfather(X, adamo).
X = ella ;
X = ugo.

?- grandmother(ugo, Y).
Y = elena.
Another exercise on Push-down Automata

1. define a deterministic implementation of PDA
2. optimize it using cut, if possible
3. (is it possible to use cut for NPDA? Why?)
Deterministic PDA

Here is the solution:

```prolog
% acceptance
cfg(State, _, []) :- final(State), !.

% standard move
cfg(State, [Top|Rest], [C|String]) :-
delta(State, C, Top, NewState, Push), !,
append(Push, Rest, NewStack),
cfg(NewState, NewStack, String).

% epsilon move
cfg(State, [Top|Rest], String) :-
delta(State, epsilon, Top, NewState, Push), !,
append(Push, Rest, NewStack),
cfg(NewState, NewStack, String).
```

Matteo Pradella
Principles of Programming Languages, Appendix
February 2015 59 / 69
A (more efficient) quicksort variant

1. we can avoid the append to make it more efficient, by using another parameter as an accumulator

   \[
   \text{qsort}([X|L],R0,R) :- \text{part}(L,X,L1,L2), !, \\
   \text{qsort}(L2,R0,R1), \\
   \text{qsort}(L1,[X|R1],R). \\
   \text{qsort}([],R,R).
   \]

2. e.g.

   ?- qsort([4,3,1,13,32,-3,32],[],X).
   X = [-3, 1, 3, 4, 13, 32, 32].
tracing with SWI-Prolog

1. it is sometimes useful to **trace** a computation, e.g. `trace(qsort)`.

   ```prolog
 [debug] ?- qsort([2,3,1],[],X).
 T Call: (6) qsort([2, 3, 1], [], _G367)
 T Call: (7) qsort([3], [], _G486)
 T Call: (8) qsort([], [], _G486)
 T Exit: (8) qsort([], [], [])
 T Call: (8) qsort([], [3], _G489)
 T Exit: (8) qsort([], [3], [3])
 T Exit: (7) qsort([3], [], [3])
 T Call: (7) qsort([1], [2, 3], _G367)
 T Call: (8) qsort([], [2, 3], _G492)
 T Exit: (8) qsort([], [2, 3], [2, 3])
 T Call: (8) qsort([], [1, 2, 3], _G367)
 T Exit: (8) qsort([], [1, 2, 3], [1, 2, 3])
 T Exit: (7) qsort([1], [2, 3], [1, 2, 3])
 T Exit: (6) qsort([2, 3, 1], [], [1, 2, 3])
 X = [1, 2, 3].
   ```

2. also, old fashioned debugging with `print/1` and `nl/0`.

---

Matteo Pradella
Principles of Programming Languages, Appendix
February 2015
here is an implementation of map (usually called maplist in the library)

\[
\text{map}(\_\_, \_\_, \_\_, \_\_).
\]

\[
\text{map}(C, [X\mid Xs], [Y\mid Ys]) :- \text{call}(C, X, Y), \text{map}(C, Xs, Ys).
\]

e.g. if we define \[test(N,R):- R \text{ is } N\ast N.\]

?- \text{map}(test,[1,2,3,4],X).

\[X = [1, 4, 9, 16].\]
other predicates are used for **adding facts at runtime**:

1. **asserta(F)** is used to state \( F \) as a **first** clause
2. **assertz(F)** is the same, but as the **last** clause

this is also useful to add facts at the REPL, e.g.  

\[ ?- \text{assertz(test(N,R):- R is N*N).} \]

3. another peculiar "meta-predicate" is **var**: succeeds when its argument is a variable

   1. **CAVEAT**: **var(X)** succeeds without binding \( X \)!
Moreover, we know that we cannot match $X(Y) = f(3)$, but sometimes we need something analogous.

We can do it by using the predicate $\Rightarrow..$ which is used to **decompose** a term.

E.g. the query $f(2,g(4)) =.. X$ binds $X$ to the list $[f, 2, g(4)]$.

So in the previous case we can do $f(3) =.. [X,Y]$.
infix predicates can be defined (almost) like in Haskell

e.g.

:- op(800, yfx, =>). % left associative
:- op(900, yfx, &). % likewise, with lower priority
:- op(600, xfy, ->). % right associative
:- op(300, xfx, :). % not associative
:- op(900, fy, \+). % prefix not

note the starting :-, because they are commands

e.g.

?- assert(:- op(600, xfy, ->)).
true.
?- (a -> b -> c) =.. X.
X = [->, a, (b->c)].
Example: a symbolic differentiator

1 basic rules

\[
\begin{align*}
\text{d(U+V,X,DU+DV)} & : \text{!}, \ \text{d(U,X,DU)}, \ \text{d(V,X,DV)}. \\
\text{d(U-V,X,DU-DV)} & : \text{!}, \ \text{d(U,X,DU)}, \ \text{d(V,X,DV)}. \\
\text{d(U*V,X,DU*V+U*DV)} & : \text{!}, \ \text{d(U,X,DU)}, \ \text{d(V,X,DV)}. \\
\text{d(U^N,X,N*U^(N-1)*DU)} & : \text{!}, \ \text{integer(N)}, \ \text{N1 is N-1}, \ \text{d(U,X,DU)}. \\
\text{d(-U,X,-DU)} & : \text{!}, \ \text{d(U,X,DU)}. 
\end{align*}
\]

2 terminating rules

\[
\begin{align*}
\text{d(X,X,1)} & : \text{!}. \\
\text{d(C,_,0)} & : \text{atomic(C)}, \text{!}.
\end{align*}
\]

3 atomic holds with atoms and numbers
1 terminating rules (cont.)
\[ d(\sin(X), X, \cos(X)) \leftarrow !. \]
\[ d(\cos(X), X, -\sin(X)) \leftarrow !. \]
\[ d(\exp(X), X, \exp(X)) \leftarrow !. \]
\[ d(\log(X), X, 1/X) \leftarrow !. \]

2 chain rule
\[ d(F_G, X, DF*DG) \leftarrow F_G=..[\_, G], !, d(F_G, G, DF), d(G, X, DG). \]

3 note that: \(1 + 2/3 =..\) \(X\) binds \(X\) to \([+,1,2/3]\)
now, let us try it:

?- d(2*sin(cos(x+cos(x))), x, V).
V = 0*sin(cos(x+cos(x)))+2* (cos(cos(x+cos(x)))* (-sin(x+cos(x))* (1+ -sin(x)))).